八年级数学试卷
- 格式:doc
- 大小:276.97 KB
- 文档页数:8
一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. 0.5B. √2C. -3D. 3/4答案:B解析:有理数是可以表示为两个整数之比的数,而√2是无理数,不能表示为两个整数之比。
2. 下列图形中,对称轴为直线y=x的是()A. 等腰三角形B. 等边三角形C. 平行四边形D. 梯形答案:B解析:等边三角形的对称轴为直线y=x。
3. 下列等式中,正确的是()A. a^2 + b^2 = (a + b)^2B. a^2 - b^2 = (a + b)(a - b)C. a^2 + 2ab + b^2 = (a + b)^2D. a^2 - 2ab + b^2 = (a - b)^2答案:B、C、D解析:根据平方差公式和完全平方公式,选项B、C、D都是正确的。
4. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = 2x^2D. y = √x答案:B解析:反比例函数的形式为y = k/x,其中k为常数。
选项B符合这个形式。
5. 下列方程中,有唯一解的是()A. 2x + 3 = 7B. 2x + 3 = 0C. 2x - 3 = 0D. 2x + 3 = 7x答案:A解析:选项A的方程为一次方程,有唯一解。
选项B、C、D的方程都至少有两个解。
二、填空题(每题5分,共25分)6. 已知a + b = 5,ab = 6,则a^2 + b^2 = __________。
答案:37解析:根据平方差公式,a^2 + b^2 = (a + b)^2 - 2ab = 5^2 - 26 = 37。
7. 已知y = kx + b,其中k和b为常数,且k < 0,b > 0,则函数图象在()A. 第一、二象限B. 第一、三象限C. 第二、三象限D. 第二、四象限答案:D解析:当k < 0时,函数图象斜率为负,因此图象在第二、四象限。
8. 已知x^2 - 5x + 6 = 0,则x的值为()A. 2B. 3C. 2或3D. 2和3答案:C解析:这是一个二次方程,可以通过因式分解或者求根公式求解。
一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √2B. πC. -1/3D. 0.1010010001…2. 已知a、b是实数,且a + b = 0,则下列选项中正确的是()A. a = 0,b ≠ 0B. b = 0,a ≠ 0C. a = b = 0D. a、b可以任意取值3. 下列各数中,绝对值最小的是()A. -5B. -4C. 0D. 14. 如果|a| = 5,那么a的值是()A. ±5B. 5C. -5D. ±105. 下列函数中,自变量的取值范围是全体实数的是()A. y = 2x + 3B. y = √xC. y = x^2 - 4x + 4D. y = 1/x6. 已知一次函数y = kx + b的图象经过点(1,2),则下列选项中正确的是()A. k = 2,b = 1B. k = 1,b = 2C. k = 2,b = 0D. k = 1,b = 17. 如果a、b是方程x^2 - 4x + 3 = 0的两个实数根,则下列选项中正确的是()A. a + b = 2B. ab = 3C. a + b = 4D. ab = 48. 在等腰三角形ABC中,AB = AC,且∠BAC = 60°,则∠B的度数是()A. 30°B. 45°C. 60°D. 90°9. 在梯形ABCD中,AD // BC,AB = CD,若ABCD的面积是S,则三角形ABD的面积是()A. S/2B. S/3C. 2S/3D. S10. 已知等边三角形ABC的边长为a,则其内切圆半径r是()A. a/3B. a/2C. √3/2aD. √3/3a二、填空题(每题5分,共25分)11. 如果a = -3,b = 2,那么a^2 - 2ab + b^2的值是______。
12. 若实数x满足不等式2x - 1 > 0,则x的取值范围是______。
一、选择题(每题3分,共30分)1. 下列数中,有理数是()A. √9B. √-1C. πD. √0.252. 已知a=3,b=-2,则a-b的值是()A. 5B. -5C. 1D. -13. 下列函数中,自变量的取值范围是全体实数的是()A. y=2x+1B. y=√(x-1)C. y=|x|D. y=x²4. 已知三角形的三边长分别为3,4,5,则这个三角形是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 梯形5. 若a²=4,则a的值为()A. ±2B. ±4C. ±1D. ±36. 下列方程中,解为x=2的是()A. 2x-1=3B. 2x+1=3C. 2x-1=1D. 2x+1=17. 下列图形中,属于圆的是()A. 正方形B. 等边三角形C. 梯形D. 圆8. 下列不等式中,正确的是()A. 3x > 2xB. 3x < 2xC. 3x ≤ 2xD. 3x ≥ 2x9. 已知函数y=2x+1,当x=0时,y的值为()A. 1B. 2C. 0D. -110. 下列命题中,正确的是()A. 所有的偶数都是整数B. 所有的整数都是偶数C. 所有的质数都是合数D. 所有的合数都是质数二、填空题(每题3分,共30分)11. 若a=5,b=-3,则a+b的值为______。
