CSMA-CD介质访问控制协议.doc
- 格式:doc
- 大小:22.50 KB
- 文档页数:2
介质控制协议引言介质控制协议是在计算机网络中,用于控制和管理传输介质的一种协议。
它负责管理和调度网络中的物理介质,以确保数据的可靠传输和网络的高效运行。
本文将介绍介质控制协议的基本概念、工作原理和常见的应用。
什么是介质控制协议?在计算机网络中,介质控制协议是一种用于确保数据在传输介质中可靠传输的协议。
它负责协调网络中多个节点之间的访问介质,以避免冲突和碰撞,并调度数据包的传输。
介质控制协议通常在数据链路层或物理层中实现。
介质访问控制方法介质控制协议使用介质访问控制方法来调度节点对传输介质的访问。
常见的介质访问控制方法包括以下几种:1. 基于载波侦听多路访问(CSMA)CSMA是一种基本的介质访问控制方法,它通过监听传输介质上的载波活动来确定是否可以发送数据。
当传输介质空闲时,节点可以发送数据;当传输介质被占用时,节点将等待,并在合适的时机再次尝试发送。
常见的CSMA协议包括CSMA/CD(用于以太网)和CSMA/CA(用于无线网络)。
2. 碰撞检测(Collision Detection)碰撞检测是一种用于检测传输介质上的碰撞的方法。
当多个节点同时发送数据包时,可能会发生碰撞,导致数据包损坏。
碰撞检测方法会在发送数据过程中不断检测是否发生碰撞,并进行相应的处理,如重新发送数据包。
碰撞检测常用于以太网等共享介质的网络中。
3. 时间分割多路访问(Time Division Multiple Access)时间分割多路访问是一种通过时间划分的方式来实现对传输介质的访问控制的方法。
在时间分割多路访问中,传输介质被划分为多个时隙,每个节点在特定的时隙中进行数据传输。
这种方法可以避免碰撞和冲突,但可能导致传输效率降低。
4. 频分多路复用(Frequency Division Multiplexing)频分多路复用是一种通过频率划分的方式来实现对传输介质的访问控制的方法。
在频分多路复用中,不同节点使用不同的频率进行数据传输,以避免碰撞和冲突。
本科毕业论文题目:CSMA/CD协议性能分析方法的研究摘要现今,关于CSMA/CD协议的论文大部分都只给出性能分析的结果而未给出分析的方法及过程,关于CSMA/CD协议性能分析方面的论文寥寥可数。
在早期版本中各种总线结构中,CSMA/CD网(bus topology Ethernet)和双绞线以太网(twisted-pair Ethernet)使用比较多,而现代以太网是基于交换机和全双工连接建立,不会有碰撞,因此没有必要使用CSMA/CD。
这也是导致很少有人去研究CSMA/CD协议的原因。
CSMA/CD原理比较简单,技术上易实现,网络中各工作站处于平等地位,不需集中控制,不提供优先级控制。
在许多的要求价格低廉,快速组网,布线简单,接入终端少的情况下使用CSMA/CD协议是非常好的选择。
这时CSMA/CD协议性能分析就显得尤为重要。
关键词:CSMA/CD;性能分析;以太网;局域网AbstractNowadays, the performance on the CSMA / CD protocol only was given analysis results without the method and process, in the paper most of the performance analysis. And the paper , on CSMA / CD protocol performance analysis, difficult to be found. In earlier versions of the structure of the bus ,CSMA / CD network (bus topology Ethernet) and twisted-pair Ethernet (twisted-pair Ethernet) were used more widely. But, the