爆破安全距离
- 格式:doc
- 大小:195.00 KB
- 文档页数:5
爆破安全距离集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#5 爆破安全距离为了保证爆破地点附近人员、机械和建筑物、构筑物的安全,必须根据爆破产生的各种危害作用确定安全距离。
5.1 爆破地震作用安全距离1)一般建筑物和构筑物的爆破地震安全性应满足安全震动速度的要求,主要类型的建(构)筑物地面质点的安全震动速度规定如下:重要工业厂房0.4cm/s;土窑洞、土坯房、毛石房屋1.0cm/s;一般砖房、非抗震的大型砌块建筑物2~3cm/s;钢筋混凝土框架房屋5cm/s;水工隧洞10cm/s;交通隧洞15cm/s;矿山巷道:围岩不稳定有良好支护10cm/s;围岩中等稳定有良好支护15cm/s;围岩稳定无支护20cm/s。
2)爆破地震安全距离可按下式计算:在特殊建(构)筑物附近或爆破条件复杂地区进行爆破时,必须进行必要的爆破地震效应监测或专门试验,以确定被保护物的安全性。
5.2 爆破冲击波安全距离露天煤矿应尽量避免裸露爆破,露天裸露爆破矿山爆破安全距离爆破时,必然产生爆破地震、空气冲击波、碎石飞散及有害气体,因而危及爆区附近人员、设备、建筑物及井巷等的安全。
因此,爆破设计时必须确定爆破危害范围并指定安全距离。
主要有以下几个方面:1.爆破地震安全距离炸药在岩体中爆炸后,在距爆源一定距离的范围内,岩体产生弹性震动波,即是爆破地震。
爆破作业地震强度主要与炸药量、爆源距离、岩石特性、爆破条件和方法以及地质地形条件有关。
《爆破安全规程》规定“一般建筑物和构筑物的爆破地震安全性应满足安全振动速度的要求”,并规定了建(构)筑物地面质点振动速度控制标准。
2.爆破空气冲击波的安全距离空气冲击波的安全距离主要依据以下几个方面来确定:对地面建筑物的安全距离,空气冲击波超压值计算和控制标准,爆破噪声,空气冲击波的方向效应与大气效应。
控制空气冲击波的方法主要有:(1)避免裸露爆破,特别是在居民区更需特别重视,导爆索要掩埋20em或更多,一次爆破孔间延迟不要太长,以免前排带炮使后排变成裸露爆破。
爆破安全距离一、一般规定各种爆破、爆破器材销毁以及爆破器材仓库意外爆炸时,爆炸源与人员和其他保护对象之间的安全距离,应按各种爆破效应(地震、冲击波、个别飞散物等)分别核定并取最大值。
二、爆破地震安全距离(一)一般建筑物和构筑物的爆破地震安全性应满足安全震动速度的要求,主要类型的建(构)筑物地面质点的安全震动速度规定如下:1、土窑洞、土坯房、毛石房屋 1.0 cm/s2、一般砖房、非抗震的大型砌块建筑物 2~3 cm/s;3、钢筋混凝土框架房屋5 cm/s;4、水工隧洞 10 cm/s;5、交通隧洞 15 cm/s;6、矿山巷道:围岩不稳定有良好支护 10 cm/s;围岩中等稳定有良好支护 20 cm/s;围岩稳定无支护 30 cm/s;(二)爆破地震安全距离可按式(1)计算式中:R—爆破地震安全距离,m;Q—炸药量,kg;齐发爆破取总炸药量;微差爆破或秒差爆破取最大一段药量;V—地震安全速度,cm/s;m—药量指数,取1/3;K、α—与爆破点地形、地质等条件有关的系数和衰减指数,可按表1选取。
或由试验确定。
表1 爆区不同岩性的K、α值(三)在特殊建(构)筑物附近或爆破条件复杂地区进行爆破时,必须进行必要的爆破地震效应的监测或专门试验,以确定被保护物的安全性。
三、爆破冲击波安全距离(一)露天裸露爆破时,一次爆破的炸药量不得大于20kg,并应按式(2)确定空气冲击波对掩体内避炮作业人员的安全距离。
式中:R k—空气冲击波对掩体内人员的最小安全距离,m;Q—一次爆破的炸药量,kg;秒延期爆破时,Q按各延期段中最大药量计算;毫秒延期爆破时,Q按一次爆破的总炸药量计算。
(二)药包爆破作业指数n<的爆破作业,对人和其他被保护对象的防护,应首先核定个别飞散物和地震安全距离。
当需要考虑对空气冲击波的防护时,其安全距离由设计确定。