12. 已知函数y=3x-2,当x=4时,y的值为______。
13. 在直角三角形中,若一个锐角为30°,则另一个锐角为______°。
14. 若一个数的平方等于9,则这个数是______。
15. 下列数中,无理数是______。
16. 下列方程中,解为x=3的是______。
17. 若一个圆的半径为r,则这个圆的周长是______。
18. 下列图形中,属于正方形的是______。
19. 下列不等式中,正确的是______。
一、选择题(每题4分,共40分)1. 若a=3,b=2,则a²+b²的值为()A. 13B. 5C. 7D. 112. 在直角三角形ABC中,∠C=90°,∠A=30°,则∠B的度数为()A. 60°B. 30°C. 45°D. 90°3. 若x²-6x+9=0,则x的值为()A. 3B. 2C. 1D. 04. 下列函数中,y是x的二次函数的是()A. y=x²-2x+1B. y=x²-2C. y=2x²D. y=x²+2x5. 下列图形中,面积最大的图形是()A. 正方形B. 矩形C. 等腰梯形D. 平行四边形6. 若x²-5x+6=0,则x的值为()A. 2B. 3C. 4D. 67. 在直角坐标系中,点A(-2,3)关于y轴的对称点为()A.(2,3)B.(-2,-3)C.(-2,3)D.(2,-3)8. 下列数中,不是有理数的是()A. 0.5B. -1/2C. √2D. 3/49. 下列图形中,周长最小的图形是()A. 正方形B. 矩形C. 等腰梯形D. 平行四边形10. 若a²=4,b²=9,则a+b的值为()A. 5B. -5C. 13D. -13二、填空题(每题4分,共40分)11. 若x²-5x+6=0,则x的值为______。
12. 在直角三角形ABC中,∠C=90°,∠A=30°,则AB的长度为______。
13. 下列函数中,y是x的一次函数的是______。
14. 若a=3,b=-2,则a²+b²的值为______。
15. 在直角坐标系中,点A(2,-3)关于x轴的对称点为______。
16. 下列数中,不是无理数的是______。
17. 若x²-2x+1=0,则x的值为______。
八年级数学试卷篇一:八年级数学综合测试题数学测试题(九)班级:姓名:分数:一、选择题:(每小题5分,共30分)1.若代数式某1某某21某3有意义,则某的取值范围是()A、某2B、某2且某3C、某3D、某2,某3且某12.化简(某242某某24某4某2)某某2,其结果是()A、8某2B、8某2C、8某2D、8某23.已知函数yk某中,某0时,y随某的增大而增大,则yk某k的大致图象是()4.已知ABC中,AB=17,AC=10,BC边上的高AD为8,则边BC的长为()A、21B、15C、6D、21或95.如图,自矩形ABCD的顶点C作CEBD,E为垂足,延长EC至F,使CF=BD,连接AF,则BAF的大小是()A、30oB、45oC、48oD、60o5题图6题图6.在梯形ABCD中,AD//BC,B与C互余,E、F分别是AD、BC的中点,AD=EF=1,则BC的长为()A、2B、3C、4D、5二、填空题(每小题5分,共30分)7.若某1某4,则某2某4某28.已知abc1,则aaba1bbcb1ccac19.关于某的分式方程m某12某13某21CD=23,AB=2,BC=33,则四边形ABCD的周长为三、解答题:(每小题10分,共60分)13.已知某y某y2,某z某z3,yzyz4,求某yyzz某的值。
14.已知非负数a、b、c满足a3b2c3与3a3bc4,k3a2b4c,指出y(k1)某k7的图象所在的象限。
15.求某24某216某80的最小值。
16.如图,在□ABCD中,BC=2AB,AE=AB=BF,且点E、F在直线AB 上。
求证:CEDF。
17.如图,已知五边形ABCDE中,ABC=AED=90o,BAC=EAD,F是CD 的中点。
求证:BF=EF。
18.如图,在梯形ABCD中,AB//DC,DC=2AB=2AD,BD=6,BC=4。
求梯形ABCD的面积。
数学测试题(一)班级____________姓名____________分数__________一、选择题(每小题5分,共30分)1.计算4某62某42某42某3某1的结果是()A、5某2B、5某2C、5某4D、5某42.关于某3的不同实数解共有()A、1个B、2个C、3个D、无数个3.若m,n,p都是大于1的自然数,且mp12348n,则m的最小值为()A、24B、42C、294D、74.如图,ABC中,ADBC于D,BEAC于E,AD与BE相交于点F,若BF=AC,则ABC的大小为()A、40B、45C、50D、605.已知点(m,n)在第二象限,则直线ym某n不经过()CA、第一象限B、第二象限C、第三象限D、第四象限6.设某,y,z都为实数,且某yz,a某2yz,by2某z,cz2某y,则对a,b,c的判断正确的是()A、都大于或等于0B、都不大于0C、至少有一个大于0D、至少有一个小于0二、填空题(每小题5分,共30分)7.772022882022的个位数是______________。