modern Ethernet based on Switch and full duplex connection and established, no collision .So it is no need to use CSMA / CD in modern Ethernet. This also is an important reason for the few people to study the CSMA / CD protocol .CSMA/CD protocol is relatively simple , technically easy to achieve and the network status of each workstation is equal, without centralizing control and providing priority control. In many of cases that require low prices, fast networking, cabling simple ,a few access terminal. using the CSMA / CD protocol is a very good choice. At this time CSMA / CD protocol performance analysis is particularly important.Keywords: CSMA/CD; performance analysis; Ethernet; LAN目录摘要 (I)Abstract (II)第一章绪论 (1)1.1 CSMA/CD协议的发展历史 (1)1.2 CSMA/CD的三种算法 (1)1.3 CSMA/CD协议的研究内容 (2)第二章多址技术分类、特点、应用范围 (3)2.1 多址协议 (3)2.2 多址协议的分类 (3)2.2.1固定多址接入协议 (3)2.2.2随机多址接入协议 (4)2.3多址协议的特点及应用范围 (5)2.3.1固定多址协议 (5)2.3.2随机多址接入协议 (7)第三章CSMA/CD的工作过程和研究方法 (8)3.1前人研究CSMA/CD协议主要采用的方法 (8)3.2 CSMA/CD协议的工作原理 (9)3.2.1两种流行的CSMA/CD协议数据发送过程 (9)3.2.2 CSMA/CD协议数据的接收过程 (11)3.3 CSMA/CD模型建立及分析 (12)第四章CSMA/CD的性能分析 (14)4.1CSMA/CD协议的性能分析 (14)4.1.1 CSMA/CD碰撞发生的原因分析 (14)4.1.2 模型假设 (16)4.1.3 CSMA/CD协议的性能的数学分析 (18)4.1.4有限用户的信道利用率分析 (20)4.2CSMA/CD性能的MATLAB分析 (21)4.2.1 帧长与吞吐量关系的MATLAB分析 (21)4.2.2 三种CSMA/CD协议性能的比较分析 (22)4.2.3传输速率对CSMA/CD协议性能的影响 (23)4.3CSMA/CD性能评价 (23)结论 (25)参考文献 (26)谢辞 (27)第一章绪论1.1 CSMA/CD协议的发展历史1968年美国夏威夷大学为了解决夏威夷群岛之间的通信问题开始一项研究计划取名aloha,随后开发了ALOHA协议。
以太网技术基本原理以太网是一种局域网技术,其基本原理是基于CSMA/CD(载波监听多路访问/冲突检测)协议,采用共享介质的方式实现各个终端设备之间的数据通信。
以下是以太网技术的基本原理的详细介绍。
1.CSMA/CD协议:CSMA/CD协议是以太网的核心协议,用于解决多个终端设备同时访问共享介质时产生的冲突问题。
其工作原理是,在发送数据之前,终端设备会先监听共享介质上是否有信号传输,如果没有,则可以开始发送自己的数据。
如果检测到有信号传输,表示介质正在被占用,终端设备会等待一段随机的时间后再次进行监听,以便选择合适的时机进行数据发送。
