气隙电感的计算
- 格式:ppt
- 大小:591.00 KB
- 文档页数:15
气隙与漏感的关系磁芯饱和就相当于变压器的一次侧是个空心线圈(相当于短路),它的电流会很大,一直上升到烧坏变压器或者保险管为止。
磁芯气隙是磁芯空气间隙的简称,一般铁氧体,和硅钢的磁芯都不是一个整体的闭合体,是由E字体对接的对接口处有意无意留下的间隙就是磁芯气隙,所以人们不需要磁芯气隙时可以采用环型变压器,用到磁芯气隙时就故意加大对接的缺口,或在缺口处垫非导磁材料,如高温纸。
高频变压器才开气隙,是为了防止铁芯磁饱合,因为UPS中有高次诣波,所以要开气隙,但变压器开气隙的原理和电感是不一样的。
变压器都是硅钢片拼成的,两个对着的硅钢片之间的间隙叫气隙。
气隙大了当然磁阻就大了。
变压器留气隙是为了防止在工作中产生磁饱和!气隙是在铁芯交合处留的缝隙!和绕线无关。
有了气隙的确是增加了磁阻,但却是有益的!气隙的作用是减小磁导率,使线涠特性较少地依赖于磁芯材料的起始磁导率。
气隙可以避免在交流大信号或直流偏置下的磁饱和现象,更好地控制电感量。
然而,在气隙降低磁导率的情况下要求线圈圈数较多,相关的铜损也增加,所以需要适当的折中。
一般反激式电源,在气隙较小时,气隙越小,功率越小,气隙越大,功率越大,一般气隙能调到满足最大输出功率即可当然任何条件下不能进入饱和区即输入电流不能出现上冲现象。
在磨气隙时可用一小条水沙纸(加水磨速度较快较平),底下垫玻璃,要气隙大就磨中间,想减小点气隙就磨两边。
反激电源变压器漏感是一个非常关键的参数,由于反激电源需要变压器储存能量,要使变压器铁芯得到充分利用,一般都要在磁路中开气隙,其目的是改变铁芯磁滞回线的斜率,使变压器能够承受大的脉冲电流冲击,而不至于铁芯进入饱和非线形状态,磁路中气隙处于高磁阻状态,在磁路中产生漏磁远大于完全闭合磁路。
变压器初次极间的耦合,也是确定漏感的关键因素,要尽量使初次极线圈靠近,可采用三明治绕法,但这样会使变压器分布电容增大。
选用铁芯尽量用窗口比较长的磁芯,可减小漏感,如用EE、EF、EER、PQ型磁芯效果要比EI型的好。
电感和变压器的相关公式安培环路定律: 磁压: 磁动势: 电磁感应定律:带磁芯的电感公式:磁压:磁阻: 电阻:开气隙磁芯:磁通变化量:nlH i ⋅=in l H ⋅=⋅c m l H U ⋅=in F⋅=ttn tn e ΔΔ=Δ⋅Δ=ΔΔ⋅=ψφφ)(dt di L dt di l A n dt dH nA dt dB nA dtd ne u c ⋅=⋅====−=μμφ2cl A n L ⋅⋅=μ2φφμμφμ⋅=⋅=⋅=⋅==mc c ccc c c m R A l l A l BHl U c c mc A l R ⋅=μSlR ⋅=ρδδδμμA l A l nR R nR n L c c m mc m ⋅+⋅=+==02222111φφφ−=t 221111i N i N i N t ⋅−⋅=⋅1i =输入电流反射电流变压器工作原理:导线集肤深度:矩形波电流产生的集肤效应:矩形波电流的集肤深度为基波正弦波的集肤深度的70%。
当负载电流比较大时(一般大于20A),应采用铜箔,而不是用利兹线(多股细小且绝缘)或多股实心线并绕,开关频率低于50kHz 时,应尽量避免使用利兹线。
铁氧体磁芯损耗:磁芯的工作状态分为三类:Ⅰ类:有直流偏磁的单向磁化(主要关注磁芯的饱和问题) Ⅱ类:无直流偏磁的单向磁化(主要关注磁芯的复位问题) Ⅲ类:双向磁化(主要关注磁芯的高频损耗问题)γμπ⋅⋅⋅⋅⋅=Δf k 22μ导线材料的磁导率γ材料的电导率(γ=1/ρ) k材料电导率的温度系数β=2.2~2.4 α=1.2~1.7B为磁感应强度 η为材料系数 f为交变频率。
电感的计算公式5.4 滤波电感的分析计算在直流变换电路中,都设有LC滤波电路,滤波电感中的电流含有一个直流成分和一个周期性变化的脉动成分。
磁场的变化规律如图5-6。
下面以Buck型直流变换电路为例说明滤波电感的设计方法。
Buck电路的原理图如图5-10(a),电感L的作用是滤除占波开关输出电流中的脉动成分。
从滤波效果方面考虑,电感量越大,效果越明显。
但是,如果电感量过大,回使滤波器的电磁时间常数变得很大,使得输出电压对占空比变化的响应速度变慢,从而影响整个系统的快速性。
一味地追求减小输出电压的纹波成分是不可取的。
所以在设计电感参数时应从减小纹波和保持一定的快速性两个方面去考虑。
OUi Lmaxi LminTDTi L(a) (b)图5-10 Buck电路及其电感的电流1. 电感量的计算首先讨论以限制电流波动为目的的电感量的计算。
由对斩波器的分析可知,电路进入稳定状态后,电感电流在最小值I Lmin和最大值I Lmax之间波动变化,波动的幅度为ΔI,如图5-10b),电感L与ΔI的关系为TDIUL O)1(−∆=(5.29)可见电感量越大,电流的波动就越小。
一般电流波动ΔI根据使用要求预先给定,由此来决定电感的大小。
式(5.29)还说明,对于同样的ΔI,在不同占空比下所需的电感是不同的。
在占空比较小时需要更大的电感。
在电路工作中,如果负载突然变化,输出电流I O会随之变化,为了保持输出电压U O不变,占空比必须做相应的变动。
由于滤波器由储能元件构成,不可能立即跟踪占空比的变化,这就会出现一个过渡过程。
我们希望这个过渡过程的时间短越好。
设负载变化以前占空比为D1,负载变化以后的占空比为D2。
