5 高分子材料研究方法-X射线衍射分析
- 格式:rtf
- 大小:117.11 KB
- 文档页数:10
高分子材料分析与测试引言高分子材料是一类重要的工程材料,在各个领域有着广泛的应用。
为了确保高分子材料的质量和性能,对其进行准确的分析与测试是至关重要的。
本文将介绍高分子材料分析与测试的基本原理、常用方法和技术,并对其在实际应用中的重要性进行讨论。
1. 高分子材料的特性分析高分子材料具有许多特殊的性质,如高分子链结构、长链分子的柔性和高分子材料的热性能等。
为了准确分析和测试高分子材料的特性,我们需要运用一些常用的分析方法。
下面介绍几种常用的高分子材料特性分析方法:•红外光谱分析:红外光谱是一种常见的高分子材料分析方法,通过对材料吸收、发射或散射红外辐射进行分析,可以确定材料的化学成分和结构。
•热分析:热分析是一种通过加热样品并监测其温度和质量变化来分析材料热性能的方法。
常见的热分析方法包括热重分析(TGA)和差热分析(DSC)等。
•X射线衍射(XRD):XRD是一种通过测量材料对入射X射线的衍射情况来分析其晶体结构的方法。
通过XRD可以确定高分子材料的结晶性质和晶格参数。
•核磁共振(NMR):核磁共振是一种通过测量材料中核自旋的共振现象来分析材料结构和化学环境的方法。
在高分子材料分析中,NMR可以提供关于材料分子结构、分子量和链结构等信息。
2. 高分子材料的力学性能测试高分子材料的力学性能是评价其质量和使用性能的关键指标之一。
为了准确测试高分子材料的力学性能,常用的测试方法包括:•拉伸测试:拉伸测试是一种通过施加拉伸力来测量材料在拉伸过程中的力学性能的方法。
通过拉伸测试可以确定高分子材料的强度、延展性和弹性模量等指标。
•弯曲测试:弯曲测试是一种通过施加弯曲力来测量材料在弯曲过程中的力学性能的方法。
通过弯曲测试可以确定高分子材料的弯曲强度和弯曲模量等参数。
•硬度测试:硬度测试是一种通过在材料表面施加静态或动态载荷来测量材料硬度的方法。
常用的高分子材料硬度测试方法包括巴氏硬度和洛氏硬度等。
•冲击测试:冲击测试是一种通过施加冲击载荷来测量材料抗冲击性能的方法。
材料科学中的先进材料表征技术材料科学一直是工程与科学领域的重要组成部分。
在各个领域中,材料是得以发展的重要基础和基石。
在这个领域,表征是非常重要的一部分,因为它提供了我们对材料了解深入的视角。
在当今的时代,先进材料表征技术已经得到了广泛的应用,可以用来支持材料科学中的几乎所有方面,从而提高了材料的研究效率和精度。
本文将介绍几个被广泛使用的先进材料表征技术,以及它们在材料科学中的作用。
1. X射线衍射X射线衍射是一种有用的先进材料表征技术。
它利用X射线通过晶体时所发生的衍射现象,来确定晶体中的原子排列方式。
在X射线衍射实验中,X射线会穿过材料的结构,然后在一个探测器上产生图案。
由于晶体排列不同,衍射图案也会不同。
通过分析X射线衍射图案,我们可以得到有关材料结构的详细信息,包括晶格参数、结构组成、相位以及原子间的距离和角度等等。
X射线衍射广泛用于材料研究,是材料科学中最常用的表征技术之一。
它可以用来研究许多材料,尤其是晶体材料。
通过分析单晶衍射图像,我们可以确定晶体的原子坐标和排列方式。
这对于研究材料的结构和性能是非常重要的。
此外,X射线衍射技术还可用于确定材料的相组成和微观组织结构,从而提高了材料的制备和加工质量。
2. 扫描电子显微镜扫描电子显微镜(SEM)是一种可用于观察材料微观结构的现代表征技术。
与其他显微镜不同,SEM利用了高速的电子束来照射样品。
通过SEM,我们可以获得高分辨率的图像,可以观察到非常小的材料粒子和表面形态。
