太阳能电池各电性能参数-草稿
- 格式:doc
- 大小:110.50 KB
- 文档页数:12
太阳能电池参数1. 什么是太阳能电池?太阳能电池,也称为光伏电池,是一种能够将太阳能转化为电能的设备。
它是一种半导体器件,利用光生电效应将光能转化为电能。
太阳能电池广泛应用于太阳能发电系统、太阳能充电器、太阳能灯具等领域。
2. 太阳能电池的参数太阳能电池的性能参数对于评估其性能和适用范围至关重要。
以下是常见的太阳能电池参数:2.1. 开路电压(Open Circuit Voltage,简称Voc)开路电压是太阳能电池在无负载情况下产生的最大电压。
当太阳能电池不连接任何负载时,电池的正负极之间的电压达到最大值。
开路电压取决于太阳能电池的材料和结构。
2.2. 短路电流(Short Circuit Current,简称Isc)短路电流是太阳能电池在短路条件下产生的最大电流。
当太阳能电池的正负极直接连接在一起形成短路时,电流达到最大值。
短路电流取决于太阳能电池的材料和结构。
2.3. 最大功率点(Maximum Power Point,简称MPP)最大功率点是太阳能电池在特定条件下产生的最大功率。
太阳能电池的最大功率点是在太阳能辐射强度和温度等因素确定的特定工作点。
在最大功率点,太阳能电池的输出功率最大。
2.4. 填充因子(Fill Factor,简称FF)填充因子是太阳能电池输出电流和输出电压之间的比值。
填充因子是评估太阳能电池性能的重要参数之一,它描述了太阳能电池的输出特性和效率。
2.5. 效率(Efficiency)太阳能电池的效率是指太阳能转化为电能的比例。
太阳能电池的效率取决于其材料、结构和制造工艺等因素。
高效率的太阳能电池可以更好地利用太阳能资源。
3. 太阳能电池参数的测量方法太阳能电池参数的测量通常需要使用太阳能模拟器和电源测量仪等设备。
以下是常见的太阳能电池参数测量方法:3.1. 开路电压测量开路电压可以通过将太阳能电池断开负载并测量其输出电压来测量。
在室温下,将太阳能电池暴露在标准太阳光照下,使用电压测量仪测量其输出电压即可得到开路电压。
太阳能电池板的参数那我就给你说说太阳能电池板的几个主要参数哈。
一、功率。
1. 这个就像是太阳能电池板的力气大小。
功率越大呢,在同样的阳光条件下,它能产生的电就越多。
比如说,一个100瓦的太阳能电池板,就比50瓦的在相同时间里能多发出一倍的电。
就像一个大力士和一个小瘦子干活儿,大力士肯定能干更多的活儿,也就是能产生更多的电量啦。
2. 功率的单位是瓦特(W),一般咱们常见的有几十瓦到几百瓦的,那些大型的太阳能电站里用的电池板,功率可能就更大了,能达到几千瓦呢。
二、电压。
1. 电压就好比是水在水管里的压力。
太阳能电池板有个额定电压,这个电压得和你要用的电器或者充电设备的电压匹配才行。
要是电压不匹配,就像小水管接到大水龙头上,要么水出不来,要么就乱套了。
2. 常见的太阳能电池板电压有12V、24V之类的。
12V的就可以给一些小功率的12V设备直接充电,像小风扇、小夜灯啥的。
如果是给家庭用电设备充电或者供电,那可能就需要更高电压的电池板,再配合一些逆变器之类的设备来把电压变成咱们家里电器能用的220V。
三、电流。
1. 电流呢,可以想象成水流的速度。
在电压固定的情况下,功率越大的电池板,电流也就越大。
比如说,一个12V、10A的电池板,它的功率就是120W(功率 = 电压×电流)。
电流大的时候,就像水流得快,能更快地把电传输到用电器或者电池里。
2. 不过要注意哦,电流太大也可能会把设备给烧坏,就像水流太猛把小水渠给冲垮了一样,所以在连接设备的时候得看好设备能承受的最大电流是多少。
四、转换效率。
1. 这个转换效率就像一个工人的工作效率。
太阳能电池板是把太阳光转换成电,转换效率就是说它能把多少照射到它身上的太阳光能量变成电能。