如果在发送数据的过程中,终端设备检测到介质上有冲突,就会终止发送并等待一段时间,再次检测介质是否被占用,然后重新开始发送数据。
通过这种方式,CSMA/CD协议可以有效地解决冲突问题,实现数据的可靠传输。
2.介质访问控制:以太网采用的是共享介质的方式,多个终端设备共享同一根传输介质。
为了保证每个终端设备的公平性和均衡性,以太网采用了介质访问控制机制。
具体来说,以太网将共享介质分割为多个时隙,并将每个时隙划分为一个最小的数据传输单元(称为“帧”)。
终端设备在进行数据传输之前,需要等待一个空闲的时隙,然后按照时隙进行数据发送。
这种介质访问控制机制能够有效地保证每个终端设备的公平访问权,并避免了数据传输的混乱和冲突。
3.MAC地址:以太网使用MAC(媒体访问控制)地址来唯一标识网络中的每个终端设备。
MAC地址是一个48位的全球唯一标识符,由6个字节组成。
其中前3个字节是由IEEE管理的组织唯一标识符(OUI),用于标识设备的生产厂商,后3个字节由设备厂商自行分配。
每个终端设备在生产时都会被分配一个唯一的MAC地址,以太网通过这个地址来确定数据应该发送到哪个设备。
4.帧格式:以太网的数据传输通过帧来进行,每个帧是一个完整的数据包。
以太网的帧格式包括了源MAC地址、目标MAC地址、协议类型和数据部分。
csmacd工作原理
CSMACD(Carrier Sense Multiple Access with Collision Detection,带碰撞检测的载波监听多路访问)是一种常用的局域网访问协议,用于解决多个设备共享一个通信介质时可能发生冲突的问题。
CSMACD协议的工作原理是基于三个主要步骤:载波监听、碰撞检测和退避机制。
首先,在发送数据之前,设备会监听通信介质,检测是否有其他设备在传输数据。
如果发现介质空闲,则设备可以开始发送数据;如果介质被其他设备占用,设备会等待空闲时隙来发送数据。
其次,设备在发送数据的同时也在持续监听通信介质。
如果设备在发送数据时发现冲突(即与其他设备同时发送数据),会立即停止发送,并发送一个碰撞信号。
最后,设备在发送碰撞信号后,会启动退避机制。
设备会等待一个随机的时间段,然后重新开始从步骤一的载波监听开始。
这种退避机制可以有效地减少碰撞事件的发生概率。
因为设备等待的时间是随机的,所以每个设备都会有不同的等待时间,从而减少了再次发生碰撞的可能性。
当设备成功发送数据后,其他设备会检测到介质空闲并开始发送自己的数据。
总体而言,CSMACD协议通过载波监听、碰撞检测和退避机
制的结合,实现了多个设备在共享介质上进行数据传输时的冲突解决。
这种协议能够使设备在保持高效传输的同时避免冲突,提高了局域网的性能和可靠性。
介质访问控制的方法
介质访问控制(MAC)是一种网络协议,用于控制多个计算机或设备在共享同一物理介质(如Ethernet或WiFi)上的访问。
以下是一些常见的MAC方法:
1. CSMA/CD(带冲突检测的载波侦听多路接入):在这种方法中,计算机听取信道上的信号,如果信道上没有其他计算机发送数据,则发送数据。
如果检测到碰撞,则停止发送数据,并等待随机时间后再次尝试发送。
2. CSMA/CA(带冲突避免的载波侦听多路接入):在这种方法中,计算机在发送数据之前,首先发送一个请求访问信号,等待其他计算机的确认,并等待一段时间,然后再发送数据。
3. Token Passing(令牌环):在这种方法中,一个特殊的令牌沿着物理环路传递,只有拥有令牌的计算机才能发送数据。
当计算机完成发送数据后,会将令牌传递给下一个计算机。
4. Polling(轮询):在这种方法中,一个中心节点(如服务器)轮流询问每个节点是否有数据要发送,然后处理节点的请求。
5. Reservation(预约):在这种方法中,节点先发送一个请求访问信号,并指定一个特定的时间段,然后其他节点在该时间段中不能发送数据。
如果时间段内
有碰撞,则节点必须重新发送请求信号。
简述常见的介质访问控制方法的基本原理
常见的介质访问控制方法包括CSMA/CD、CSMA/CA、令牌环、令牌总线、纯ALOHA和时隙ALOHA等。