(三)地下爆破时,对人员和其他保护对象的空气冲击波安全距离由设计确定。
地下大爆破的空气冲击波安全距离应邀请专家研究确定,并经单位总工程师批准。
引言概述:爆破安全距离规定是一项重要的安全措施,旨在减少爆破活动对周围环境和人员的潜在危害。
本文将探讨爆破安全距离规定的最新发展,主要包括爆破安全距离规定的含义、其制定的目的与背景、国内外相关法律法规的情况等内容。
正文内容:1.爆破安全距离规定的含义1.1定义:爆破安全距离规定是指在进行爆破作业时,要求设定一定的距离,确保周围环境和人员的安全。
1.2目标:爆破安全距离规定的主要目标是降低爆破活动对周围环境造成的噪音、震动和颗粒物等危害程度。
2.爆破安全距离规定的制定目的与背景2.1目的:制定爆破安全距离规定的目的在于保障公众的安全和权益,减少爆破活动对生态环境的不良影响。
2.2背景:爆破活动的不规范及不合理使用炸药等因素可能对周围环境和人员造成损害,因此制定爆破安全距离规定成为必要举措。
3.国内外相关法律法规的情况3.1国内情况:在我国,爆破安全距离规定主要由国家标准和地方政府规定来制定,如《爆破作业安全技术规程》等。
3.2国外情况:国外各国也对爆破活动进行了相关法律法规的管理,如美国的《环境清洁法案》和欧盟的《爆破安全指令》等。
4.爆破安全距离规定的制定与实施4.1制定依据:爆破安全距离规定的制定需要依据相关行业经验和实际调研数据,结合技术标准和环境保护要求等因素。
4.2主要内容:爆破安全距离规定通常包括爆破作业时的最小安全距离、使用的炸药种类及规模的限制、爆破作业时的监测和报告要求等方面的内容。
5.爆破安全距离规定的最新发展5.1技术手段的应用:随着科技的发展,新的监测手段如无线传感器网络和遥感技术等可以用于实时监测和评估爆破对周围环境的影响。
5.2环境保护意识的提高:在全球范围内,环境保护意识逐渐加强,爆破安全距离规定也逐步得到更新和改进,以确保更好的环境保护和公众安全。
总结:爆破安全距离规定是在爆破作业中保障周围环境和人员安全的重要措施。
通过制定规定并实施监督,可以有效降低爆破活动对环境和人员的潜在危害。
矿山爆破安全距离在进行矿山爆破作业时,为了确保周围人员和设施的安全,需要遵循一定的爆破安全距离,以减小爆破产生的冲击波、飞石、噪声等对周围环境的影响。
本文将介绍矿山爆破安全距离的相关知识。
爆破安全距离的定义矿山爆破安全距离指的是在进行爆破作业时,为保护周围人员和设施的安全,需要保持一定的距离。
这个距离取决于多种因素,包括爆破药品的类型、爆破量、地质条件和周边环境等。
爆破安全距离的计算方法矿山爆破安全距离的计算方法使用的是爆破参数。
以下是常用的几种爆破参数:•单发药量(q):指每次爆破使用的单个药包的药量。
•炸药密度(ρ):指单位体积的炸药重量。
•炸药摩尔体积(V):指1mol炸药所占据的体积。
•炸药工作面积(A):指爆破区域所包含的面积。
•距离(d):指炸药中心到爆炸前的安全距离。
爆破参数通过公式计算可以得出安全距离:d = k*q^(1/3) * ρ^(-1/3) * V^(1/3) * A^(1/2)其中k是一种实践经验系数,与爆破药品的类型、爆破量、地质条件等有关。
爆破安全距离的影响因素矿山爆破安全距离的计算需要考虑多种因素:爆破药品的类型和数量炸药的种类和数量是影响爆破距离的关键因素。
一般来说,相同质量的化学炸药,其爆炸能量不同,导致产生的爆炸波压力、爆破振动等不同,从而导致安全距离不同。
另外,炸药的用量也会直接影响到安全距离的大小。
地质条件和岩体性质爆破的作用对象是岩石,而岩石的性质会影响爆破后的水平破碎程度、岩屑大小和飞溅距离等。
因此,地质条件和岩石的性质是爆破距离的重要参考因素。
周围环境周围环境对于矿山爆破安全距离也是有影响的,比如绕过的交通道路、其他建筑物、管道等,这些设施和环境都应该考虑在计算范围内。
爆房的安全距离在矿山爆破作业中,为了确保爆炸的效果,设立爆房进行爆破是必不可少的。