SEM广泛应用于研究不同种类材料的微结构、形貌和表面特性。
SEM的应用非常广泛,它可以用于测试各种不同的材料,包括金属、陶瓷、高分子材料等。
SEM不仅可以直接观测材料表面的形貌,还可以通过SEM-EDS(SEM能量散射光谱仪)来分析不同元素的分布状况。
因此,SEM被广泛用于材料表面性能研究和微纳米加工等领域。
3. 原子力显微镜原子力显微镜(AFM)是一种底部观测表面的高分辨率显微镜。
xrd在高分子材料中的运用
X射线衍射法(XRD)在高分子材料领域有着广泛的应用,主要用于以下几个方面:
1.结晶度和晶型分析:XRD可以测定高分子材料的结晶度,即结晶部分所占
的比例。
此外,通过分析衍射花样,还可以确定高分子材料的晶型,即高分子链在晶体中的排列方式。
2.分子量和分子量分布:XRD可以结合其他方法,如光散射法,来测定高分
子材料的分子量和分子量分布。
通过分析散射强度和散射角度的关系,可以得到分子量和分子量分布的信息。
3.取向和取向分布:XRD可以用于研究高分子材料的取向和取向分布,即在
制造过程中高分子链的排列方向以及不同方向的分子数目。
4.杂质和污染物分析:XRD可以用于检测高分子材料中的杂质和污染物,如
增塑剂、颜料等。
通过分析衍射花样和计算杂质的衍射强度,可以确定杂质的种类和含量。
5.相结构和相变行为:XRD可以用于研究高分子材料的相结构和相变行为,
如晶体、非晶态和多相态的结构特点以及相变过程中的能量变化。
总之,XRD在高分子材料领域具有广泛的应用价值,可以用于研究高分子材料的结构、性能和加工过程,为高分子材料的设计、生产和应用提供重要的技术支持。
高分子材料结构分析引言高分子材料是一种由大分子聚合物组成的材料,具有重要的工业应用和科学研究价值。
了解高分子材料的结构对于研究其性质和应用具有重要意义。
本文将介绍高分子材料结构分析的方法和技术。
一、传统结构分析方法传统的高分子材料结构分析方法包括X射线衍射、核磁共振和红外光谱等。
1. X射线衍射X射线衍射是研究高分子材料结构最常用的方法之一。
通过将X射线束照射到高分子材料上,利用晶体衍射原理,在探测器上得到衍射图样。
通过解析衍射图样,可以确定高分子材料的晶体结构和晶格参数。
2. 核磁共振核磁共振是利用核磁共振现象研究高分子材料结构的方法。
通过将高分子材料置于强磁场中,利用核磁共振现象来获得高分子材料的特征谱图。
核磁共振谱图可以提供高分子材料内部原子的相对位置和化学环境的信息。
3. 红外光谱红外光谱是研究高分子材料结构的另一种重要方法。
通过将红外光照射到高分子材料上,观察材料对红外光的吸收情况。
不同的官能团对应着不同的红外光谱峰,通过对红外光谱的分析,可以确定高分子材料的结构。
二、现代结构分析方法随着科学技术的发展,现代结构分析方法在高分子材料研究中得到了广泛应用。
下面介绍几种常用的现代结构分析方法。
1. 激光拉曼光谱激光拉曼光谱是利用拉曼散射现象进行结构分析的方法。
通过将激光照射到高分子材料上,观察材料散射的拉曼光谱。
拉曼光谱提供了高分子材料的分子振动信息,可以揭示其结构和构型。
2. 原子力显微镜原子力显微镜是一种能够在原子尺度上进行观察的仪器。
利用探针扫描样品表面,根据探针和样品之间的相互作用力,得到样品表面的形貌和结构信息。
原子力显微镜可以用于观察高分子材料的微观结构和表面形态。
3. 激光光散射激光光散射是一种用于研究高分子材料结构和动力学行为的方法。
通过照射高分子材料样品,观察散射光子的散射情况,可以得到高分子材料的分子量、分子尺寸和分子链排列等信息。
三、计算模拟方法计算模拟方法是一种通过计算机建立高分子材料的模型,模拟其结构和性质的方法。