以下是它们的基本原理:
1. CSMA/CD:这是一种分布式控制技术,各节点在竞争的基础上访问传输介质。
具体来说,每个节点在发送数据之前先监听信道,如果总线上没有其他站点发送信号,则该站点发送数据;否则,需等待一段时间后再重新监听,再根据情况决定是否发送数据。
发送数据的同时检测信道上是否有冲突发生,若有,则采用截断二进制数退避算法等待一段时间后再重发。
2. CSMA/CA:该方法用于无线网络,特别是WiFi。
与CSMA/CD不同,CSMA/CA使用确认和重传机制来确保数据的可靠传输。
3. 令牌环和令牌总线:这两种方法中,数据传输的权利由一个称为“令牌”的特殊标记来控制。
令牌环既可用于环形结构也可用于总线形结构。
4. 纯ALOHA:此协议中,各站点不监听信道,也不按时间槽发送数据。
当冲突发生时,站点会随机重发数据。
5. 时隙ALOHA:这种方法下,站点不监听信道,但会按照预定的时间槽发送数据。
当发生冲突时,站点同样会随机重发数据。
这些控制方法在计算机网络中被广泛使用,各有其适用场景和优缺点。
计算机网络应用CSMA CD媒体访问控制原理在以太网中,所有的节点共享传输介质,各节点通过共享介质发送自己的帧,其它节点通过共享介质接收这个帧。
当仅有一个节点发送数据时,才能够发送成功;当有两个或两个以上节点同时发送数据时,共享介质上的信息将是多个节点发送信息的混合,目标节点是无法辨认这样的混合信息的,因此发送失败。
我们将这种信息在共享介质上的混合称为“冲突”。
载波监听多路访问/冲突检测(Carrier Sense Multi-Access/Collision Detection,CSMA/CD)是一种设备通过采用竞争的方法来获取对总线使用权的技术,它只适用于逻辑上属于总线型拓扑结构的网络,它包括载波监听多路访问(CSMA)和冲突检测(CD)两种技术。
CSMA是减少冲突的主要技术。
在总线网络中的一个工作站在发送数据前,首先侦听总线查看信道上是否有信息发送,用来测试总线上有无其它工作站正在发送信息。
如果侦测到其它工作站正在发送信息,即信道已经被占用时,则该工作站在等待一段时间后再次争取发送权;如果侦听得知信道是空闲的,没有其它工作站在发送信息,那么就立刻抢占总线并发送信息。
当信道处于空闲时刻,如果总线上有两个或两个以上的工作站同时需要发送数据时,那么在这个时刻它们都可能检测到信道是空闲的,同时认为是可以发送信息的。
结果导致他们同时发送数据,产生了冲突。
另一种情况,某工作站侦听到信道是空闲的,但这种空闲可能是较远站点已经发送了数据但由于在传输介质上信号的传播存在延时,该数据还未到此站点的缘故,如果此站点又发送信息,则也将产生冲突。
因此,利用CSMA冲突也是不可避免的,为了解决这种冲突,从而引入了冲突检测(CD)技术。
冲突检测技术是指,站点一边将信息传送到共享介质上,一边从共享介质上接收信息,然后将发送出去的信息和接收的信息进行按位比较。
一旦检测到冲突,发送站点就停止发送已开始发送的帧,而不必将很长的数据帧全部发完,并向总线发送一串阻塞信号,让总线上的其它站点均能感知到冲突已经发生,然后强化冲突,再进行侦听工作,以待下一次重新发送。
介质访问控制方法介质访问控制方法是指对数据传输介质进行访问控制的技术手段,通过对数据传输介质的访问进行管理和控制,可以有效地保护数据的安全性和完整性。
在网络通信和信息传输过程中,介质访问控制方法起着非常重要的作用,它可以有效地防止未经授权的用户或设备对数据传输介质的非法访问,从而保障数据传输的安全和可靠性。
介质访问控制方法主要包括物理层介质访问控制和数据链路层介质访问控制两种方式。
物理层介质访问控制是指通过对数据传输介质的物理特性进行管理和控制,来实现对数据传输的访问控制。
常见的物理层介质访问控制技术包括载波侦听多址接入(CSMA)、载波侦听多址接入/碰撞避免(CSMA/CA)和载波侦听多址接入/碰撞检测(CSMA/CD)等。
这些技术可以有效地避免数据传输介质上的冲突和碰撞,保证数据传输的顺利进行。