通常爆房的安全距离是爆炸区域并向外延伸5-10倍。
总结矿山爆破安全距离的计算需要考虑多种因素,包括炸药类型、用量、地质条件和周围环境等。
5 爆破平安距离为了保证爆破地点附近人员、机械和建筑物、构筑物的平安,必须根据爆破产生的各种危害作用确定平安距离。
5.1 爆破地震作用平安距离1)一般建筑物和构筑物的爆破地震平安性应满足平安震动速度的要求,主要类型的建(构)筑物地面质点的平安震动速度规定如下:重要工业厂房0.4cm/s;土窑洞、土坯房、毛石房屋1.0cm/s;一般砖房、非抗震的大型砌块建筑物2~3cm/s;钢筋混凝土框架房屋5cm/s;水工隧洞10cm/s;交通隧洞15cm/s;矿山巷道:围岩不稳定有良好支护10cm/s;围岩中等稳定有良好支护15cm /s;围岩稳定无支护20cm/s。
2)爆破地震平安距离可按下式计算:在特殊建(构)筑物附近或爆破条件复杂地区进展爆破时,必须进展必要的爆破地震效应监测或专门试验,以确定被保护物的平安性。
5.2 爆破冲击波平安距离露天煤矿应尽量防止裸露爆破,露天裸露爆破矿山爆破平安距离爆破时,必然产生爆破地震、空气冲击波、碎石飞散及有害气体,因而危及爆区附近人员、设备、建筑物及井巷等的平安。
因此,爆破设计时必须确定爆破危害范围并指定平安距离。
主要有以下几个方面:1.爆破地震平安距离炸药在岩体中爆炸后,在距爆源一定距离的范围内,岩体产生弹性震动波,即是爆破地震。
爆破作业地震强度主要与炸药量、爆源距离、岩石特性、爆破条件和方法以及地质地形条件有关。
?爆破平安规程?规定“一般建筑物和构筑物的爆破地震平安性应满足平安振动速度的要求〞,并规定了建(构)筑物地面质点振动速度控制标准。
2.爆破空气冲击波的平安距离空气冲击波的平安距离主要依据以下几个方面来确定:对地面建筑物的平安距离,空气冲击波超压值计算和控制标准,爆破噪声,空气冲击波的方向效应与大气效应。
控制空气冲击波的方法主要有:(1)防止裸露爆破,特别是在居民区更需特别重视,导爆索要掩埋20em或更多,一次爆破孔间延迟不要太长,以免前排带炮使后排变成裸露爆破。
一、爆破地震安全距离爆破地震,是指炸药爆炸的部分能量转化为弹性波,在岩土中传播引起的震动;爆破地震波,对爆区附近的地层、建筑物、构筑物,以及井巷和露天边坡产生破坏作用;爆破地震波强度的大小主要取决于使用炸药的性能、炸药量、爆源距离、岩石的性质、爆破方法以及地层地形条件;为了最大程度地减小地震波的危害,应采取如下有效措施:1爆破前应调查了解爆破区域范围内建筑物、构筑物的结构,露天边坡稳定状况,井巷围岩稳定及支护等情况;2根据爆区的周边环境,采用减震爆破方法和控制炸药量,如微差爆破、缓冲爆破、预裂爆破等爆破方法;3爆破地震安全距离计算公式如下:式中R——爆破安全距离m;Q——炸药量kg;U——地震安全速度cm/s;m——药量指数,取1/3;k、a-——与爆破地点地形、地质等条件有关的系数和衰减指数,可按表8—1选取;二、空气冲击波安全距离一爆破空气冲击波特性空气冲击波波阵面上的压力决定于离爆破地点的距离与药包半径的比值、炸药爆炸的比能和周围空气的压力;对于保护爆区及周围居民区人员的安全,一般以超压作为依据,以允许超压来确定安全距离;不同超压对人体的危害情况如表8—2所示;注:当ΔΡ为~0.4X105/m2时,气流速度达60~80m/s,夹杂着碎石加重了对人体的危害;各国常用动物试验结合爆炸事故中伤亡情况的分析来确定对人的允许超压;一般人员不致受伤的超压△p<×105N/m2;安全规程采用的允许超压,对作业者为0.05×105N/m2,对居民为0.02×105N/m2;对建筑物,其易损部分为玻璃窗和顶棚抹灰;一般建筑物窗玻璃发生轻微破坏的超压为0.01~0.005×105N/m2;门窗破坏,屋面瓦大部分被掀掉,顶棚部分破坏的超压为1.15—0.3×105N/m2;砖木结构完全破坏的超压大于2.0×105NN/m2;安全规程规定建筑物的超压取0.01×105N/m2;空气冲击波沿地下井巷传播时,比沿地面半无穷空间的传播衰减要慢,故要求的安全距离也更大,如表8—3所示;二空气冲击波安全距离当抛掷爆破作用指数n≥2时,空气冲击波对邻近建筑物具有较大的破坏力,其安全距离按下式确定:式中R