奥赛起跑线四年级分册 乘除法的巧算(一)
- 格式:docx
- 大小:12.93 KB
- 文档页数:3
四年级奥数巧算乘法集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]巧算乘法整数乘法的速算与巧算,一条最基本的原则就是“凑整”。
要达到“凑整”的目的,就要将一些数分解、变形,再运用乘法的交换律、结合律、分配律以及四则运算中的一些规则,把某些数组合到一起,使复杂的计算过程简便化。
一、记住乘法中常用的几个重要式子5×2=10,25×4=100,125×8=1000,4×75=300;4×125=500;625×8=5000,625×16=10000。
二、乘法的运算定律1、乘法交换律:a×b=b×a2、乘法结合律:(a×b)×c=a×(b×c)题型1、根据交换律与结合律直接凑整①19×4×25 ②125×49×8 ③125×(25×8)×4④4×145×25 ⑤125×19×8 ⑥37×4×25⑦625⨯(13⨯8)⑧17×4×25 ⑨25×439×25×4×8⑩2×4×5×8×25×125 (11)456×2×125×25×5×4×8题型2 分解因数凑整① 25×48 ②36×25 ③125×72④56×125 ⑤16×125×50 ⑥25×32×125⑦80×16×25×125 ⑧ 937×125×25×64×53、乘法分配律:(a+b)×c=a×c+b×c (a-b)×c=a×c-b×c题型3:直接利用乘法分配律凑整①②③125×(40+8)④(100—4)×25 ⑤(40+4)×25 ⑥125×(20—8)⑦125×(80+8) ⑧125×(80—8)⑨ (40—8)×25题型4 分解后利用乘法分配律凑整①37×99 ②234×102 ③46×101④⑤125×98 ⑥17×999题型5 逆用乘法分配律凑整①95×71+95×29 ②62×38+38×38 ③175 ×34+175×66④64×25+35×25+25 ⑤123×235-24×235+235⑥586×124+29×586-586×53 ⑦ 54×154-45×54-54×9⑧67×12+67×35+67×52+67 ⑨375×480+6250×48⑩99999×22222+33333×33334 (11)三、一些特殊的乘法巧算1、一个数乘以11算法:22×11=242 222×11=2442 2222×11=244442“两头一拉,中间相加,满十进一”2 4 5 6×11=270162 7 0 1 6(1)23×11= (2) 68×11= (3) 235×11= (4)285×11 =(5)76×11= (6)98×11= (7)125×11=(8)837×11= (9)326×11= (10)256×11=2、“111”型乘法11×11= 111×111= 1111×1111=例5. 22222××例6=44444×(10000+1000+100+10+1)=44444×11111×练习:3333333333333、“101”型乘法(1)巧算两位数与101相乘。
乘除法中的巧算同学们好!我们学习了加、减、连加、连减的混合运算律,可利用加法的运算定律或连减及加减的混合运算的性质进行简便运算。
而乘、除法更有着一些巧妙的简便算法,下面共同学习。
(一)学习指导首先认识乘法交换律:乘法结合律:如:或利用这些定律,可以使式题简便,同时可以推广到多个数相乘,我们可以选择两个因数相乘,得出较简单的(整十、整百、整千……)积,再将这个积与其它因数相乘,有时也可以把某个因数再分解成两个因数,使其中一个因数与其它的乘数的积成为较简单的数,然后再与其它的因数相乘,这样就可以进行巧算。
例1. 用简便方法计算。
(1)(3)(2)(4)分析:(1)可以将4和25结合起来先乘。
这样:原式(2)可以将125和8相结合起来乘,这样:原式(3)可以把28变成4×7,再将125和4结合起来先乘:原式(4)我们先把32变为4×8,再把25和4,125和8结合起来乘:原式利用乘法分配律,可以使一些题简便:,这个定律可以推广,一般的有,如,当两个数相乘时,有时可以把一个因数变为两个数的和与另一个因数相乘,也可以把一个因数变为两个数的差与另一个因数相乘,这样计算简便。
例2. 用简便方法计算下面各题。
(1)(3)(2)(4)分析:(1)、(2)题可以直接用乘法分配律去计算。
(1)(2)(3)题可以先把4004变为(),然后再用分配律计算。
(4)小题可以先把798变为(),再运用分配律计算。
例3. 巧算一个数乘以10,100,1000……分析:一个数乘以10,就是在这个数后添0,如:4301043=⨯当一个数乘以100时,就是在这个数后添00,如:52000100520=⨯当一个数乘以1000时,就是在这个数后添000,如:……例4. 巧算一个数与99相乘。