比如说一个转换效率是20%的电池板,如果有100份的太阳光能量照到它上面,它就能把其中的20份变成电能,剩下的80份就浪费掉了,可能变成热量之类的。
2. 现在的太阳能电池板转换效率一般在15% 25%左右,那些比较高端的电池板可能会更高一些。
太阳能电池各电性能参数的本质及工艺意义⏹武宇涛⏹电性能参数主要有:Voc,Isc,Rs,Rsh,FF,Eff,Irev1,…电性能参数在生产过程中尤其是在实时的生产控制现场,非常及时地反映了整个生产线生产工艺尤其是后道工序的动态变化情况,为我们对产线的控制及生产设备工艺参数的实时调节起到了非常重要的参考作用。
从可控性难易角度来说,Voc,Rs,Rsh,主要和原材料及生产工艺的本身特征相关,与工艺现场的调控波动性关系不是特别紧密,可称之为长程可控参数。
而Isc,FF, Irev1与工艺现场的调控联系紧密,对各调控参数比较敏感,可称之为短程可控参数。
当然我们最关心的是效率Eff。
而Eff则是以上所有参数的综合表现。
太阳能电池的理论基础建立在以下几个经典公式之上:Voc=(KT/q)×ln(Isc/Io+1)Voc=(KT/q)×ln(N aNd/ni2) 12 FF=Pm/(Voc×Isc)=Vm×Im/ (Voc×Isc) 34Eff=Pm/(APin)=FF×Voc×Isc/APin=FF×Voc×Jsc/Pin 5图-1太阳能电池的I-V曲线图-2太阳能电池等效电路从上面5式我们可以看到,与效率直接相关的电性能参数主要有:FF,Voc, Isc。
在生产中我们还比较关心暗电流情况:Irev1,由1式可以看出,它与Voc有比较紧密地联系(实际也是这样的)。
为了更好地说明各参数间的联系,这里先录用几组数据如下:在620mv左右达到了峰值。
另外通过对高Voc电池片(如E-CELL)进行QE扫描发现其长波长响应显著降低。
在现在既定工艺背景下,在没有大的工艺改动下,对产线的技术参数调整对Voc影响不会太大。
在生产中,我们曾对各种能够调节的参数进行了大量的调整,尤其是背电场和烧结温度参数方面,但结果总是很不理想,比如P156的LDK的片子其整体平均值变化范围也就是618m v±2mv左右。
太阳能电池板全参数实用标准文案太阳能电池板的一组参数最大标称功率Wp max (W)。
峰值电压Vmp(V):峰值电压是在强光时的最高电压峰值电流Imp(A)开路电压Voc(V):开路电压是电池板空载电压工作电压:是电池板带上负荷时测得的电压短路电流Isc(A)尺寸Size(mm)重量Weight(KGS)峰值电压最高、开路电压次之、工作电压最低)直流接线盒:采用密封防水、高可靠性多功能ABS塑料接线盒,耐老化防水防潮性能好;连接端采用易操作的专用公母插头,使用安全、方便、可靠。
工作温度:-40℃~+90℃使用寿命可达20年以上,衰减小于20%。
问题集锦:1、什么是太阳能电池?答:太阳能电池是基于半导体的光伏效应将太阳辐射直接转换为电能的半导体器件。
现在商品化的太阳能电池主要有以下几种类型:单晶硅太阳能电池、多晶硅太阳能电池、非晶硅太阳能电池,目前还有碲华镉电池、铜铟硒电池、纳米氧化钛敏化电池、多晶硅薄膜太阳能电池及有机太阳能电池等。
晶体硅(单晶、多晶)太阳能电池需要高纯度的硅原料,一般要求纯度至少是99.%,也就是一千万个硅原子中最多允许2个杂质原子存在。
硅材料是用二氧化硅(SiO2,也就是我们所熟悉的沙子)作为原料,将其熔化并除去杂质就可制取粗级硅。
从二氧化硅到太阳能电池片,涉及多个生产工艺和过程,一般大致分为:二氧化硅—>冶金级硅—>高纯三氯氢硅—>高纯度多晶硅—>单晶硅棒或多晶硅锭—>硅片—>太阳能电池片。
2、什么是单晶硅太阳能电池板?答:单晶硅太阳能电池片主要是使用单晶硅来制造,与其他种类的太阳能电池片相比,单晶硅电池片的转换效力最高。
在初期,单晶硅太阳能电池片占领绝大部份市场份额,在1998年后才退居多晶硅之后,市场份额占据第二。
由于近几年多晶硅原料紧缺,在2004年之后,单晶硅的市场份额又略有上升,现在市面上看到的电池有单晶硅居多。