八年级数学试卷可打印一、选择题(每题3分,共30分)1. 下列二次根式中,最简二次根式是()A. √(4)B. √(8)C. √(frac{1){2}}D. √(5)2. 若√(x - 1)在实数范围内有意义,则x的取值范围是()A. x > 1B. x ≥ 1C. x < 1D. x ≤ 13. 下列计算正确的是()A. √(2)+√(3)=√(5)B. √(2)×√(3)=√(6)C. √(8)=4√(2)D. √(4)-√(2)=√(2)4. 已知直角三角形的两条直角边分别为3和4,则斜边为()A. 5B. 6C. 7D. 8.5. 平行四边形ABCD中,若∠ A = 50^∘,则∠ C的度数为()A. 40^∘B. 50^∘C. 130^∘D. 150^∘6. 下列各组数中,能作为直角三角形三边长度的是()A. 1,2,3B. 2,3,4C. 3,4,5D. 4,5,6.7. 对于一次函数y = 3x - 1,下列结论正确的是()A. 图象经过第一、二、三象限。
B. y随x的增大而减小。
C. 当x = 1时,y = 2D. 图象与y轴的交点坐标为(0,1)8. 一次函数y = kx + b(k≠0)的图象经过点(0, - 2)和(3,0),则这个一次函数的表达式为()A. y=(2)/(3)x - 2B. y=(3)/(2)x - 2C. y = 2x - 3D. y = 2x - 29. 若菱形的两条对角线长分别为6和8,则菱形的面积为()A. 12B. 24C. 36D. 48.10. 已知正方形的边长为4,则它的对角线长为()A. 4√(2)B. 8C. 2√(2)D. 4√(3)二、填空题(每题3分,共15分)11. 计算:√(12)-√(3)=______。
12. 若一次函数y = kx + 3的图象经过点(1,4),则k =______。
13. 在平行四边形ABCD中,若AB = 5,BC = 3,则平行四边形ABCD的周长为______。
一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -2B. -1.5C. 0D. 1.22. 下列各式中,正确的是()A. 3a = 3a^2B. 3a^2 = 9aC. 3a = 9a^2D. 3a^2 = 3a3. 如果x + y = 7,x - y = 3,那么x的值是()A. 5B. 4C. 3D. 24. 下列各数中,有理数是()A. √9B. √16C. √25D. √365. 已知一元二次方程ax^2 + bx + c = 0(a ≠ 0)的解为x1和x2,那么x1 + x2的值是()A. -b/aB. b/aC. bD. a6. 在直角坐标系中,点A(-3,4)关于原点的对称点是()A.(3,-4)B.(-3,-4)C.(4,-3)D.(-4,3)7. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 3/xC. y = x^2D. y = √x8. 下列各数中,无理数是()A. √2B. √4C. √9D. √169. 下列各式中,正确的是()A. 3a^2 = 9aB. 3a = 9a^2C. 3a^2 = 3aD. 3a = 3a^210. 如果x + y = 5,xy = 6,那么x^2 + y^2的值是()A. 25B. 26C. 27D. 28二、填空题(每题3分,共30分)11. -3的平方根是________,-3的立方根是________。
12. 若a = 2,则a^2 + a + 1的值是________。
13. 已知一元二次方程2x^2 - 3x + 1 = 0的解为x1和x2,那么x1 x2的值是________。
14. 在直角坐标系中,点B(3,-2)关于x轴的对称点是________。
15. 下列函数中,y = 2x - 1的图象是一条________。
16. 若a > b,那么a - b的值是________。