实验一-X射线衍射技术及物相分析(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--实验一 X射线衍射技术及物相分析一、实验目的与要求1.学习了解X射线衍射仪的结构和工作原理;2.掌握X射线衍射物相定性分析的方法和步骤;3.给定实验样品,设计实验方案,做出正确分析鉴定结果。
二、实验仪器本实验使用的仪器是Rigaku UltimaⅣX射线衍射仪。
主要由冷却循环水系统、X射线衍射仪和计算机控制处理系统三部分组成。
X射线衍射仪主要由X射线发生器即X射线管、测角仪、X射线探测器等构成。
射线管X射线管主要分密闭式和可拆卸式两种。
广泛使用的是密闭式,由阴极灯丝、阳极、聚焦罩等组成,功率大部分在1~2千瓦。
可拆卸式X射线管又称旋转阳极靶,其功率比密闭式大许多倍,一般为12~60千瓦。
常用的X射线靶材有W、Ag、Mo、Ni、Co、Fe、Cr、Cu等。
X射线管线焦点为1×10平方毫米,取出角为3~6度。
此X射线管为密闭式,功率为2千瓦。
X射线靶材为Cu。
选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。
2.测角仪测角仪是粉末X射线衍射仪的核心部件,主要由索拉光阑、发散狭缝、接收狭缝、防散射狭缝、样品座及闪烁探测器等组成。
(1)衍射仪一般利用线焦点作为X射线源S。
如果采用焦斑尺寸为1×10平方毫米的常规X射线管,出射角6°时,实际有效焦宽为毫米,成为×10平方毫米的线状X射线源。
(2)从S发射的X射线,其水平方向的发散角被第一个狭缝限制之后,照射试样。
这个狭缝称为发散狭缝(DS),生产厂供给1/6°、1/2°、1°、2°、4°的发散狭缝和测角仪调整用0.05毫米宽的狭缝。
(3)从试样上衍射的X射线束,在F处聚焦,放在这个位置的第二个狭缝,称为接收狭缝(RS).生产厂供给毫米、毫米、毫米宽的接收狭缝。
高分子材料的表征和性能分析高分子材料是一种复合材料,它具有很高的强度和可塑性。
它们被广泛应用于各种领域,如医疗、汽车和航空航天等。
因此,对高分子材料的表征和性能分析非常重要。
一、高分子材料的表征高分子材料的表征是指对高分子材料进行物理、化学和结构等性质的分析。
这些性质可以通过一系列的技术手段进行分析和测试。
以下是几种常用的高分子材料表征技术。
1. X射线衍射技术X射线衍射技术可以用来分析高分子材料的晶体结构和分子排列。
在X射线衍射技术中,X射线通过材料,并与材料中的原子和电子相互作用。
这些相互作用导致了衍射模式的产生。
该技术可以确定高分子材料的晶体结构和分子排列方式,以及材料的结晶度、晶体大小和形态等重要信息。
2. 热分析技术热分析技术可以用来确定高分子材料的热性质,如玻璃化转变温度、热稳定性和热分解温度等。
这些性质对于高分子材料的应用十分重要。
热分析技术包括差示扫描量热法(DSC)、热重分析法(TGA)和动态机械热分析法(DMA)等。
3. 光谱学技术光谱学技术可以用来分析高分子材料的结构和组成。
其中最常用的技术是傅里叶变换红外光谱技术(FTIR)和拉曼光谱技术。
这些技术可以提供高分子材料的分子结构、官能团和原子组成等信息。
4. 光学显微镜技术光学显微镜技术可以用来观察高分子材料的表面形态和微观结构。
这些技术包括普通光学显微镜(OM)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等。
这些技术可以提供高分子材料的表面形貌、尺寸和形态等信息。