B——安全距离m;Qy——同期爆破的总数kg;k B——安全系数,决定于抛掷爆破指数和保护建筑物的安全等级,如表8—4所示;露天裸露矿爆破时,一次爆破的炸药量不得大于20kg,并按下式确定空气冲击波对掩体内避炮人员的安全距离:式中R K——空气冲击波对掩体内人员的最小安全距离m;Q—一一次爆破的炸药量kg;对于药包爆破作用指数n<3的爆破作业,对人员和其他被保护对象的防护,应首先核定个别飞石和地震安全距离,当需要考虑空气冲击波的防护时,由设计确定;三爆破冲击波的防护在露天和地下矿山开采爆破时,可采取限制一次起爆的炸药量、分散装药、使炮泥堵塞良好、采用毫秒微差爆破以及加强覆盖层等措施;对于爆源附近区域、重点保护对象,采取如下防护措施:1井下爆破时,修筑人工阻波墙;已广泛应用的有岩石矿石、缓冲型垛式、木垛和混凝土阻波墙,防波排柱,活动柔性阻波墙和专用防爆阻波墙等办法防护;2露天爆破时,可采用构筑防爆堤、阻波墙和防冲屏等措施;三、爆破飞石及防护爆破飞石产生的原因是:炸药爆炸能量消耗于介质的破碎后,还有多余的能量作用在碎石块上,使碎石块获得足够的动能,以一定速度抛出;露天矿爆破,尤其是二次破碎大块的爆破,难免有石块飞散得很远,对爆区附近人员、牲畜造成伤害,并打坏设备、设施和建筑物等;飞石的安全距离与爆破参数、岩石性质、炸药性能与数量、填塞质量、地形条件和地质构造等有关;根据上述因素,在爆破作业中必须充分考虑安全的前提下,确定飞石的安全距离;按照爆破安全规程的规定,露天矿进行各种爆破时,人员与爆破地点的安全距离不得小于表8—5所示;对设备或建筑物的飞石安全距离,由爆破设计而定;井下爆破安全距离要考虑设备距工作面的距离,如风筒、钻装设备和各种管道设施等以及起爆操作人员掩护地点情况,由矿山企业根据实际情况而定;露天矿爆破使用表8—5安全距离的规定时,还必须注意以下事项:1沿山坡爆破时,下坡方向的飞石距离应加大50%;2同时起爆或毫秒延期起爆的裸露爆破药量包括同时使用的导爆索药量不应超过20 kg;3为防止船舶驶进危险区,应在上、下游最小安全距离以外设置警戒和信号;。
5 爆破安全距离为了保证爆破地点附近人员、机械和建筑物、构筑物的安全,必须根据爆破产生的各种危害作用确定安全距离。
5.1 爆破地震作用安全距离1)一般建筑物和构筑物的爆破地震安全性应满足安全震动速度的要求,主要类型的建(构)筑物地面质点的安全震动速度规定如下:重要工业厂房0.4cm/s;土窑洞、土坯房、毛石房屋1.0cm/s;一般砖房、非抗震的大型砌块建筑物2~3cm/s;钢筋混凝土框架房屋5cm/s;水工隧洞10cm/s;交通隧洞15cm/s;矿山巷道:围岩不稳定有良好支护10cm/s;围岩中等稳定有良好支护15cm /s;围岩稳定无支护20cm/s。
2)爆破地震安全距离可按下式计算:爆破安全距离全集文档(可以直接使用,可编辑实用优质文档,欢迎下载)在特殊建(构)筑物附近或爆破条件复杂地区进行爆破时,必须进行必要的爆破地震效应监测或专门试验,以确定被保护物的安全性。
5.2 爆破冲击波安全距离露天煤矿应尽量避免裸露爆破,露天裸露爆破矿山爆破安全距离爆破时,必然产生爆破地震、空气冲击波、碎石飞散及有害气体,因而危及爆区附近人员、设备、建筑物及井巷等的安全。
因此,爆破设计时必须确定爆破危害范围并指定安全距离。
主要有以下几个方面:1.爆破地震安全距离炸药在岩体中爆炸后,在距爆源一定距离的范围内,岩体产生弹性震动波,即是爆破地震。
爆破作业地震强度主要与炸药量、爆源距离、岩石特性、爆破条件和方法以及地质地形条件有关。
《爆破安全规程》规定“一般建筑物和构筑物的爆破地震安全性应满足安全振动速度的要求”,并规定了建(构)筑物地面质点振动速度控制标准。