可编辑修改精选全文完整版八年级数学下册期末试卷(附含答案)(满分:120分;考试时间:120分)一、选择题(共10小题,每小题3分,满分30分) 1、使1x -有意义的x 的取值范围是( )A x >1B x >-1C x ≥1D x ≥-1 2、在根式xy 、12、2ab 、x y -、2x y 中,最简二次根式有( )A 1个B 2个C 3个D 4个 3、下列计算正确的是( )A 20210=B 5630⨯=C 2236⨯=D 2(3)3-=- 4、一元二次方程x (x-2)=2-x 的根式( )A -1B 2C 1和2D -1和2 5、下列命题中,真命题的个数有( )①对角线互相平分的四边形是平行四边形; ②两组对角分别相等的四边形是平行四边形; ③一组对边平行,另一组对边相等的四边形是平行四边形;A 3个B 2个C 1个D 0个 6、在△ABC 中,三边长分别为a 、b 、c ,且a+c=2b ,c-a=12b ,则△ABC 是( )A 直角三角形B 等边三角形C 等腰三角形D 等腰直角三角形 7、某公司为了解职工参加体育锻炼情况,对职工某一周平均每天锻炼 (跑步或快走)的里程进行统计(保留整数),并将他们平均每天锻炼 的里程数据绘制成扇形统计图,关于他们平均每天锻炼里程数据 下列说法不正确的是( )A 平均每天锻炼里程数据的中位数是2B 平均每天锻炼里程数据的众数是2C 平均每天锻炼里程数据的平均数是2.34D 平均每天锻炼里程数不少于4km 的人数占调查职工的20% 8、疫情期间居民为了减少外出时间,更愿意使用APP 在线上购物,某购物APP 今年二月份用户比一月份增加了44%,三月份用户比二月份增加了21%,则二、三两个月用户的平均每月增长率是( )A 28%B 30%C 32%D 32.5% 9、有两个一元二次方程:M :ax 2+bx+c=0,N :cx 2+bx+a=0,以下四个结论中,错误的是( ) A 如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根 B 如果方程M 有两根符号相同,那么方程N 也有两根符号相同 C 如果5是方程M 的一个根,那么15是方程N 的一个根D 如果方程M和方程N有一个相同的实数根,那么这个跟必是x=110、△ABC中,∠C=30°,AC=6,BD是△ABC的中线,∠ADB=45°,则AB=()二、填空题(共6小题,每小题3分,满分18分)11的结果是12、已知关于x的一元二次方程x2-bx+8=0,一个根为2,则另一个根是13、有一棵9米高的大树,如果大树距离地面4米处这段(没有断开),则小孩至少离开大树米之处才是安全的。
黔东南州2023—2024学年度第二学期期末文化水平测试八年级数学试卷同学你好!答题前请认真阅读以下内容:1.本卷为数学试题卷,全卷共6页,三大题25小题,满分150分,考试时间为120分钟.2.一律在《答题卡》相应位置作答,在试题卷上答题视为无效.3.不能使用计算器.一、选择题:以下每小题均有A、B、C、D、四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每题3分,共36分.1)A.4B.-4C.8D.2.下列计算中,正确的是A.B.CD3.某学校在6月6日全国爱眼日当天,组织学生进行了视力测试.小红所在的学习小组每人视力测试的结果分别为:5.0,4.8,4.5,4.8,4.6,这组数据的众数和中位数分别为()A.4.8,4.74B.4.8,4.5C.5.0,4.5D.4.8,4.84.下列函数中,是正比例函数的是()A.B.C.D.5.如图,平地上、两点被池塘隔开,测量员在岸边选一点,并分别找到和的中点、,测量得米,则、两点间的距离为()A.30米B.32米C.36米D.48米6.下列曲线中,不能表示是的函数的是()A.B.C.D.7.若,且,则函数的图象可能是()4±2-=3==5= 23y x=5y x=6yx=1y x=-A B C AC BC D E16DE=A By xkb<k b<y kx b=+A .B .C .D .8.如图,在平面直角坐标系中,已知点,,以点为圆心,长为半径画弧,交轴的正半轴于点,则点的坐标是()A .B .C .D .9.下列命题中:①对角线垂直且相等的四边形是正方形;②对角线互相垂直平分的四边形为菱形;③一组对边平行,另一组对边相等的四边形是平行四边形;④若顺次连接四边形各边中点得到的是矩形,则该四边形的对角线相等.是真命题的有( )A .1个B .2个C .3个D .4个10.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形、、、的面积分别为2、5、1、2.则最大的正方形的面积是()A .5B .10C .15D .2011.如图,在中,对角线,相交于点,若,,,则的长为()A .8B .9C .10D .1212.如图1,将正方形置于平面直角坐标系中,其中边在轴上,其余各边均与坐标轴平行,直线沿轴的负方向以每秒1个单位长度的速度平移,在平移的过程中,该直线被正方形的边所截得的线段长为,平移的时间为(秒),与的函数图象如图2所示,则图2中的值为()(0,0)O (1,3)A O OA x BB(3,0)A B C D E ABCD AC BD O 90ADB ∠=︒6BD =4AD =ACABCD AD x :3l y x =-x ABCD m t m t bA .B .C .D .二、填空题:每小题4分,共16分.13的取值范围是______.14.某校学生期末美术成绩满分为100分,其中课堂表现占,平时绘画作业占,期末手工作品占,小花的三项成绩依次为90,85,95,则小花的期末美术成绩为______分.15.