单晶硅太阳能电池片的硅结晶体十分圆满,其光学、电性能及力学性能都十分的均匀一致,电池的颜色多为玄色或深色,特别适合切割成小片制作成小型的消费产物。
太阳能电池测试参数(最新版)目录一、太阳能电池的性能参数1.开路电压2.短路电流3.最大输出功率4.填充因子5.转换效率二、太阳能电池片的测试参数1.短路电流 (isc)2.开路电压 (uoc)3.峰值电流4.峰值电压5.峰值功率6.填充因子7.转换效率三、太阳能电池片的生产工艺流程正文一、太阳能电池的性能参数太阳能电池是利用光能转换为电能的装置,其性能参数主要包括开路电压、短路电流、最大输出功率、填充因子和转换效率等。
这些参数是评价太阳能电池性能的重要指标,对于太阳能电池的研发、生产和应用具有重要意义。
1.开路电压(UOC):开路电压是指将太阳能电池置于 AM1.5 光谱条件、100 mW/cm2的光源强度照射下,在两端开路时,太阳能电池的输出电压值。
2.短路电流(ISC):短路电流是指将太阳能电池置于 AM1.5 光谱条件、100 mW/cm2的光源强度照射下,在输出端短路时,流过太阳能电池两端的电流值。
3.最大输出功率(Pm):太阳能电池的工作电压和电流是随负载电阻而变化的,将不同阻值所对应的工作电压和电流值做成曲线就得到太阳能电池的伏安特性曲线。
如果选择的负载电阻值能使输出电压和电流的乘积最大,即可获得最大输出功率。
4.填充因子(FF):填充因子是衡量太阳能电池输出特性的重要指标,代表太阳能电池在带最佳负载时,能输出的最大功率的特性。
填充因子的值越大表示太阳能电池的输出功率越大。
5.转换效率(η):太阳能电池的转换效率是指在外部回路上连接最佳负载电阻时的最大能量转换效率,等于太阳能电池的输出功率与入射到太阳能电池表面的能量之比。
二、太阳能电池片的测试参数太阳能电池片分为晶硅类和非晶硅类,其中晶硅类电池片又可以分为单晶电池片和多晶电池片。
单晶硅的效率较多晶硅也有区别。
太阳能电池片的测试参数主要包括短路电流、开路电压、峰值电流、峰值电压、峰值功率、填充因子和转换效率等。
1.短路电流(isc):当将太阳能电池的正负极短路、使 u0 时,此时的电流就是电池片的短路电流,短路电流的单位是安培 (a),短路电流随着光强的变化而变化。
太阳能电池eta参数
太阳能电池eta参数是:短路电流(Isc)、开路电压(Voc)、串联电阻(Rs)、并联电阻(Rsh)、填充因子(FF)和反向漏电流(IRev2)。
1. 短路电流(Isc):在某特定温度和辐射度条件下,太阳能电池在短路状态下输出的电流,与电池面积、光强及温度有关。
2. 开路电压(Voc):在某特定的温度和辐射条件下,太阳能电池在无负载(即开路)状态下的两端电压,与光强和温度有关。
3. 串联电阻(Rs):正面电极金属栅线电阻rmf、正面金属半导体接触电阻
rc1、正面扩散层电阻rt、基区体电阻rb、背面金属半导体接触电阻rc2和背面电极金属栅线电阻rmb的总和。
4. 并联电阻(Rsh):指太阳能电池内部的、跨连在电池两端的等效电阻。
5. 填充因子(FF):体现电池的输出功率随负载的变动特征,与入射光谱光强度、短路电流、开路电压、串联电阻及并联电阻密切相关。
6. 反向漏电流(IRev2):形成漏电的主要原因包括经过PN结的漏电流、沿电池边沿的表面漏电流以及金属化处理后沿着微观裂缝或晶界等形成细小桥路而产生的漏电流。
此外,太阳能电池eta参数还包括转换效率(Eta),具体可查阅太阳能电池的相关文献或咨询该领域专家获取更多信息。
太阳能电池测试参数太阳能电池是一种利用太阳能将阳光转化为电能的设备。
它是一种零排放、可持续、环保的能源解决方案。
然而,在选择太阳能电池时,了解各种测试参数是非常重要的。
本文将介绍几个关键的测试参数,并解释它们的意义,以帮助您选择适合您需求的太阳能电池。
1. 标称功率(Pmax):标称功率是太阳能电池在标准测试条件下所能产生的最大功率。