2.爆破空气冲击波的安全距离空气冲击波的安全距离主要依据以下几个方面来确定:对地面建筑物的安全距离,空气冲击波超压值计算和控制标准,爆破噪声,空气冲击波的方向效应与大气效应。
控制空气冲击波的方法主要有:(1)避免裸露爆破,特别是在居民区更需特别重视,导爆索要掩埋20em或更多,一次爆破孔间延迟不要太长,以免前排带炮使后排变成裸露爆破。
爆破作业飞石的安全距离个别飞石的飞散距离与地形、地质药包参数及气候条件有关,可按以下公式计算:R=20Kn2WR飞石安全距离(m)K与岩石性质、地形、地质气候有关的系数,一般取0.11.5;迎着风抛掷方向取最大值,背着风抛掷方向取最小值;n最大一个药包的爆炸作用指数;W最大一个药包的最小抵抗线(m)。
为了保证绝对安全,一般按上式计算结果再乘以系数34;当遇到大风天气,顺风方向的飞石距离还应增大25%50%,同时参照现行爆破安全规程,爆破飞石的最小安全距离不小于表1所列数值;2、空气冲击波的安全距离爆破冲击波的危害作用主要表现在空气中形成的超压破坏,如空气超压值大于0.005Mpa时,门窗、屋面开始部分破坏;大于0.007Mpa 时,砖石结构破坏,房屋倒塌。
空气冲击波的安全距离可按一下计算式就算:RK=KbRk空气冲击波的安全距离(m);Kb与装药条件和破坏程度有关的系数,见表4;Q---爆破装药总量(Kg)3、爆破毒气的安全距离爆破瞬时间产生的炮烟含有大量有毒气体的粉尘。
爆破毒气的安全距离可按以下计算式计算:Rg=Kg式中Rg爆破毒气的安全距离(m);Kg系数,平均值160;Q爆破装药总量(t);对于下风向的安全距离应增加一倍。
系数Kb值见表4爆破作业飞石的安全距离(2)爆破作业中,保持安全距离是至关重要的,以确保人员和设备的安全。
在进行飞石爆破作业时,必须明确清楚的了解飞石的特性,制定合适的安全距离。
下面将详细介绍飞石的特性以及如何确定其安全距离。
爆破作业中,飞石是指炸药爆炸产生的碎片或岩石碎块。
这些飞石以高速飞出,可能会造成严重的伤害。
因此,为了确保人员和设备的安全,必须确定适当的安全距离。
首先,确定飞石的速度是非常重要的。
飞石的速度通常取决于炸药的威力、岩石的性质以及爆破作业中使用的具体方法。
一般来说,飞石的速度可以达到数百米每秒。
其次,考虑到飞石的飞行距离。
飞石在爆炸后会继续以直线飞行,直到失去动能。
5 爆破安全距离为了保证爆破地点附近人员、机械和建筑物、构筑物的安全,必须根据爆破产生的各种危害作用确定安全距离。
5.1 爆破地震作用安全距离1)一般建筑物和构筑物的爆破地震安全性应满足安全震动速度的要求,主要类型的建(构)筑物地面质点的安全震动速度规定如下:重要工业厂房0.4cm/s;土窑洞、土坯房、毛石房屋1.0cm/s;一般砖房、非抗震的大型砌块建筑物2~3cm/s;钢筋混凝土框架房屋5cm/s;水工隧洞10cm/s;交通隧洞15cm/s;矿山巷道:围岩不稳定有良好支护10cm/s;围岩中等稳定有良好支护15cm/s;围岩稳定无支护20cm/s。
2)爆破地震安全距离可按下式计算:在特殊建(构)筑物附近或爆破条件复杂地区进行爆破时,必须进行必要的爆破地震效应监测或专门试验,以确定被保护物的安全性。
5.2 爆破冲击波安全距离露天煤矿应尽量避免裸露爆破,露天裸露爆破矿山爆破安全距离爆破时,必然产生爆破地震、空气冲击波、碎石飞散及有害气体,因而危及爆区附近人员、设备、建筑物及井巷等的安全。
因此,爆破设计时必须确定爆破危害范围并指定安全距离。
主要有以下几个方面:1.爆破地震安全距离炸药在岩体中爆炸后,在距爆源一定距离的范围内,岩体产生弹性震动波,即是爆破地震。
爆破作业地震强度主要与炸药量、爆源距离、岩石特性、爆破条件和方法以及地质地形条件有关。
《爆破安全规程》规定“一般建筑物和构筑物的爆破地震安全性应满足安全振动速度的要求”,并规定了建(构)筑物地面质点振动速度控制标准。
2.爆破空气冲击波的安全距离空气冲击波的安全距离主要依据以下几个方面来确定:对地面建筑物的安全距离,空气冲击波超压值计算和控制标准,爆破噪声,空气冲击波的方向效应与大气效应。