分析:先填空,再观察一个数与99相乘的规律。
观察发现:“一个数与99相乘,先在这个数后添00,再减去此数”即可。
如果是一个数与999相乘,是否也具有这样的规律呢?请你先填空,再总结规律。
第2 讲:乘除法巧算速算本讲,我们来学习一些比较复杂的用凑整法和分解法等方法进行的乘除的巧算。
这些计算从表面上看似乎不能巧算,而如果把已知数适当分解或转化就可以使计算简便。
对于一些较复杂的计算题我们要善于从整体上把握特征,通过对已知数适当的分解和变形,找出数据及算式间的联系,灵活地运用相关的运算定律和性质,从而使复杂的计算过程简化。
实际进行乘法、除法以及乘除法混合运算时,可利用以下性质进行巧算:①乘法交换律:A×B=B×A②乘法结合律:A×B×C=A×(B×C)③乘法分配律:(A+B)×C=A×C+B×C由此可以推出:A×B+A×C=A×(B+C)(A-B) ×C =A×C-B×C④除法的性质:A÷B÷C=A÷C÷B=A÷(B×C)利用乘法、除法的这些性质,先凑整得10、100、1000……会使计算更简便。
例1:计算236×37×27分析:在乘除法的计算过程中,除了常常要将因数和除数“凑整”,有时为了便于口算,还要将一些算式凑成特殊的数。
例如,可以将27 变为“3×9”,将37 乘3 得111,这是一个特殊的数,这样就便于计算了。
解:原式=236×(37×3×9)=236×(111×9)=236×999=236×(1000-1)=236000-236 =235764随堂小练:计算下面各题:(1)132×37×27 (2)315×77×13例2:计算333×334+999×222分析:表面上,这道题不能用乘除法的运算定律、性质进行简便计算,但只要对数据作适当变形即可简算。
一、概述在四年级上学期的奥数课程中,我们学习了许多有趣且实用的数学知识,其中包括乘法分配律和拆数巧算。
这些知识不仅在日常生活中有很大的帮助,而且对我们提高数学能力、培养逻辑思维也有着重要意义。
今天,我们将深入探讨乘法分配律和拆数巧算,希望能够帮助大家更好地理解并应用这些知识。
二、乘法分配律的概念和应用1. 乘法分配律的定义乘法分配律是指:对于任意的三个数a、b、c,乘法分配律可以表示为a×(b+c) = a×b + a×c。
即任意一个数乘以一个括号内的两个数,等于该数分别乘以括号内的两个数后的结果之和。
2. 乘法分配律的应用乘法分配律在日常生活中有着广泛的应用。
在购物时,我们可以利用乘法分配律计算总价;在做题时,我们可以通过乘法分配律简化计算过程;甚至在做菜时,也可以用乘法分配律计算原料的比例。
3. 乘法分配律的举例举例说明乘法分配律的具体应用:当我们需要计算15×27时,可以利用乘法分配律先将15分解成10和5,然后计算出10×27和5×27,最后将两者的结果相加得到最终的答案。
三、拆数巧算的基本原理和技巧1. 拆数巧算的基本原理拆数巧算是指在做乘法、除法或者其他数学运算时,将其中一个数拆分成几部分,然后再进行计算的方法。
通过拆数巧算,我们可以简化计算过程,减少出错的可能性,并且提高计算速度。
2. 拆数巧算的常用技巧拆数巧算有许多常用的技巧,例如:a. 将一个大数拆分成几个小数相乘,然后再将结果相加;b. 利用数的倍数关系进行拆分,如2的倍数、5的倍数等;c. 利用因数分解进行拆分,将一个数拆分成其因数相乘的形式;d. 利用数字间的差异,将一个数拆分成相邻的两个数相乘等。
3. 拆数巧算的实例演练通过实例演练,我们可以更好地理解拆数巧算的应用。
当我们需要计算36×23时,可以将36拆分成30和6,然后计算30×23和6×23,最后将两个结果相加,即可得到最终的答案。
乘除法巧算奥数题1. 题目:计算25×125×4×8- 解析:- 根据乘法交换律和结合律,我们可以将式子重新组合。
- 因为25×4 = 100,125×8=1000。
- 所以原式=(25×4)×(125×8)=100×1000 = 100000。
2. 题目:计算125×32×25- 解析:- 先把32分解成8×4。
- 原式就变为125×8×4×25。
- 根据乘法结合律,(125×8)×(4×25)=1000×100 = 100000。
3. 题目:计算99×85- 解析:- 把99写成(100 - 1)。
- 然后根据乘法分配律,99×85=(100 - 1)×85=100×85-1×85 = 8500 - 85=8415。
4. 题目:计算101×36- 解析:- 把101写成(100+1)。
- 根据乘法分配律,101×36=(100 + 1)×36=100×36+1×36 = 3600+36 = 3636。