已知甲、乙两地相距,,两人沿同一公路从甲地出发到乙地,骑摩托车,骑电动车,图中,分别表示,两人离开甲地的路程与时间的关系图象.则两人相遇时,是在出发后______小时.16.在矩形中,点,分别是,上的动点,连接,将沿折叠,使点落在点处,连接,若,,则的最小值为______.三、解答题:本大题9小题,共98分.17.(8分)计算:(1)(2)18.(10分)如图,每个格子都是边长为1的小正方形,,四边形的四个顶点都在格点上.(1)求四边形的周长;(2)连接,试判断的形状,并求四边形的面积.x 30%50%20%90km A B A B DE OC A B (km)S (h)t B ABCD E F AB AD EF AEF △EF A P BP 2AB =3BC =BP 90ABC ∠=︒ABCD ABCD AC ACD △ABCD19.(10分)如图,在平行四边形中,点是边的中点,的延长线与的延长线相交于点.(1)求证:;(2)连接、,试判断四边形的形状,并证明你的结论.20.(12分)2024年4月30日,“神舟十七号”载人飞船成功着陆,激发了同学们的爱国热情.某校为了解七、八年级学生对“航空航天”知识的掌握情况,对七、八年级学生进行了测试,此次“航空航天”知识测试采用百分制,并规定90分及以上为优秀;80~89分为良好;60~79分为及格;59分及以下为不及格.现从七、八年级各随机抽取20名学生的测试成绩,并将数据进行以下整理与分析.①抽取的七年级20名学生的成绩如下:57 58 65 67 69 69 77 78 79 81838788898994969797100②抽取的七年级20名学生的成绩的频数分布直方图如图1所示,数据分成5组:,,,,)③抽取的八年级20名学生的成绩的扇形统计图如图2所示.④七、八年级各抽取的20名学生成绩的平均数、中位数、方差如下表所示.年级平均数中位数方差七年级81167.9八年级8281106.3请根据以上信息,解答下列问题.(1)______,______.并补全抽取的七年级20名学生的成绩的频数分布直方图.(2)目前该校七年级学生有300人,八年级学生有200人,估计两个年级此次测试成绩达到优秀的学生总人数.(3)从平均数和方差的角度分析,你认为哪个年级的学生成绩较好?请说明理由.21.(10分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°为30°.已知原传送带长为.(1)求新传送带的长度;(2)若需要在货物着地点的左侧留出2m 的通道,试判断和点相距5m (即)的货物是否需要挪走,并说明理由.)ABCD E AD BE CD F ABE DFE △≌△BD AF ABDF 5060x ≤<6070x ≤<7080x ≤<8090x ≤<90100x ≤≤aa =m =AB AC C B 5PB =MNQP 1.4≈ 1.7≈22.(12分)某小型企业获得授权生产甲、乙两种奥运吉祥物,生产每种吉祥物所需材料及所获利润如下表:种材料种材料所获利润(元)每个甲种吉祥物0.30.510每个乙种吉祥物0.60.220该企业现有种材料,种材料,用这两种材料生产甲、乙两种吉祥物共2000个.设生产甲种吉祥物个,生产这两种吉祥物所获总利润为元.(1)求出(元)与(个)之间的函数关系式,并求出自变量的取值范围;(2)该企业如何安排甲、乙两种吉祥物的生产数量,才能获得最大利润?最大利润是多少?23.(12分)如图,在矩形中,延长到,使,延长到,使,连接.(1)求证:四边形是菱形;(2)连接,若,,求的长.24.(12分)如图,在平面直角坐标系中,一次函数的图象与轴交于点,与轴交于点,且与正比例函数的图象的交点为.(1)求一次函数的解析式;(2)根据图像直接写出:当时,的取值范围.(3)一次函数的图象上有一动点,连接,当的面积为5时,求点的坐标.25.(12分)在正方形中,点是线段上的动点,连接,过点作(点在直线的下方),且,连接.A ()2m B ()2m A 2900m B 2850m x y y x x ABCO AO D DO AO =CO E EO CO =AE ED DC CA 、、、AEDC EB 4AE =60AED ∠=︒EB xOy 1y kx b =+x (3,0)A -y B 243y x =(,4)C m 1y kx b =+12y y >x 1y kx b =+P OP OPC △P ABCD E AB DE D DF DE ⊥F DE DF DE =EF(1)【动手操作】在图①中画出线段,;与的数量关系是:______;(2)【问题解决】利用(1)题画出的图形,在图②中试说明,,三点在一条直线上;(3)【问题探究】取的中点,连接,利用图③试求的值.黔东南州2023-2024学年度第二学期期末考试八年级数学参考答案一、选择题123456789101112ACDBBADAABCA二、填空题13、14、88.515、1.816、三、解答题17.(8分)(1)解:原式(2)解:原式18.(10分)解:(1),,,,(2),,,,,∴,∴△ACD 是直角三角形,19.