控制空气冲击波的方法主要有:(1)避免裸露爆破,特别是在居民区更需特别重视,导爆索要掩埋20em或更多,一次爆破孔间延迟不要太长,以免前排带炮使后排变成裸露爆破。
爆破作业的安全距离
1.爆破飞石的最小安全距离个别飞石的飞散距离与地形、地质药包参数及气象条件有关,可按以下公式计算:R=20Kn2W式中R—飞石安全距离(m);K—与岩石性质、地形、地质气象有关的系数,一般取1.0—1.5;对着抛掷方向取大值,背着抛掷方向取小值;n—最大一个药包的爆炸作用指数;W—最大一个药包的最小抵抗线(m)。
为保证绝对安全,一般按上式计算结果再乘以系数3—4;当遇大风天气,顺风方向的飞散距离还应增大25%--50%,同时参照现行爆破安全规程,爆破飞石的最小安全距离应不小于表1所列数值。
爆破飞石的最小安全距离表1项次爆破方法最小安全距离(m)项次爆破方法最小安全距离(m)1炮孔爆破、炮孔药壶爆破2006小洞室爆破4002二次爆破、蛇穴爆破4007直井爆破、平洞爆破3003深孔爆破、深孔药壶爆破3008边线控制爆破2004炮孔爆破法扩大药壶509拆除爆破1005深孔爆破法扩大药壶10010基础龟裂爆破50
2.爆破震动对建筑物影响的安全距离地震波强度随药量、药包埋置深度、爆破介质、爆破方式、传播途径、爆心距以及局部场地条件等因素的变化而不同,其中主要因素是爆心距离及装药量。
爆破地震波对建筑物的影响的安全距离,一般可按下式计算:Rc=Kca3√-Q 式中Rc—爆破地点至建筑物的安全距离(m);Kc—根据建筑物地基土
石性质而定的系数,见表2;a—依爆破作用指数n确定的系数,见表3;Q—爆破装药量(kg).土石性质系数Kc数值表2项次被保护建筑物的地基的岩性系数Kc值备注12345678坚硬致密的岩石坚硬有裂隙的岩石松软岩石砾石碎石土砂土粘土回填土含水饱和的土3.05.06.07.08.09.015.020.0药包如布置在水中或含水饱和的土中,则Kc值应增加1.5—2.0倍。
爆破作业飞石的安全距离个别飞石的飞散距离与地形、地质药包参数及气候条件有关,可按以下公式计算:R=20Kn2WR飞石安全距离(m)K与岩石性质、地形、地质气候有关的系数,一般取0.11.5;迎着风抛掷方向取最大值,背着风抛掷方向取最小值;n最大一个药包的爆炸作用指数;W最大一个药包的最小抵抗线(m)。
为了保证绝对安全,一般按上式计算结果再乘以系数34;当遇到大风天气,顺风方向的飞石距离还应增大25%50%,同时参照现行爆破安全规程,爆破飞石的最小安全距离不小于表1所列数值;2、空气冲击波的安全距离爆破冲击波的危害作用主要表现在空气中形成的超压破坏,如空气超压值大于0.005Mpa时,门窗、屋面开始部分破坏;大于0.007Mpa 时,砖石结构破坏,房屋倒塌。
空气冲击波的安全距离可按一下计算式就算:RK=KbRk空气冲击波的安全距离(m);Kb与装药条件和破坏程度有关的系数,见表4;Q---爆破装药总量(Kg)3、爆破毒气的安全距离爆破瞬时间产生的炮烟含有大量有毒气体的粉尘。
爆破毒气的安全距离可按以下计算式计算:Rg=Kg式中Rg爆破毒气的安全距离(m);Kg系数,平均值160;Q爆破装药总量(t);对于下风向的安全距离应增加一倍。
系数Kb值见表4爆破作业飞石的安全距离(二)爆破作业中,保持安全距离是至关重要的,以确保人员和设备的安全。
在进行飞石爆破作业时,必须明确清楚的了解飞石的特性,制定合适的安全距离。
下面将详细介绍飞石的特性以及如何确定其安全距离。
爆破作业中,飞石是指炸药爆炸产生的碎片或岩石碎块。
这些飞石以高速飞出,可能会造成严重的伤害。
因此,为了确保人员和设备的安全,必须确定适当的安全距离。
首先,确定飞石的速度是非常重要的。
飞石的速度通常取决于炸药的威力、岩石的性质以及爆破作业中使用的具体方法。
一般来说,飞石的速度可以达到数百米每秒。
其次,考虑到飞石的飞行距离。
飞石在爆炸后会继续以直线飞行,直到失去动能。