5. 题目:计算18×125- 解析:- 把18写成2×9。
- 原式变为2×9×125=(2×125)×9 = 250×9=2250。
6. 题目:计算25×37×4- 解析:- 根据乘法交换律,先计算25×4 = 100。
- 再乘以37,100×37 = 3700。
7. 题目:计算56×125- 解析:- 把56写成7×8。
- 则56×125 = 7×(8×125)=7×1000 = 7000。
四年级奥数春季班速算与巧算计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
例1所用的方法叫做加法的基准数法。
这种方法适用于加数较多,而且所有的加数相差不大的情况。
作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差。
由例1得到:总和数=基准数×加数的个数+累计差,平均数=基准数+累计差÷加数的个数。
在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。
同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。
例2 某农场有10块麦田,每块的产量如下(单位:千克):462,480,443,420,473,429,468,439,475,461。
求平均每块麦田的产量。
年 级:小四 辅导科目:奥数 课时数:3 课 题巧算乘除法 教学目的 实际进行乘法、除法以及乘除法混合运算时可利用以下性质进行巧算:①乘法交换律: ②乘法结合律: ③乘法分配律: ④除法的性质:教学内容四则运算中巧算的方法很多,它主要是根据已学过的知识,通过一些运算定律、性质和一些技巧性方法,达到计算正确而快捷的目的.实际进行乘法、除法以及乘除法混合运算时可利用以下性质进行巧算:①乘法交换律:a b b a ⨯=⨯②乘法结合律:()a b c a b c ⨯⨯=⨯⨯③乘法分配律:)a b c a c b c +⨯=⨯+⨯( 由此可推出:()a b a c a b c ⨯+⨯=⨯+()a b c a c b c -⨯=⨯-⨯④除法的性质:()a b c a c b a b c ÷÷=÷÷=÷⨯利用乘法、除法的这些性质,先凑整得10、100.1000……会使计算更简便.计算:(1) 25×5×64×125(2) 56 ×165÷7÷11.(1)在计算乘、除法时,我们通常可以运用2×5、4×25、8×125来进行巧妙的计算.(2)运用除法的性质,带着符号“搬家”,解(1) 25×5×64×125=25×5×2×4×8×125= (25×4)×(5×2)×(8×125)=100×10×1000=1000000(2) 56×165÷7÷11= (56÷7)×(165÷ll)=8×15=120巩固练习计算:(1) 25×96×125;(2) 77 777×99 999÷11111÷11111.你做对了吗?答案(1)300000. (2)63计算:(1) 4000÷125÷8(2) 9999×2222+ 3333×3334.你做对了吗?答案(1)6 (2)1111100计算:218×730+7820×73.本题可以运用“积不变的规律”,即“一个因数扩大几倍,另一个因数缩小相同的倍数,积不变”的规律求解.解法一218×730+7820×73=2180×73+7820×73= (2180+7820)×73=10 000×73=730 000;解法二218×730+7820×73=218×730+782×730= (218+782)×730=1000×730=730 000本题运用乘法中积不变的规律,就可以为运用乘法分配律进行巧算创造条件,这种解题方法叫做扩缩法,巩固练习计算:(1) 375×480-2750×48.(2) 2008×2006+2007×2005-2007×2006-2008×2005(第五届小学“希望杯”全国数学邀请赛四年级第1试试题)你做对了吗?答案(1)48000 (2)1不用计算结果,请你指出下面哪道题得数大.452×458 453×457注意到453=452+l.458+457 +1.可运用乘法分配律加以判别,解452×458-452×(457+1)=452×457+452,=453×457-(452+1)×457=452×457 +457;显然.452×458<453×457.求1+(2+3)+(3+4)+(4+5)+(5+6)的值.(第二届“华罗庚金杯”数学邀请赛试题)÷÷=÷⨯.计观察发现,算式中每个括号里的除数都是下一个括号里的被除数,根据运算性质a b c a b c算时可以消去3,4,5.