它是评估太阳能电池性能的重要指标。
一般来说,标称功率越高,电池的产能越大。
2. 开路电压(Voc):开路电压是没有负载时太阳能电池的电压。
它是太阳能电池在最大功率点之前的电压。
通常情况下,开路电压越高,电池的性能越好。
3. 短路电流(Isc):短路电流是太阳能电池在短路条件下产生的电流。
它是太阳能电池在最大功率点之前的电流。
一般来说,短路电流越高,电池的产能越大。
4. 填充因子(FF):填充因子是太阳能电池输出电流与输出电压之间的比例。
它反映了太阳能电池的内部电阻和损耗情况。
通常情况下,填充因子越高,电池的效率越高。
5. 温度系数:温度系数是太阳能电池在不同温度下性能变化的衡量指标。
它描述了太阳能电池在温度变化下的表现。
一般来说,温度系数越低,太阳能电池在高温环境下的性能损失越小。
在选择太阳能电池时,一定要综合考虑这些测试参数。
根据实际需求,您可以根据功率、电压、电流等参数来选择适合您需求的太阳能电池。
例如,如果您需要大功率输出,您可以选择标称功率高的太阳能电池;如果您在高温环境下使用,您应该选择温度系数低的太阳能电池。
同时,还要注意太阳能电池的品牌和质量。
选择具有良好声誉和质量保证的厂家,可以确保太阳能电池的可靠性和性能。
综上所述,了解太阳能电池的各种测试参数对于选择适合您需求的太阳能电池非常重要。
希望本文提供给您一些有指导意义的信息,帮助您做出明智的选择,并在生活中更多地利用可再生能源来保护环境。
太阳能电池各电性能参数的本质及工艺意义⏹武宇涛⏹电性能参数主要有:Voc,Isc,Rs,Rsh,FF,Eff,Irev1,…电性能参数在生产过程中尤其是在实时的生产控制现场,非常及时地反映了整个生产线生产工艺尤其是后道工序的动态变化情况,为我们对产线的控制及生产设备工艺参数的实时调节起到了非常重要的参考作用。
从可控性难易角度来说,Voc,Rs,Rsh,主要和原材料及生产工艺的本身特征相关,与工艺现场的调控波动性关系不是特别紧密,可称之为长程可控参数。
而Isc,FF, Irev1与工艺现场的调控联系紧密,对各调控参数比较敏感,可称之为短程可控参数。
当然我们最关心的是效率Eff。
而Eff则是以上所有参数的综合表现。
太阳能电池的理论基础建立在以下几个经典公式之上:Voc=(KT/q)×ln(Isc/Io+1)Voc=(KT/q)×ln(NaNd/ni2) 12FF=Pm/(Voc×Isc)=Vm×Im/ (Voc×Isc) 34Eff=Pm/(APin)=FF×Voc×Isc/APin=FF×Voc×Jsc/Pin 5图-1太阳能电池的I-V曲线图-2太阳能电池等效电路从上面5式我们可以看到,与效率直接相关的电性能参数主要有:FF,Voc, Isc。
在生产中我们还比较关心暗电流情况:Irev1,由1式可以看出,它与Voc有比较紧密地联系(实际也是这样的)。
为了更好地说明各参数间的联系,这里先录用几组数据如下:表-1以上P156均系LDK片源。
1,Voc由于光生电子-空穴对在内建场的作用下分别被收集到耗尽层的两端,从而形成电势。
所以我们认为Voc是内建电场即PN 结扫集电流的能力的直观表现。
由上面公式1所反映,Voc主要与电池片的参杂浓度(Nd)相关。
对于宽△Eg的电池材料,相对会有比较高的Voc;但△Eg 过高,又会导致光吸收效率的迅速下降(主要是长波段响应降低),使Isc是降低,所以需要找到一个最佳掺杂深度值。
硅太阳能电池的主要性能参数本信息来源于太阳能人才网| 原文链接:/Infomation/showinfo.aspx?ID=14408硅太阳能电池的性能参数主要有:短路电流、开路电压、峰值电流、峰值电压、峰值功率、填充因子和转换效率等。
①短路电流(isc):当将太阳能电池的正负极短路、使u=0时,此时的电流就是电池片的短路电流,短路电流的单位是安培(a),短路电流随着光强的变化而变化。