二、高分子材料的性能分析高分子材料的性能分析主要包括力学性能、热性能和电性能等。
这些性能可以通过一系列测试和分析方法来进行评估。
1. 力学性能分析力学性能分析是对高分子材料的强度、刚度、延伸能力和韧性等性能的评估。
其中最常用的技术是拉伸试验、压缩试验、弯曲试验和冲击试验等。
通过这些试验可以确定高分子材料的拉伸模量、弹性模量、断裂强度、断裂伸长和吸收能力等性能。
本章主要内容1. X 射线介绍2. X 射线与物质的作用3. X 射线衍射仪器4. X 射线衍射分析方法5. X 射线衍射应用布拉格方程的讨论●(1)布拉格方程描述了“选择反射”的规律。
产生“选择反射”的方向是各原子面反射线干涉一致加强的方向,即满足布拉格方程的方向。
●(2)布拉格方程表达了反射线空间方位(θ)与反射晶面面间距(d)及入射线方位(θ)和波长(λ)的相互关系。
●(3)入射线照射各原子面产生的反射线实质是各原子面产生的反射方向上的相干散射线,而被接收记录的样品反射线实质是各原子面反射方向上散射线干涉一致加强的结果,即衍射线。
布拉格方程的讨论●(4)布拉格方程由各原子面散射线干涉条件导出,即视原子面为散射基元。
原子面散射是该原子面上各原子散射相互干涉(叠加)的结果。
●(5)衍射产生的必要条件●“选择反射”即反射定律+布拉格方程是衍射产生的必要条件。
●当满足此条件时有可能产生衍射;若不满足此条件,则不可能产生衍射。
●(6)衍射强度与晶体结构有关,有系统消光现象.本章主要内容1. X 射线介绍2. X 射线与物质的作用3. X 射线衍射仪器4. X 射线衍射分析方法5. X 射线衍射应用一、X-射线的性质①肉眼不能观察到,但可使照相底片感光、荧光板发光和使气体电离;②能透过可见光不能透过的物体;③这种射线沿直线传播,在电场与磁场中不偏转,在通过物体时不发生反射、折射现象,通过普通光栅亦不引起衍射;④这种射线对生物有很厉害的生理作用。
二、X-射线的产生●1.产生X-射线的方法:是使快速移动的电子(或离子)骤然停止其运动,则电子的动能可部分转变成X光能,即辐射出X-射线。
*X射线发生器的主要部件(1)阴极:钨灯,电流3-4A,加速电压5-8KV(2)阳极靶材:Cu/Mo/Ni等熔点高、导热性好的金属(3)Be窗:d=0.2mm,可透过X射线。
2.白色、特征X射线谱的产生白色X射线:“白色”的理解-连续波长;仅与加速电压有关特征X射线:“单色”;●X射线的频率由下式决定:hν=ω2 —ω1ω1和ω2为正常状态能量和受激状态能量。
●当打掉K层电子时,外层电子都可能回跃到那个空位上,回跃时产生K 系的X射线光谱。
●K系线中,Kα线相当于电子由L层过渡到K层;Kβ线相当于电子由M层过渡到K层。
Kβ线比Kα线频率要高,波长较短。
整个K系X射线波长最短。
结构分析时所采用的就是K系X射线。
eU=1/2mV2λmin=hc/eU三、X射线与物质的相互作用1.透射。
强度减弱,波长不变,方向基本不变;2.吸收。
①能量以其他能量形式释放,如光电效应、俄歇(Auger)效应、荧光效应等。
②吸收。
类似LB定律。
3.散射。
原子使X射线偏离原来方向。
①波长不变-相干散射-Thomson 散射;②有能量交换,波长变长,非相干散射-Compton散射。
X射线与物质作用除散射、吸收和通过物质外,几乎不发生折射,一般情况下也不发生反射。
*相干散射或称古典散射●当入射X光子与物质中的某些电子(例如内层电子)发生碰撞时,由于这些电子受到原子的强力束缚,光子的能量不足以使电子脱离所在能级的情况下,此种碰撞可以近似地看成是刚体间的弹性碰撞,其结果仅使光子的前进方向发生改变,即发生了散射,但光子的能量并未损耗,即散射线的波长等于入射线的波长。