爆破作业的安全距离1、爆破飞石的最小安全距离个别飞石的飞散距离与地形、地质药包参数及气候条件有关,可按以下公式计算:R=20Kn2W 式中——飞石安全距离(m)K——与岩石性质、地形、地质气候有关的系数,一般取0.1——1.5 ;对着抛掷方向取最大值,背着抛掷方向取最小值;n_最大一个药包的爆炸作用指数;W——最大一个药包的最小抵抗线(m)。
为了保证绝对安全,一般按上式计算结果再乘以系数3——4;党羽打分天气,顺风方向的飞石距离还应增大25%——50%,同事参照现行爆破安全规程,爆破飞石的最小安全距离不小于表1所列数值;表12、爆破震动对建筑物影响的安全距离地震波强度随药量、药包埋置深度、爆破介质、爆破方式、传播途径、炸心距以及局部场地条件等因素的变化而不同,其中主要是掌心距离及装药量。
爆破地震波对建筑物的影响的安全距离,一般可按以下就算式计算:Rc=Kca3式中Rc—爆破地点与建筑物的安全距离(m);Kc—根据建筑物地基土石性质而定的系数;见表2a---依爆破作用指数n确定的系数;Q---爆破装药量(kg);表2系数a的数值见一下表3表33、空气冲击波的安全距离爆破冲击波的危害作用主要表现在空气中形成的超压破坏,如空气超压值大于0.005Mpa时,门窗、屋面开始部分破坏;大于0.007Mpa时,砖石结构破坏,房屋倒塌。
空气冲击波的安全距离可按一下计算式就算:RK=Kb式中Rk—空气冲击波的安全距离(m);Kb—与装药条件和破坏程度有关的系数,见表4;Q---爆破装药总量(Kg)4、爆破毒气的安全距离爆破瞬时间产生的炮烟含有大量有毒气体的粉尘。
爆破毒气的安全距离可按以下计算式计算:Rg=Kg式中Rg—爆破毒气的安全距离(m);Kg—系数,平均值160;Q—爆破装药总量(t);对于下风向的安全距离应增加一倍。
系数Kb值见表4表4注:防止空气冲击波对人身损害时,Kb采用15,一般最少用5—10. 以上数据来源:安全管理网。
施工爆破飞石安全距离计算及防护技术引言:施工爆破是一种常见的施工方法,通常用于在岩石较硬的地质情况下破碎岩石,以便进行基础开挖、矿石开采等作业。
然而,施工爆破过程中会产生大量碎石和飞石,对周围的人员和设施造成潜在的危险。
因此,合理计算爆破飞石的安全距离并采取相应的防护技术非常重要。
一、施工爆破飞石安全距离计算方法:1. 施工现场安全距离计算方法:施工现场的安全距离是指在爆破作业时,人员和设施必须保持的与施工点的水平距离。
安全距离的计算方法如下:安全距离 = 最大飞石距离 + 防护措施距离其中,最大飞石距离可以通过经验公式或者实际测量获得。
常见的经验公式如下:最大飞石距离= k × h其中,k为飞石系数,通常取值在6-10之间;h为爆破物的高度。
防护措施距离是指为了保护人员和设施免受飞石威胁而采取的防护措施所需的距离,一般情况下,该距离为最大飞石距离的1.5倍。
2. 临时封闭道路及建筑物的安全距离计算方法:临时封闭道路和建筑物是为了防止飞石对车辆和建筑物造成损害而采取的措施。
安全距离的计算方法如下:安全距离 = 最大飞石距离 + 防护措施距离 + 预留距离其中,最大飞石距离和防护措施距离的计算方法同施工现场安全距离的计算方法。
预留距离是指为了预防飞石距离计算时的误差和安全系数而设置的额外距离,一般情况下,该距离为最大飞石距离的10%。
二、防护技术:1. 覆盖物防护技术:覆盖物防护技术是指在施工现场和临时封闭道路上设置覆盖物,以减少飞石对人员和设施的威胁。
常见的覆盖物包括网状防护网、护盾、护栏等。
这些覆盖物应具备足够的强度和耐冲击性,能够有效地阻挡、吸收和分散飞石的冲击力。
2. 工作区域划定技术:工作区域划定技术是指在施工现场和临时封闭道路上设置工作区域,将工作人员和施工设备远离爆破点。
常见的工作区域划定技术包括在施工现场设置警示标志、监控设备和安全警戒线,以及在临时封闭道路上设置交通标志、道路封闭线等。
爆破安全距离
爆破安全距离 (safety distance for blasting)