②开路电压(uoc):当将太阳能电池的正负极不接负载、使i=0时,此时太阳能电池正负极间的电压就是开路电压,开路电压的单位是伏特(v)。
单片太阳能电池的开路电压不随电池片面积的增减而变化,一般为0.5~0.7v。
③峰值电流(im):峰值电流也叫最大工作电流或最佳工作电流。
峰值电流是指太阳能电池片输出最大功率时的工作电流,峰值电流的单位是安培(a)。
④峰值电压(um):峰值电压也叫最大工作电压或最佳工作电压。
峰值电压是指太阳能电池片输出最大功率时的工作电压,峰值电压的单位是v。
峰值电压不随电池片面积的增减而变化,一般为0.45~0.5v,典型值为0.48v。
⑤峰值功率(pm):峰值功率也叫最大输出功率或最佳输出功率。
峰值功率是指太阳能电池片正常工作或测试条件下的最大输出功率,也就是峰值电流与峰值电压的乘积:pm===im ×um。
峰值功率的单位是w(瓦)。
太阳能电池的峰值功率取决于太阳辐照度、太阳光谱分布和电池片的工作温度,因此太阳能电池的测量要在标准条件下进行,测量标准为欧洲委员会的101号标准,其条件是:辐照度lkw/㎡、光谱aml.5、测试温度25℃。
⑥填充因子(ff):填充因子也叫曲线因子,是指太阳能电池的最大输出功率与开路电压和短路电流乘积的比值。
计算公式为ff=pm/(isc×uoc)。
填充因子是评价太阳能电池输出特性好坏的一个重要参数,它的值越高,表明太阳能电池输出特性越趋于矩形,电池的光电转换效率越高。
太阳能电池各电性能参数的本质及工艺意义⏹武宇涛⏹电性能参数主要有:V oc,Isc,Rs,Rsh,FF,Eff,Irev1,…电性能参数在生产过程中尤其是在实时的生产控制现场,非常及时地反映了整个生产线生产工艺尤其是后道工序的动态变化情况,为我们对产线的控制及生产设备工艺参数的实时调节起到了非常重要的参考作用。
从可控性难易角度来说,V oc,Rs,Rsh,主要和原材料及生产工艺的本身特征相关,与工艺现场的调控波动性关系不是特别紧密,可称之为长程可控参数。
而Isc,FF, Irev1与工艺现场的调控联系紧密,对各调控参数比较敏感,可称之为短程可控参数。
当然我们最关心的是效率Eff。
而Eff则是以上所有参数的综合表现。
太阳能电池的理论基础建立在以下几个经典公式之上:Voc=(KT/q)×ln(Isc/Io+1)Voc=(KT/q)×ln(N aNd/ni2) 12 FF=Pm/(Voc×Isc)=Vm×Im/ (Voc×Isc) 34Eff=Pm/(APin)=FF×Voc×Isc/APin=FF×Voc×Jsc/Pin 5图-1太阳能电池的I-V曲线图-2太阳能电池等效电路从上面5式我们可以看到,与效率直接相关的电性能参数主要有:FF,Voc, Isc。
在生产中我们还比较关心暗电流情况:Irev1,由1式可以看出,它与Voc有比较紧密地联系(实际也是这样的)。
为了更好地说明各参数间的联系,这里先录用几组数据如下:表-1以上P156均系LDK片源。
1,Voc由于光生电子-空穴对在内建场的作用下分别被收集到耗尽层的两端,从而形成电势。
所以我们认为Voc是内建电场即PN 结扫集电流的能力的直观表现。
由上面公式1所反映,Voc主要与电池片的参杂浓度(Nd)相关。
对于宽△Eg的电池材料,相对会有比较高的Voc;但△Eg过高,又会导致光吸收效率的迅速下降(主要是长波段响应降低),使Isc是降低,所以需要找到一个最佳掺杂深度值。
另一方面,高参杂又会引入更多的复合中心,使复合电流增加,同样也降低了Voc。
所以在没有引起复合电流增加或者其增量比较小的前提下,参杂浓度的提高对Voc总是有益的。
在上表所示的三种成品电池片中,P156的片子与E-CELL 片子Voc有着显著的不同,这显然是由于冶金级硅的杂质浓度过大导致的。
而对于62栅线和71栅线的电池片,由于其总体参杂浓度并没有显著的改变,所以其开压并没有显著差别。