此时各散射线之间将相互发生干涉,故成为相干散射。
相干散射是引起晶体产生衍射线的根源。
*不相干散射-康普顿效应●当入射X射线光子与物质中的某些电子发生碰撞时,由于这些电子结合松弛,碰撞的结果是X射线光子将一部分能量传递给电子,使电子脱离原子而形成反冲电子,同时光子本身也改变了原来的前进方向,发生了散射。
●这种散射由于各个光子能量减小的程度各不相同,即每个散射光子的波长彼此不等,因此相互不会发生干涉,故称为不相干散射。
不相干散射线的波长比入射X射线的能量小、波长大。
在X射线衍射分析中只增加连续背景,给衍射图带来不利影响。
本章主要内容1. X 射线介绍2. X 射线与物质的作用3. X 射线衍射仪器4. X 射线衍射分析方法5. X 射线衍射应用(1) X射线光源X射线发生器(2) 测角仪(goniometer)●测角仪是X射线衍射仪的核心部分。
●S-管靶焦斑M-入射光栅●P-发散狭缝DS O-测角仪中心D-样品●Q-防散射狭缝SS F-接收狭缝RS●C-计数器S-Soller狭缝●E-支架H-样品台G- 测角仪圆●样品台位于测角仪中心,样品台的中心轴与测角仪的中心轴(垂直图面)O垂直。
●样品台既可以绕测角仪中心轴转动,又可以绕自身中心轴转动。
(3) 探测与记录系统X射线衍射仪是用探测器、定标器、计数率仪及其相应的电子线路作为探测与记录系统来代替照相底片记录试样的衍射信号的。
(4) 控制系统●控制系统是利用电子计算机控制X射线衍射仪测量、记录、数据处理和打印结果的装置。
3.实验与测量方法A.样品的制备方法晶粒尺寸:粉末粒度1-5 µm注意:样品的均匀性、消除制样过程引起结构上的变化。
B.仪器实验工作参数的选择一些实验工作参数的选择对衍射图的影响是互相矛盾、互相制约的本章主要内容1. X 射线介绍2. X 射线与物质的作用3. X 射线衍射仪器4. X 射线衍射分析方法5. X 射线衍射应用1.理论依据●(1)Laue方程:●(2)Bragg方程:ue法2.回转晶体法本章主要内容1. X 射线介绍2. X 射线与物质的作用3. X 射线衍射仪器4. X 射线衍射分析方法5. X 射线衍射应用X-射线衍射分析应用物相分析-定性、定量确定物质(材料)由哪些相组成(即物相定性分析或称物相鉴定) 确定各组成相的含量(常以体积分数或质量分数表示,即物相定量分析)。
物相分析原理●X射线衍射线的位置决定于晶胞的形状和大小,也即决定于各晶面的面间距●X射线衍射线的相对强度则决定于晶胞内原子的种类、数目及排列方式●每种晶态物质都有其特有的成分和结构,不是前者有异,就是后者有别,因而也就有其独特的衍射花样●由于粉晶法在不同的实验条件下总能得到一系列基本不变的衍射数据,因此借以进行物相分析的衍射数据都取自粉晶法;●其方法就是将所得到的衍射数据(或图谱)与标准物质的衍射数据或图谱进行比较,如果两者能够吻合,这就表明样品与该标准物质是同一物相,从而便可作出鉴定。
(1)物相定性分析步骤A.制备待分析物质样品;B.用衍射仪法或照相法获得样品衍射花样;C.检索PDF卡片;D.核对PDF卡片,判定物相。
A. x射线衍射测试样品制备1.要了解样品的物理化学性质,如是否易燃、易潮解、易腐蚀、有毒、易挥发等。
2.金属样品如块状、板状、圆柱状要求磨出一个平面,面积不小于10×10毫米。
3.粉末样品要求磨成可以通过250~300目筛子的粒度,约50微米。
粒度粗大衍射强度底,峰形不好,分辨率低。
4.粉末样品要求在3克左右,如果太少也需5毫克。
5.样品可以是金属、非金属、有机、无机材料粉末,但要求提供样品主要成份。