过度过程时间为T R,它们之间的关系为)1(12−∆=D D U I L T O R (5.30) 式(5.30)的推导比较复杂,读者可以参考有关资料。
但由上式可以看出,电感越大,对应的过度过程时间就越大,这说明电感过大对提高快速性是不利的。
干式带气隙铁芯电抗器电感计算方法1. 引言干式铁芯电抗器具有体积小、损耗低、漏磁小、阻燃防爆等优点,其缺点是电感具有非线性,存在磁滞饱和现象。
为改善电感的线性度,干式铁芯电抗器一般采用带气隙铁芯。
在干式铁芯电抗器设计中,电感值的准确计算是关键问题之一。
目前,对铁芯电抗器电感值的计算一般采用传统解析近似法。
该方法在求解带气隙铁芯电抗器主电感值时基于简化的磁路,即假设气隙衍射磁通路径为半圆形[1,2],该方法用于求解带气隙铁芯电抗器电感值时存在较大误差,在产品生产时需要对气隙厚度进行反复调整,才能达到满意的电感值。
为了更加准确地计算主电感可以采用磁场计算法[2,3],该方法假定铁芯由无穷多个圆柱形铁芯饼-气隙单元串联组成,从而将电抗器磁场近似为轴对称磁场问题,然后采用分离变量法求解其磁场分布。
该方法在计算边缘效应系数时涉及到修正贝塞尔函数,计算过程比较复杂。
对于大气隙铁芯电抗器电感值的计算,文献[3]从求解磁场方程出发,在计算中假设铁芯是由无穷多个铁芯饼—气隙单元串联起来的,对气隙边缘效应给予了系数矫正。
相对地,计算公式比较繁琐,需要根据铁芯直径与气隙厚度查询相应的气隙边缘效应修正系数。
文献[4,5,17]采用修正系数来考虑气隙磁导从而计算铁芯电抗器电感值的解析近似法,由于修正系数可变,需查表,因此,计算也较繁杂。
采用有限元法计算铁芯电抗器的电感值准确度更高[9,10,11,12,13,18],但计算所需要的计算机内存大,计算时间也长,所以,一般仅在电抗器设计的最后核算中多采用该方法。
本文将基于铁芯电抗器磁场的有限元数值计算结果,对传统解析近似法计算铁芯气隙衍射磁通等效导磁面积公式进行修正,提出一种改进解析近似法,然后,将提出的方法用于实例计算,并与数值仿真结果比较,对方法的可行性和准确度进行讨论。
2. 计算原理在计算带气隙铁芯电抗器气隙处等效衍射面积时,传统解析近似法认为主磁通流过气隙时,有一部分磁通将从铁芯外表面流出,绕过气隙,流向铁芯外表面,再进入铁芯中去。
基于叠加原理的有气隙电感绕组损耗计算谭尉辰,陈为(福州大学电气工程与自动化学院,福建福州350108)摘要:提出了一种基于叠加原理的有气隙电感绕组损耗的新型计算方法。
考虑气隙磁场和绕组磁场对绕组损耗的影响,提高了有气隙电感绕组损耗的计算精度。
最 后通过二维有限元(FEM)仿真进行验证,证实了所提方法的正确性与可行性。
关键词:叠加原理;气隙电感;绕组损耗;精度中图分类号:TM 15 文献标志码:A 文章编号=2095-8188(2017)02-0017-07 DOI : 10. 16628/j. cnki. 2095-8188. 2017. 02. 004谭尉辰(1991一), 男,硕士研究生,研 究方向为高频磁技 术。
Analytical Calculation of Winding Losses in Gapped InductorsBased on Principle of SuperpositionTAN Weichen, CHEN Wei(College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108 ,China)Abstract : In order to shorten the design cycle in engineering, the existing calculations of winding losses in gapped inductors usually ignore the losses caused by air-gap fringing fluxes or predicted by one-dimensional Dowell (lD-Dowell) model directly, resulting in much error. In this paper, a new analytical calculation method of winding losses in gapped inductors based on the principle of superposition was proposed. The new method considers the influence of air-gap magnetic field and winding magnetic field on winding losses, which improves the accuracy of the winding losses calculation. 2-D finite-element simulations were done to validate its correctness and feasibility.Key words: principle of superposition; gapped inductors; winding losses; accuracy〇引言在高频开关电源中磁元件的设计是影响开关 电源效率、尺寸和温升等性能的关键性因素。