解原式=1÷2×3÷3×4÷4×5÷5×6=1÷2×6=3.巩固练习不用计算结果,比较下面两个积的大小.A=54 321×12 345 B=54 322×12 344你做对了吗?答案A > B当代世界著名数学录陈省身陈省身,美籍华人,世界著名数学家,中国科学院首批外籍院士.1930年,陈省身毕业于南开大学.1931年考入清华研究院,成为中国国内最早的数学研究生之一.1934年,他毕业于清华研究院,同年,得到汉堡大学的奖学金,赴布拉希克所在的汉堡大学数学系留学.在布拉希克研究室他完成了博士论文,1936年获得博士学位陈省身对数学有重大贡献,尤其是存几何学方面,他的成就对现代数学的许多分支都产生了深刻的影响.1982年,他回到南开大学,在数学系捐款设立数学奖学金.1984年,他辞去美国国家数学研究所所长的职务,正式应聘到南开大学担任南开数学研究所所长,还担任了中美科技交流协会主席以及北京大学、南开大学和暨南大学等校的名誉教授.多年来,他为祖国数学界举办了三项大活动:一是在中国召开每年一次的国际微分几何、微分方程会议;二是开办暑期数学研究生教学中心;三是每年派20名中国数学研究生赴美国参加“陈省身项目”的研究,陈省身1984年获得了“沃尔夫”数学奖.填空题1.4500÷(25×90) =_______.2.18 000÷125÷18=_______.3 42×35+61×35-3×35=_______.4.(125×99+125)×16=_______.选择题5下列各式中没有反映出简便运算的是( )(A) 19+199 +1999 +19 999= 20+ 200+ 2000+20 000-4(B) 4500÷54×6= 4500÷(54÷6)(C)8×240 ×125÷48= 1920×125÷48(D)10000÷2÷4÷5÷25=10000÷(2×4×5×25)6.一个两位数乘以101的积,就等于把这个两位数连写两遍所得的四位数,如:32×101=3232; 一个三位数乘以1001的积,就等于把这个三位数连写两遍所得的六位数,如:125×1001= 125 125.下列计算题中,不能运用这两条规律进行巧算的是( ).(A) 573×101 (B) 252×1001(C) 101×78 (D) 872×7×11×13简算下列各题7.75×16.8.981+5×9810+49×981.9.1000÷(25÷4).10.3333×2222÷6666.11 8÷7+9÷7+ll÷7.12.5445÷55.13 1440×976÷488.14.5÷(7÷11)÷(11÷16)÷(16÷35).15.2009×2011 2008×2012.课后作业填空题(每题6分,共60分)1.8+98+998+9 998+99 998 = .2.99 +17×19 +17×80= .3.6 237÷63 = .4.125×5×32×5= . .5.(11×9 +11)×(111×999 +111)×(7×11×13-1001) = .6.90000÷125÷2÷5÷8= .7.287÷13-101÷13-82÷13 = .8.99 999×7+11111×37 = .9.156×28-156×15+87×156 = .10.找规律计算:73-37=(7-3)×9=4×9=36,64-46= (6-4)×9=2×9=18.92-29=(9-2)×9=7×9=63.87-78=(□-□)×9=□×9=□,74-□=(□-□)×9=□×9=□,解答题(每题12分,共60分)11.计算:1+2+3+…+99+100+99+…+3+2+1.12.已知: 12+22+32+... +92+102= 385.求:1×2+2×3+3×4+4×5+...+10×11.13.不用笔算,请你指出下面哪个积大.242×248, 243×247.14.计算: (975×579-198)÷(578×976 +199).15.计算:36×34,27×23, 69×61, 52×58, 18×12.。
小学奥数四则运算速算技巧!(含例题解析)乘法速算一、乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。
例:15×1715 + 7 = 225 × 7 = 35---------------255即15×17 = 255解释:15×17=15 ×(10 + 7)=15 × 10 + 15 × 7=150 + (10 + 5)× 7=150 + 70 + 5 × 7=(150 + 70)+(5 × 7)为了提高速度,熟练以后可以直接用“15 + 7”,而不用“150 + 70”。