(10分)(1)四边形ABCD 是平行四边形,AB //CDAB //CF ,ABE =∠DFE ,E 是边AD 的中点,AE =DEDF EF ADE ∠CDF ∠B C F EF P CP CPBE2≥x 313-4=-+432+===4=AB 3=BC 54322=+=CD 257122=+=AD 251225534+=+++=ABCD C 四边形5=AC 5=CD 25=AD 5022=+CD AC 502=AD 222AD CD AC =+2136225=-=-=ABC ACD ABCD S S S △△四边形 ∴∴∴∠ ∴在△ABE 与△DFE 中,△ABE ≌△DFE (AAS )(2)四边形ABDF 是平行四边形,如图:由(1)得:△ABE ≌△DFE ,则BE =EFBE = EF ,AE =ED ,四边形ABDF 是平行四边形20.(12分)(1)82;30(2)七年级优秀人数人,八年级优秀人数人75+60=135人,答:两个年级此次测试成绩达到优秀的学生总人数为135人.(3)八年级学生的成绩较好.理由:八年级学生成绩的平均数较大,而且方差较小,说明平均成绩较高,并且波动较小,所以八年级学生的成绩较好.21.(10分)(1),∴AD =BD ,∴解得:AD =4,在Rt △ACD 中∵∠ACD =30°,∴AC =2AD =8(2)货物MNQP 不需要挪走.理由:在Rt △ABD 中,BD =AD =4(米).在Rt△ACD 中,2.2>2∴货物MNQP 不需要挪走.22.(12分)AE DE ABE FAEB DEF =∠=∠∠=∠⎧⎪⎨⎪⎩∴ ∴75205300=⨯6030200=⨯%︒=∠45ABD ABD Rt 中,△在()222242==AB AD 2.28.258.24343422≈-≈-=∴≈-=-=∴=-=CB PB PC BD CD CB AD AC CD(1)解:根据题意得,,由题意,解得:,自变量的取值范围是,且是整数;(2)由(1),,随的增大而减小,又且是整数,当时,有最大值,最大值是(元),生产甲种吉祥物个,乙种吉祥物个,所获利润最大,最大为元.23.(12分)(1)证明:∵四边形是矩形,∴,∴,即,∵,,∴四边形是菱形.(2)解:连接,如图:∵四边形是菱形,,∴,∵,∴,∴,∴,∵四边形是矩形,∴,,∴.24.(12分)解(1)把,,∴C (3,4)把A (-3,0),C (3,4)代入得,解得∴解析式是()10202000y x x =+-1040000y x ∴=-+()()0.30.620009000.50.22000850x x x x +-≤⎧⎪⎨+-≤⎪⎩10001500x ≤≤∴x 10001500x ≤≤x 1040000y x =-+100k =-< y ∴x 10001500x ≤≤x ∴1000x =y 1010004000030000-⨯+=∴1000100030000ABCO =90AOC ∠︒AO OC ⊥AD EC ⊥DO AO =EO CO =AEDC EB AEDC 60AED ∠=︒30AEO ∠=︒904AOE AE ∠=︒=,122OA AE ==EO ===2CE EO ==ABCO 2BC OA ==90BCE ∠=︒EB ===()x y m C 3442=代入,443m =3m =b kx y +=13034k b k b -+=⎧⎨+=⎩232k b ⎧=⎪⎨⎪=⎩2321+=x y(2)<3(3)设点P ,∵B (0,2),C (3,4),所以或25.(12分)(1)如图,∠ADE =∠CDF(2)证明:如图②,连接CF .∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =,即∠ADE+∠EDC=,∵∠EDF =,即∠EDC+∠CDF=,∴∠ADE=∠CDF ∵DE =DF ,∴△ADE ≌△CDF ,∠DAE=∠DCF=∴∠BCD+∠DCF=,即B ,C ,F 三点在一条直线上(3)连接PB ,PD .在Rt △EDF 和Rt △EBF 中∵P 是斜边EF 的中点,∴x ⎪⎭⎫ ⎝⎛+232,m m 232-⋅=∴m S OPC △2,821-==m m ⎪⎭⎫ ⎝⎛-32,21P ⎪⎭⎫⎝⎛322,82P 90 90 90 90 90 180EF PB PD 21==又∵BC =DC ,PC =PC ,∴△BCP ≌△DCP ∴∠BCP=∠DCP=取BF 的中点P ,连接PG ,则PG ∥EB .∴∠PGF=∠EBF=,∴△PGC 是等腰直角三角形.设PG =x ,则CP =,BE =2x ,∴4521=∠BCD 90x 22222==x x BE CP。