为保证爆破安全,爆破地点与人员或其他应保护对象之间必须保持最短的相隔长度。
爆破有害效应随距离的增加有规律地衰减,用距离作为安全尺度可限定爆破有害效应在允许限度之内。
中国《爆破安全规程》规定了爆破地震安全距离,个别飞散物安全距离,以及爆炸冲击波的安全距离。
爆破地震安全距离根据各类建(构)筑物的安全振动速度和允许炸药
量确定。
安全振动速度是被保护对象受到该速度90%~95%的爆破地震作用不产生任何破坏的振动速度峰值。
满足安全振动速度要求的炸药量是允许炸药量。
中国建(构)筑物的安全振动速度是:民居土窑洞、土坯房、毛石房屋1cm/s,一般砖房、非抗震大型砌块建筑物2~3cm/s,钢筋混凝土框架房屋5cm/s,水工隧洞10cm/s,交通隧洞15cm/s,矿山围岩不稳定但有良好支护的巷道10cm/s,围岩中等稳定有良好支护的巷道20cm/s,围岩稳定无支护的巷道30cm/s。
露天矿山边坡安全振动速度尚无统一规定,中国一些研究单位提供的数据可供参考;稳定边坡为35~42cm/s,较稳定边坡28~35cm/s,欠稳定边坡22~30cm/s。
根据安全振动速度,按下式计算安全距离:
式中R为安全距离,m;Q为允许最大段药量,Kg;ν为安全振动速度,cm/s;K和α分别为系数和指数,由测震数据回归分析求得,预测时可参照表1选取。
在重要建(构)筑物附近进行爆破时,需要进行爆破地震效应的专门试验研究或接受专家指导,以确保安全。
当房屋群落中各类房屋的安全振动速度不同时,按照抗震能力较差的来计算安全距离,或进行加固或部分搬迁。
当爆源至保护对象的距离小于安全距离,采取降震技术措施,有可能使振动速度不超过安全限值。
个别飞散物安全距离主要根据高速摄影观测数据和统计资料确定。
个别飞散物一般指飞石。
中国《爆破安全规程》规定,除抛掷爆破外,露天矿土岩爆破时个别飞散物对人员的安全距离不小于表2中的规定。
抛掷爆破时,个别飞散物对人员的安全距离由设计确定,并经总工程师批准。
对设备和建筑物的飞散物安全距离,由设计确定。
每个矿山有经验的爆破工程师对本矿山的飞石安全距离根据规程的要求,作出了更加明细的规定。
然而影响飞石飞落较远的偶然性因素很多,个别飞石距离超过安全距离甚远的可能性是存在的,因此,爆破时虽在安全范围之内,人员也有必要进入掩体避炮。
表1 中国11个矿山峒室和深孔爆破的K、α值
表2 露天土岩爆破(抛掷爆破除外)时,个别飞散物对人员的安全距离
爆破冲击波安全距离主要根据保护对象允许的超压和冲击波传播规
律确定。
空气冲击波安全距离的计算与爆破冲击波相同(见爆破冲击波)。
水下爆破时水中冲击波的安全距离R的计算公式为:
R=K*Q1/3
式中Q为药量,Kg;K为与装药方式、保护对象在水中的位置及其允许超压有关的系数。
在确定爆破安全距离时,应综合考虑爆破地震,飞石和冲击波对安全距离的要求。
例如,某露天矿深孔爆破最大段药量为7000Kg,二次破碎采用浅眼破碎法、一次爆破药量为5Kg。
规定在下午4时同时起爆,距爆破地点1km处有一村落,280m处山坡上有山上调度室。
对人员和建筑物的爆破安全性作出评价。
首先核定飞石和爆破地震安全距离,对于露天矿,
能满足飞石和地震安全距离的要求,空气冲击波安全距离也就有了保证。
由表2查得,对于人员,飞石的安全距离为:浅眼爆破时不小于300m;深孔爆破时不小于200m;浅眼爆破的震动很小,只须校核深孔爆破地震对建筑物的影响。
由表1查得,民居房屋安全振动速度为1cm/s;调度室为一般砖瓦结构,其安全振动速度为3cm/s。
该矿山实测数据回归所得的振动速度计算公式为:
按实际距离和药量算得民居房屋处的振动速度ν=0.25cm/s,调度室处ν=2.4cm/s。
由于民房和调度室房屋的实际振动速度均小于各自的安全振动速度,是安全的。
村落在飞石的安全距离以外,居民人身是安全的。
调度室处飞石安全距离不合要求,爆破时调度室内人员应进入掩体避炮。
采场内可移动设备要撤离到爆区后方或侧方100m以远处避炮。