从上表还可以看出,E-CELL电池的Isc已经比比另两者有显著降低,我们可以认为对于P156的正常多晶硅电池片其Voc在620mv左右达到了峰值。
另外通过对高Voc电池片(如E-CELL)进行QE扫描发现其长波长响应显著降低。
在现在既定工艺背景下,在没有大的工艺改动下,对产线的技术参数调整对Voc影响不会太大。
在生产中,我们曾对各种能够调节的参数进行了大量的调整,尤其是背电场和烧结温度参数方面,但结果总是很不理想,比如P156的LDK的片子其整体平均值变化范围也就是618m v±2mv左右。
基本上不可能达到像E-CELL GP156那样整体平均630mv的水平。
可见,Voc对后道工序的参数调节并不十分敏感。
一句话,关于Voc,这是电池片子本身质量素质及现定工艺所共同决定的,从整体的统计数据来看它是一个比较稳定的不易发生较大波动的工艺参数,比如:煜辉和洛阳以及LDK各厂家的电池片都有各自明显的电性能特征,尤其表现在Voc和Isc 上。
所以,在日常的生产过程中,我们应该更多地关注其他比较容易波动且操控性更强的参数,比如FF,Isc.2,FF如上面大名鼎鼎的太阳能电池的I-V曲线图-1所示,FF的直观意义为上图中矩形与曲线所围成面积之比。
它的本质意义如式3所示,即输出的有用功与产生的总体功率之比.它表现了电池片本身输出有用功的能力,也即其本身的内耗情况;对于高的FF,电池片本身对所产生电能的消耗比例较小。
而Eff如式所示,则是表现了电池片在吸收了一定太阳能量后能够输出有用功的能力.另外,此曲线的两边的斜率也直观地展现了Rsh与Rs的大小,正如式4所示。
所以在电性能参数中,我们认为,FF,Rsh,Rs这三个参数是紧密相连的一组。
一般通过Rs和Rsh我们来直观地判断FF的好坏。
即Rs和Rsh主要影响FF,当然当他们性能很差时对Voc和Isc的影响也是很显著的。
如上表所示:虽然UMG电池片的效率很低,但是这并不妨碍它可以达到比正常电池片还要高很多的FF。
再对比单晶的情况,虽然单晶具有比多晶更高的效率,但也不影响它只具有和ECELL相当的FF。
相对于Voc,FF更容易波动,且波动幅度有时也是很大的.一般情况下,在工艺过程中对FF影响比较大比较直接的主要是印刷工艺,再具体地说主要是正面电极的印刷,而正面电极的印刷又是一个非常细致的工艺,影响其质量的参数及因素又是相当多(相对于前道各工序来说),主要有印刷资料的选取,印刷网版的设计及印刷参数的调节.由于前两项因素已经由工程师们设计选择好,所以对于工艺人员,主要的工作是保证印刷出高质量的图形及确保各项参数在工艺范围内可控.另外FF对烧结的调节不是很敏感.而通常当FF较低时,我们也并不太多地怀疑烧结是否匹配.正常情况下,FF的降低表明电池片本身的内耗或漏电的增加,而这也必然会在Rs或Rsh上反映出来。
但是,我们也确实遇到了这样的情况:印刷图形堪称完美,基本上没有虚印,栅线高度也正常,Rs 及Rsh也都正常,而FF就是比平常低了将近0.5左右!其原因到目前仍然不是很清楚.2.1Rs硅太阳能电池等效串联电阻会影响其正向伏安特性和短路电流,而对开路电压没有影响,当然,对FF也有很大影响,当串联电阻取不同值时太阳能电池的I-V特性如下图-4所示[11]:串联电阻变化时太阳能电池的I-V特性曲线太阳能电池的串联电阻由以下四部分组成:Rs=Rb+Rd+Rc+RmRb为基体材料本身的体电阻;Rd为太阳能电池扩散层的薄层电阻,也可以理解为电池表面细栅线两旁的横向电阻;Rc为金属半导体的接触电阻;Rm为电极材料电阻。
Rm、Rd可以统一看为发射区电阻,Rc、Rb可以统一看为基区电阻。
良好的电极材料、图形和制备工艺可以减小薄层电阻对Rs的影响及减小Rc、Rm的大小。
一般来说我们希望Rs越小好好。
从上表数据右以看出,采用新网版工艺的电池片比之前的电池片Rs有了一定的改善,但不是很大,不过毕竟有了改善。
由于采用了密栅设计,我们认为此改善主要来自于横向电阻的改善,当然,使用新浆料所带来的接触电阻的改善也是可以肯定地,但毕竟比较小。