八年级数学试卷一.选择题(共8小题,每小题3分,共24分)) 1. 下列计算准确的是 【 】A .632632x x x =⋅ B .330x x ÷= C .()33326xy x y = D .()m m mx x x =÷232.在实数3140.5180.67327233π••----,,,,,,中,无理数的个数是【 】A .1B .2C .3D .43.已知等腰三角形两边长是8cm 和4cm ,那么它的周长是【 】A.12cmB.16cmC.16cm 或20cmD.20cm4.已知∠AOB ,求作射线OC ,使OC 平分∠AOB ,那么作法的合理顺序是【 】 ①作射线OC ; ②在射线OA 和OB 上分别截取OD 、OE ,使OD=OE ; ③分别以D 、E 为圆心,大于12DE 的长为半径在∠AOB 内作弧,两弧交于点C. A.①②③ B. ②①③ C. ②③① D. ③①②5.在平面直角坐标系中,□ABCD 的顶点A (0,0),B (5,0),D (2,3),则顶点C 的坐标是【 】A 、(3,7)B 、(5,3)C 、(7,3)D 、(8,2) 6.若y=(a+1)x a2-2是反比例函数,则a 的取值为( ) A .1 B .-l C .±l D .任意实数 7.如图,在平行四边形ABCD 中,AD=2AB ,CE 平分∠BCD 交AD 边于点E , 且AE =3,则AB 的长为【 】A .4B .3C . 52D .2 8.如图,将一个长为,宽为的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为【 】 A . B . C .D .二.填空题(共7小题,每小题3分,共21分)9.计算:()011221---+⎪⎭⎫ ⎝⎛-π= _ _ ______.10. 长度单位1纳米910-=米,当前发现一种新型病毒直径为23150纳米,用科学记数法表示该病毒直径是 米(保留两个有效数字)。
11. ﹣的立方根是 _________ .…………………密……………封……………线……………内……………不……………准……………答……………题……………………班 级____________ 姓 名____________ 考 号_____(第4题)12.在平行四边形ABCD 中,∠B-∠A=20°,则∠D 的度数是 _________ .13.已知关于x 的方程422=+-x mx 的解是负数,则m 的取值范围为___ ______. 14.如图,在AOB ∆Rt 中,点A 是直线m x y +=与双曲线xmy =在第一象限的交点,且2=∆AOB S ,则m 的值_____.(第14题) (第15题)15. 如上图,正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图方式放置,点A 1、A 2、A 3…和点C 1、C 2、C 3…分别在直线()0>+=k b kx y 和x 轴上。
已知点B 1(1,1)、B 2(3,2),那么点A 4的坐标为 _________ ,点A n 的坐标为 _________ .三.解答题(共8小题,65分) 16.(8分)先化简:,并从0,﹣1,2中选一个合适的数作为a 的值代入求值. 17.(9分)如图,在正方形网络中,△ABC 的三个顶点都在格点上,点A 、B 、C 的坐标分别为(-2,4)、(-2,0)、(-4,1),结合所给的平面直角坐标系解答下列问题: (1)画出△ABC 关于原点O 对称的△A 1B 1C 1.(2)平移△ABC ,使点A 移动到点A 2(0,2),画出平移后的△A 2B 2C 2并写出点B 2、C 2的坐标.(3)在△ABC 、△A 1B 1C 1、△A 2B 2C 2中,△A 2B 2C 2与 成中心对称,其对称中心的坐标为 . 18.(9分)如图,点B 在AD 上,AC =CB ,CD =CE ,∠ACB =∠DCE =90°.试判断线段AD 和BE 的大小和位置关系,并给予证明.(第18题)ADC BE19.(9分)佳佳果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完.因为水果畅销,第二次购买时,每千克的进价比第一次提升了10%,用1452元所购买的数量比第一次多20千克,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.(1)求第一次水果的进价是每千克多少元?(2)该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?20.(9分)如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(﹣4,0).(1)求经过点C的反比例函数的解析式;(2)设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.21.(9分)某学生用品商店,计划购进A、B两种背包共80件实行销售,购货资金很多于2090元,但不超过2096元,两种背包的成本和售价如下表:种类成本(元/件)售价(元/件)A 25 30B 28 35假设所购两种背包可全部售出,请回答下列问题:⑴该商店对这两种背包有哪几种进货方案?⑵该商店如何进货获得利润最大?⑶根据市场调查,每件B种背包的市价不会改变,每件A种背包的售价将会提升a元(0a ),该商店又将如何进货获得的利润最大?22.(10分)如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段AB上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线AC段于E.