数据链路层介质访问控制是指通过对数据链路层的协议和技术进行管理和控制,来实现对数据传输的访问控制。
常见的数据链路层介质访问控制技术包括逻辑链路控制(LLC)、介质访问控制子层(MAC)和逻辑拓扑控制等。
这些技术可以有效地控制数据传输的访问权限和优先级,保证数据传输的安全和可靠。
除了物理层和数据链路层的介质访问控制方法外,还可以通过网络层和应用层的安全协议和技术来实现对数据传输介质的访问控制。
例如,网络层的IPsec协议可以对数据传输进行加密和认证,从而保护数据的安全性;应用层的访问控制列表(ACL)可以对数据传输的访问进行精细化控制,实现对特定用户或设备的访问权限管理。
总的来说,介质访问控制方法是保障数据传输安全的重要手段,它通过对数据传输介质的访问进行管理和控制,可以有效地防止未经授权的用户或设备对数据传输的非法访问,从而保障数据传输的安全和可靠。
在实际应用中,我们可以根据具体的网络环境和安全需求,选择合适的介质访问控制方法来保护数据的安全性和完整性。
以太网中的CSMA/CD以太网是当今现有局域网采用的最通用的通信协议标准,组建于七十年代早期。
以太网最初是由Xerox公司研制而成的,并且在1980年由DEC公司和Xerox 公司共同使之规范成形。
后来它被作为802.3标准为电气与电子工程师协会(IEEE)所采纳。
Ethernet(以太网)是一种传输速率为10Mbps的常用局域网(LAN)标准。
在以太网中,所有计算机被连接一条同轴电缆上,采用具有冲突检测的载波感应多处访问(CSMA/CD)方法,采用竞争机制和总线拓朴结构。
基本上,以太网由共享传输媒体,如双绞线电缆或同轴电缆和多端口集线器、网桥或交换机构成。
在星型或总线型配置结构中,集线器/交换机/网桥通过电缆使得计算机、打印机和工作站彼此之间相互连接。
以太网具有的一般特征概述如下:共享媒体:所有网络设备依次使用同一通信媒体。
广播域:需要传输的帧被发送到所有节点,但只有寻址到的节点才会接收到帧。
以太网的拓扑结构总线型:所需的电缆较少、价格便宜、管理成本高,不易隔离故障点、采用共享的访问机制,易造成网络拥塞。
早期以太网多使用总线型的拓扑结构,采用同轴缆作为传输介质,连接简单,通常在小规模的网络中不需要专用的网络设备,但由于它存在的固有缺陷,已经逐渐被集线器和交换机为核心的星型网络所代替。
星型:管理方便、容易扩展、需要专用的网络设备作为网络的核心节点、需要更多的网线、对核心设的可靠性要求高。
采用专用的网络设备(如集线器或交换机)作为核心节点,通过双绞线将局域网中的各台主机连接到核心节点上,这就形成了星型结构。
星型网络虽然需要的线缆比总线型多,但布线和连接器比总线型的要便宜。
此外,星型拓扑可以通过级联的方式很方便的将网络扩展到很大的规模,因此得到了广泛的应用,被绝大部分的以太网所采用。
以太网接口工作模式以太网卡可以工作在两种模式下:半双工和全双工。
半双工:半双工传输模式实现以太网载波监听多路访问冲突检测。
CSMA/CD介质访问控制协议
1、MAC服务规范三种原语
MA-DATA.request 、MA-DATA.indication、MA-DATA.confirm
2、介质访问控制的帧结构
CSMA/CD的MAC帧由8个字段组成:前导码;帧起始定界符SFD;帧的源和目的地址DA、SA;表示信息字段长度的字段;逻辑连接控制帧LLC;填充的字段PAD;帧检验序列字段FCS。
前导码:包含7个字节,每个字节为10101010,它用于使PLS 电路和收到的帧定时达到稳态同步。
帧起始定界符:字段是10101011序列,它紧跟在前导码后,表示一幅帧的开始。
帧检验序列:发送和接收算法两者都使用循环冗余检验(CRC)来产生FCS字段的CRC值。
3、介质访问控制方法
IEEE802.3标准提供了介质访问控制子层的功能说明,有两
个主要的功能:数据封装(发送和接收),完成成帧(帧定界、帧同步)、编址(源和目的地址处理)、差错检测(物理介质传输差错的检测);介质访问管理,完成介质分配避免冲突和解决争用处理冲突。