6. 对于不同基体的薄膜样品,X射线测量的膜厚度约20个纳米。
石英独山玉x射线衍射测试结果钢铁奥氏体药物氟哌酸C. PDF卡片各种已知物相衍射花样的规范化工作于1938年由哈那瓦特(J. D. Hanawalt)开创。
他的主要工作是将物相的衍射花样特征(位置与强度)用d(晶面间距)和I(衍射线相对强度)数据组表达并制成相应的物相衍射数据卡片。
最初的1300张卡片由“美国材料试验学会(ASTM)”出版,称ASTM卡片。
1969年成立了国际性组织“粉末衍射标准联合会(JCPDS)”,由它负责编辑出版“粉末衍射卡片”,称PDF卡片。
氯化钠(NaCl)的PDF卡片D. PDF卡片索引◆为方便、迅速查对PDF卡片,JCPDS编辑出版了多种PDF卡片检索手册:◆Hanawalt无机物检查手册、Hanawalt有机相检查手册、无机相字母索引、Fink无机索引、矿物检索手册等◆检索手册按检索方法可分为两类:以物质名称为索引(即字母索引)、以d值数列为索引(即数值索引)。
字母索引◆以物相英文名称字母顺序排列。
每种相一个条目,占一横行。
◆条目的内容顺序为:物相英文名称、三强线d值与相对强度、卡片编号和参比强度号。
条目示例如下:数值索引◆以Hanawalt数字索引为例。
◆其编排方法为:一个相一个条目,在索引中占一横行,其内容依次为按强度递减顺序排列的8条强线的晶面间距和相对强度值、化学式、卡片编号和参比强度值。
条目示例如下:◆F ink数值索引与哈那瓦特数值索引相类似,主要不同的是其以八强线条的d值循环排列,每种相在索引中可出现8次。
Hanawalt法按强度排列:2.98X,2.549,2.078,1.758,2.437,3.864,1.384,1.182因此Hanawalt检索组为:A 2.98X,2.549,2.078,1.758,2.437,3.864,1.384,1.182B 2.549,2.98X,2.078,1.758,2.437,3.864,1.384,1.182C 2.078,2.98X,2.549,1.758,2.437,3.864,1.384,1.182D 1.758, 2.98X,2.549,2.078,2.437,3.864,1.384,1.182Fink法八强峰按d值大小排列为:3.864,2.98X,2.549, 2.437,2.078,1.758,1.384,1.182按强度大小排列为:2.98X,2.549,2.078,1.758,2.437,3.864,1.384,1.182因此Fink检索组为:A 2.98X,2.549, 2.437,2.078,1.758,1.384,1.182,3.864B 2.549, 2.437,2.078,1.758,1.384,1.182,3.864,2.98XC 2.078,1.758,1.384,1.182,3.864,2.98X,2.549, 2.437D 1.758,1.384,1.182,3.864,2.98X,2.549, 2.437,2.078,●上图给出的是在计算机检索程序上运行时的PDF卡片示例。
从PDF卡片上,我们可以知道试样的化学式和名称,光学性质,晶体学数据,如晶面间距,相对强度,晶体的类型,对应的hkl等。
2.多相物质分析◆多相物质相分析的方法是按上述基本步骤逐个确定其组成相。
◆多相物质的衍射花样是其各组成相衍射花样的简单叠加,这就带来了多相物质分析(与单相物质相比)的困难:◆检索用的三强线不一定局于同一相,而且还可能发生一个相的某线条与另一相的某线条重叠的现象。
◆因此,多相物质定性分析时,需要将衍射线条轮番搭配、反复尝试,比较复杂。