(1)当∠BDA=115°时,∠BAD=°, ∠DEC=°点D从B向C运动时,∠BDA 逐渐变(填“大”或“小”);;(2)当DC等于多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状能够是等腰三角形吗?若能够,请直接写出∠BDA 的度数.若不能够,请说明理由.23.(11分)如图,在等腰梯形ABCD中,AD∥BC,AB=DC=50,AD=75,BC=135.点P从点B 出发沿折线段BA﹣AD以每秒5个单位长的速度向点D匀速运动;点Q从点C出发沿线段CB 方向以每秒3个单位长的速度向点B匀速运动;点P、Q同时出发,当点P与点D重合时停止运动,点Q也随之停止,设点P的运动时间为t秒.(1)点P到达点A、D的时间分别为_________ 秒和_________ 秒;(2)当点P在BA边上运动时,过点P作PN∥BC交DC 于点N,作PM⊥BC,垂足为M,连接NQ,已知△PBM与△NCQ全等.①试判断:四边形PMQN是什么样的特殊四边形?答:_________ ;②若PN=3PM,求t的值;(3)当点P在AD边上运动时,是否存有PQ=DC?若存有,请求出t的值;若不存有,请说明理由.第26题图数学试卷参考答案一.选择题1. D.2.C 3.D 4.C 5.C 6.A 7.B 8.A 二.填空题9. 3 10. 2.3×10-5 11 .-2 12. 100° 13. m -8且m≠-4 14.4 15. (7,8)(2n-1-1,2n-1)三.解答题16.解:=×,=×=﹣,当a=0时,原式=1.17.解:(1)△ABC关于原点O对称的△A1B1C1如图所示:(2)平移后的△A2B2C2如图所示:点B2、C2的坐标分别为(0,-2),(-2,-1)。
(3)△A1B1C1;(1,-1)。
(第18题)A DCBE18.解:AD =BE ,A D ⊥BE . 可证:△ACD ≌△BCE (SAS ).得出AD =BE ,A D ⊥BE .19.解:(1)设第一次购买的单价为x 元,则第二次的单价为1.1x 元, 根据题意得:﹣=20,解得:x=6,经检验,x=6是原方程的解,(2)第一次购水果1200÷6=200(千克). 第二次购水果200+20=220(千克). 第一次赚钱为200×(8﹣6)=400(元).第二次赚钱为100×(9﹣6.6)+120×(9×0.5﹣6×1.1)=﹣12(元). 所以两次共赚钱400﹣12=388(元),答:第一次水果的进价为每千克6元,该老板两次卖水果总体上是赚钱了,共赚了388元.20.解:⑴ 购A 种背包x 件,则20902528(80)2096x x +-≤≤.解得4850x ≤≤.有3种方案:A 48、B 32;A 49、B 31;A 50、B 30.⑵ 利润57(80)2560w x x x =+-=-+.当A 48、B 32时,248560464w =-⨯+=最大(元); ⑶ (5)7(80)(2)560w a x x a x =++-=-+.当2a >时,采用A 50、B 30;当2a =时,均可采用;当02a <<时,采用A 48、B 32.21.解:(1)由题意知,OA=3,OB=4 在Rt △AOB 中,AB=∵四边形ABCD 为菱形 ∴AD=BC=AB=5, ∴C (﹣4,5).设经过点C 的反比例函数的解析式为,∴,k=20∴所求的反比例函数的解析式为.(2)设P (x ,y ) ∵AD=AB=5,407070EABC4010040EABC∴OA=3, ∴OD=2,S △=即,∴|x|=, ∴当x=时,y=,当x=﹣时,y=﹣∴P ()或().22.解(1) 25°; 115°; 小 (2)当DC=2时,△ABD ≌△DCE ,理由如下: ∵ DC=2,AB=2 ∴ DC=AB∵ AB=AC, ∠B=40° ∴ ∠B=∠C=40° ∵ ∠ADB=∠DAC+∠C ∠DEC=∠DAC+∠ADE 且∠C=40°,∠ADE=40° ∴ ∠ADB=∠DEC 。
在△ABD 与△DCE 中 ∵ ∠B=∠C∠ADB=∠DECDC=AB ∴△ABD ≌△DCE (AAS )(3)有如图两种情况Ⅰ ∠BDA=110°Ⅱ ∠BDA=80°第22题图23.解:(1)10和25;(2)①矩形②依题意可得:BP=5t,CQ=3t,BM=CQ=3t∴MQ=BC﹣2CQ=135﹣6t∵四边形PMQN是矩形∴PN=MQ=135﹣6t∵PM⊥BC∴∠PMB=90°根据勾股定理,得:,∵PN=3PM,135﹣6t=3×4t解得:t=7.5;(3)当点P在AD上(即10≤t≤25)时,存有PQ=DC.有下列两种情况:①如图1,当PQ∥DC时,∵PD∥QC∴四边形PQCD是平行四边形∴PQ=DC,PD=QC此时135﹣5t=3t解得:;②如图2,当PQ∥AB时,∵AP∥BQ∴四边形ABQP是平行四边形∴AP=BQ即:5t﹣50=135﹣3t解得:.综上所述,当点P在AD边上运动时,存有PQ=DC,或。