另外,相对于E-CELL电池片,前两者的Rs明显差很多,而E-CELL电池片,不论是体电阴率还是方块电阻都要比另外两者差很多。
由以上比较,我们可以得出以下结论:在组成串联电阻Rs的四个因素中,它们对总体Rs的影响顺序依次为:体电阻Rb,接触电阻Rc,横向电阻Rd 和电极电阻Rm。
Rs的改善对FF影响主要表现在:随着Rs减小,电池片本身的内耗也随之减小,从而使FF得到提高。
2.2RshRsh在I-V曲线图上的直观意义是当V=0时,I-V曲线斜率的倒数的绝对值,如式4所示。
而其本质是则是由于材料本身及生产工艺等原因造成的种种漏电通道。
所以,理论上讲我们希望其越大越好。
由工艺过程引入的漏电通道主要有以下六种:1>Linear edge shunts2>Nonlinear edge shunts3>Cracks and holes4>Schotty-type shunts5>Scratches6>Aluminum shunts由材料本身引入的漏电通道主要有以下三种:1>Strongly recombinative crystal defects2>Inversion layer at precipitates3>Macroscopic Si3N4 inclusionsRsh是与Io紧密联系在一起的。
实际上它们描述的是同一个现象:光生电流的非常规复合损失。
只是Rsh具有更丰富的内涵及更直观的表现。
在日常生产中,我们发现相对于Rsh, Rs的调控性更好些,即Rs 对烧结及其他工艺参数比如印刷质量更敏感些。
更实际的情况是这样的:在日常的工艺过程中,对于Rsh并没有十分明确的调节对象(就像细栅线的高宽比一样),工艺人员往往束手无策。
采用新栅线工艺(71栅线)后,Voc,Isc,Rs只得到了些微的改善,FF的改善比较明显。
唯独Rsh下降了很多,说明由于采用新工艺,我们引入了更多的漏电通道,而这些漏电通道吞掉了很多本应由新工艺带来的电流改进。
由于我们的新工艺只是对PECVD以后的程序进行了改进,而正面电极栅线遮光面积前后并没有太大的变化,所以PECVD工序的可能性最大,至少在目前看来是这样的。
另外我个人认为跟正面电极浆料也有一定的关系:在没有使用PV159浆料之前我们的Rsh基本都是50以上,作到100也是常有的事,只是UMG 的电池片Rsh 比较低,但即使这样,也比现在的要高很多。
理论上,往往我们都认为是Rs和Rsh共同表现了FF的优劣,而实际上只有Rs更具体更充分地表现出了它的这个职能。
3,Isc理论上,描述电流的经典公式如式4所示;直观上,I-V曲线如上图-1所示。
太阳能电池的一切根源则是由PN结所搜集的由光生伏特效应所产生的光生载流子,而载流子的聚集又产生稳定的电势Voc,从而行成太阳能电池工作的基本构架。
我们在对太阳能电池的研究与生产中所作的努力绝大部分是间接地为了提高Isc(直接地为了提高Eff)。
如:表面织构化与淀积ARC膜是为了提高光的吸收利用率从而从源头体高Isc;改进PN结深与参杂提高方块电阻,采用细栅线等提高光生电流收集几率从而从过程中减少光生电流的损失间接提高Isc;而采用各种更精细的工艺制程,如各种不同的表面织构及正面电极则是为了能更细致更专业地从源头及过程中优化Isc。
我们可以将Voc与Isc并称为太阳能电池的两大最主要电性能参数,而转换效率Eff则是其优劣最直接的展现。
一般来说,整个产线从制绒到丝网印刷的各个工序都可以对Isc产生直接而显著的影响。
而他们的影响方式不外乎两种:影响光的吸收效率或影响光生载流子的吸收几率。
而每道工序都有相应的工艺控制点,这些控制点也都体现了如上面所说的影响。
如:1,制绒工序的减薄量。
它本质上反映的是表面织构化的质量,即倒金字塔的几何结构包括其宽度和高度,而正是这些参数直接地影响了光的吸收效率,此工序对Isc的影响主要体现在对光的吸收效率方面,而此工序由于清洗不彻底或污染则在后续工序中影响载流子的收集几率。