例:17 × 1917 + 9 = 267 × 9 = 63即260 + 63 = 323二、个位是1的两位数相乘方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。
例:51 × 3150 × 30 = 150050 + 30 = 80------------------1580因为1 × 1 = 1 ,所以后一位一定是1,在得数的后面添上1,即1581。
数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。
例:81 × 9180 × 90 = 720080 + 90 = 170------------------7370------------------7371原理大家自己理解就可以了。
三、十位相同个位不同的两位数相乘被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。
例:43 × 46(43 + 6)× 40 = 19603 × 6 = 18----------------------1978例:89 × 87(89 + 7)× 80 = 76809 × 7 = 63----------------------7743四、首位相同,两尾数和等于10的两位数相乘十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。
第一讲速算与巧算(一)教学目标:1.使学生掌握巧算的基本思想——凑整,以及一些基本的乘除法巧算方法:等;2.使学生能够通过观察各种算式的特点,联系巧算的基本思想——凑整,选择合适的方法进行巧算;3.通过本节课的教学,提高学生乘除法简算的能力;重点:掌握巧算的基本思想和一些基本的加减法巧算方法:凑整法(找好朋友),乘法交换律、乘法结合律、乘法分配律、除法的巧算方法。
难点:使学生能够通过观察各种算式的特点,联系巧算的基本思想——凑整,选择合适的方法进行巧算;教具与学具:数字卡片教学方法:学生自主探究,讲练结合本周通知事项:本周通知:教学过程:一、故事导入阿凡提来到一个集市,正好遇见一个高利贷者在叫喊,“放金币喽!放金币喽!我的金币可是个宝,只要你把它埋在地里一天一夜,就会变成1000金币。
”“我借一个金币!”阿凡提决心惩罚这个愚弄百姓、贪得无厌的家伙,为民除害。
“那你每天得还我1000个金币。
”“好,一言为定。
我将连续15天借金币,第1天借1个金币,以后每天都是前一天的2倍。
15天以后我还给你金币,如果这15天之内,你后悔了,那么我结的金币就不能还给你了。
”高利贷者一算计,立即眉开眼笑,一口答应。
不到15天,这个贪得无厌的高利贷者破产了。
答案:阿凡提15天向他借的金币的个数依次是:1、2、4、8、16、32、64……这样,阿凡提借的金币一共是:1+2+4+8+…+16384=32767(个)阿凡提15天应该还给他的金币是:1000×15=15000(个)这样,高利贷者赔了17767个金币。
二、新课学习教学过程:比较:你喜欢算哪个算式?为什么?请生说说。
(1)400×200(2)467×358师:大家都知道计算整十、整百、整千……非常简单,可以直接进行口算,但是我们常常遇到的算式里都是一些非整十、整百、整千……的数,那么这些算式能否进行巧算呢?今天,我们就来学习乘除法的巧算方法(板书课题),通过刚才的例子,我们可以知道,巧算的主要基本思想就是——凑整。
辅导讲义课 题巧算乘除法 教学目的 实际进行乘法、除法以及乘除法混合运算时可利用以下性质进行巧算:①乘法交换律: ②乘法结合律: ③乘法分配律: ④除法的性质:教学内容四则运算中巧算的方法很多,它主要是根据已学过的知识,通过一些运算定律、性质和一些技巧性方法,达到计算正确而快捷的目的.实际进行乘法、除法以及乘除法混合运算时可利用以下性质进行巧算:①乘法交换律:a b b a ⨯=⨯②乘法结合律:()a b c a b c ⨯⨯=⨯⨯③乘法分配律:)a b c a c b c +⨯=⨯+⨯( 由此可推出:()a b a c a b c ⨯+⨯=⨯+()a b c a c b c -⨯=⨯-⨯④除法的性质:()a b c a c b a b c ÷÷=÷÷=÷⨯利用乘法、除法的这些性质,先凑整得10、100.1000……会使计算更简便.计算:(1) 25×5×64×125(2) 56 ×165÷7÷11.巩固练习计算:(1) 25×96×125;(2) 77 777×99 999÷11111÷11111.你做对了吗?答案(1)300000. (2)63计算:(1) 4000÷125÷8(2) 9999×2222+ 3333×3334.(2)题是创造条件运用乘法运算性质,这需要我们具有一双数学的慧眼,巩固练习计算:(1) 60 000÷125÷2÷5÷8:(2) 99 999×7 +11+111×37.(2000年吉林省小学数学夏令营试题)你做对了吗?答案(1)6 (2)1111100计算:218×730+7820×73.本题可以运用“积不变的规律”,即“一个因数扩大几倍,另一个因数缩小相同的倍数,积不变”的规律求解.解法一218×730+7820×73=2180×73+7820×73= (2180+7820)×73=10 000×73=730 000;解法二218×730+7820×73=218×730+782×730= (218+782)×730=1000×730=730 000本题运用乘法中积不变的规律,就可以为运用乘法分配律进行巧算创造条件,这种解题方法叫做扩缩法,巩固练习计算:(1) 375×480-2750×48.(2) 2008×2006+2007×2005-2007×2006-2008×2005(第五届小学“希望杯”全国数学邀请赛四年级第1试试题)你做对了吗?答案(1)48000 (2)1不用计算结果,请你指出下面哪道题得数大.452×458 453×457注意到453=452+l.458+457 +1.可运用乘法分配律加以判别,解452×458-452×(457+1)=452×457+452,=453×457-(452+1)×457=452×457 +457;显然.452×458<453×457.求1+(2+3)+(3+4)+(4+5)+(5+6)的值.(第二届“华罗庚金杯”数学邀请赛试题)÷÷=÷⨯.计观察发现,算式中每个括号里的除数都是下一个括号里的被除数,根据运算性质a b c a b c算时可以消去3,4,5.解原式=1÷2×3÷3×4÷4×5÷5×6=1÷2×6=3.巩固练习不用计算结果,比较下面两个积的大小.A=54 321×12 345 B=54 322×12 344你做对了吗?答案A > B当代世界著名数学录陈省身陈省身,美籍华人,世界著名数学家,中国科学院首批外籍院士.1930年,陈省身毕业于南开大学.1931年考入清华研究院,成为中国国内最早的数学研究生之一.1934年,他毕业于清华研究院,同年,得到汉堡大学的奖学金,赴布拉希克所在的汉堡大学数学系留学.在布拉希克研究室他完成了博士论文,1936年获得博士学位陈省身对数学有重大贡献,尤其是存几何学方面,他的成就对现代数学的许多分支都产生了深刻的影响.1982年,他回到南开大学,在数学系捐款设立数学奖学金.1984年,他辞去美国国家数学研究所所长的职务,正式应聘到南开大学担任南开数学研究所所长,还担任了中美科技交流协会主席以及北京大学、南开大学和暨南大学等校的名誉教授.多年来,他为祖国数学界举办了三项大活动:一是在中国召开每年一次的国际微分几何、微分方程会议;二是开办暑期数学研究生教学中心;三是每年派20名中国数学研究生赴美国参加“陈省身项目”的研究,陈省身1984年获得了“沃尔夫”数学奖.填空题1.4500÷(25×90) =_______.2.18 000÷125÷18=_______.3 42×35+61×35-3×35=_______.4.(125×99+125)×16=_______.选择题5下列各式中没有反映出简便运算的是( )(A) 19+199 +1999 +19 999= 20+ 200+ 2000+20 000-4(B) 4500÷54×6= 4500÷(54÷6)(C)8×240 ×125÷48= 1920×125÷48(D)10000÷2÷4÷5÷25=10000÷(2×4×5×25)6.一个两位数乘以101的积,就等于把这个两位数连写两遍所得的四位数,如:32×101=3232; 一个三位数乘以1001的积,就等于把这个三位数连写两遍所得的六位数,如:125×1001= 125 125.下列计算题中,不能运用这两条规律进行巧算的是( ).(A) 573×101 (B) 252×1001(C) 101×78 (D) 872×7×11×13简算下列各题7.75×16.8.981+5×9810+49×981.9.1000÷(25÷4).10.3333×2222÷6666.11 8÷7+9÷7+ll÷7.12.5445÷55.13 1440×976÷488.14.5÷(7÷11)÷(11÷16)÷(16÷35).15.2009×2011 2008×2012.课后作业填空题(每题6分,共60分)1.8+98+998+9 998+99 998 = .2.99 +17×19 +17×80= .3.6 237÷63 = .4.125×5×32×5= ..5.(11×9 +11)×(111×999 +111)×(7×11×13-1001) = .6.90000÷125÷2÷5÷8= .7.287÷13-101÷13-82÷13 = .8.99 999×7+11111×37 = .9.156×28-156×15+87×156 = .10.找规律计算:73-37=(7-3)×9=4×9=36,64-46= (6-4)×9=2×9=18.92-29=(9-2)×9=7×9=63.87-78=(□-□)×9=□×9=□,74-□=(□-□)×9=□×9=□,解答题(每题12分,共60分)11.计算:1+2+3+…+99+100+99+…+3+2+1.12.已知: 12+22+32+... +92+102= 385.求:1×2+2×3+3×4+4×5+...+10×11.13.不用笔算,请你指出下面哪个积大.242×248, 243×247.14.计算: (975×579-198)÷(578×976 +199).15.计算:36×34,27×23, 69×61, 52×58, 18×12.(1)你能从上面的计算中,总结出个位数的和等于10、十位数相同的两个两位数相乘的简便算法吗?。
1.。
A.B.C.D.答案:B解析:2.简便计算:。
A.B.C.答案:A解析:加括号时注意除号变乘号。
3.计算:。
A.B.C.答案:C解析:4.计算计算:222×33+889×66=空类2600006600010000011000222×33+889×66=111×2×33+889×66=111×66+889×66=(111+889)×66=1000×66=660005000÷125÷8=空类258105000÷125÷8=5000÷(125×8)=5000÷1000=525×96×125=空类230000003000030000025×96×125=25×(4×3×8)×125=(25×4)×3×(8×125)=100×3×1000=300000125×64×25×5A.B.C.答案:C解析:5.。
A.B.C.D.答案:C解析:6.计算:A.B.C.答案:B解析:7.计算:A.B.100001000001000000125×64×25×5=125×8×8×25×5=125×8×4×2×25×5=(125×8)×(4×25)×(2×5)=1000×100×10=1000000计算:21×32+58×68+32×37=空类2540056005800600021×32+58×68+32×37=(21+37)×32+58×68=58×32+58×68=58×(32+68)=58×100=58008×18×1251800180001800008×18×125=8×125×18=1000×18=1800012000÷125÷1258C.答案:B解析:带着符号交换位置。
本,我来学一些比复的用凑整法和分解法等方法行的乘除的巧算。
些算从表面上看似乎不能巧算,而如果把已知数适当分解或化就可以使算便。
于一些复的算我要善于从整体上把握特征,通已知数适当的分解和形,找出数据及算式的系,灵活地运用相关的运算定律和性,从而使复的算程化。
行乘法、除法以及乘除法混合运算,可利用以下性行巧算:①乘法交律:A× B=B× A②乘法合律:A× B× C=A× (B×C)③乘法分配律:(A+B)× C=A× C+B× C由此可以推出:A× B+A× C=A× (B+C)(A-B) × C =A× C-B× C④除法的性:A÷B÷C=A÷C÷B=A÷( B× C)利用乘法、除法的些性,先凑整得10、 100、 1000 ⋯⋯会使算更便。
例1:算 236× 37× 27分析:在乘除法的算程中,除了常常要将因数和除数“凑整”,有了便于口算,要将一些算式凑成特殊的数。
例如,可以将 27 “ 3× 9”,将 37 乘 3 得 111,是一个特殊的数,就便于算了。
解:原式 =236×( 37× 3× 9)=236×( 111× 9) =236×999=236×( 1000- 1) =236000-236 =235764随堂小:算下面各:(1) 132× 37×27 (2) 315× 77× 13例 2:算 333× 334+ 999× 222性行便算,但只要数据作适当分析:表面上,道不能用乘除法的运算定律、形即可算。
解:原式 =333× 334+ 333×( 3× 222)=333×( 334+ 666)=333× 1000=333000随堂小:算下面各:(1) 9999× 2222+ 3333× 3334(2)37×18+27×42例3:计算 20012001 × 2002- 20022002 × 2001分析:仔细观察每一个数,找出它们的共同特点,20102010 可分解成201010001这是四位数的复写如10001× abcd=abcdabcd,三位数的复写1001× abc=abcabc,二位数的复写101 ×ab=abab。