数控车床上椭圆的编程加工
- 格式:doc
- 大小:72.00 KB
- 文档页数:8
数控车床加工椭圆的宏程序随着数控技术不断进步, 数控车床加工中各种复杂形面也日渐增多, 如椭圆、抛物线、正弦曲线、余弦曲线、双曲线等各种非圆曲面。
对于上述各种复杂成形面, 利用CAM 软件进行自动编程相对简单, 但由于种种原因, 在绝大多数情况下数控车床主要还是依靠手工编程。
椭圆轴线与数控车床Z 轴重合的情形相对比较简单, 其解决方案也多见于各类文献, 但在本例中椭圆轴线与数控车床Z 轴呈一定夹角, 编程和加工难度陡增,主要原因如下: ①机床数控系统本身既不存在加工椭圆等非圆曲线的G 指令, 更没有类似G68 这样的旋转指令, 使编程难度大大增加。
②加工中变量的参数直接影响着加工的效率以及质量, 很容易产生过切报警, 即使程序正确无误, 实际加工时的参数调整也非常困难, 直接影响着加工能否顺利进行, 以及加工精度能否保证。
总而言之, 目前尚未见有表述类似实例的文章。
本实例进行了有益的尝试和探索, 给出了切实可行的解决方案, 为类似问题提供了难得的参考及借鉴。
椭圆宏程序的编制如下。
1. 椭圆方程宏程序主要利用各种数学公式进行运算加工, 因此编制旋转椭圆程序操作者必须要掌握椭圆方程和旋转公式等各种数学公式的计算方法并加以灵活运用。
椭圆方程有两种形式, 分别是椭圆的标准方程和参数方程。
椭圆标准方程:椭圆参数方程:其中a 、b 分别为X、Z 所对应的椭圆半轴。
2. 旋转公式由于数控车床并不像加工中心那样存在着旋转指令, 所以要利用旋转公式来进行椭圆的旋转。
旋转公式的定义:如图1 所示, 平面上绕点O 旋转, 使平面上任意一对对应点P 和P′与一个定点O 连接的线段都相等, 即OP = OP′, 且角∠POP′等于角θ, 点O称为旋转中心, 角θ称为旋转角。
旋转公式: 如图1 所示, 取直角坐标系, 以原点O为旋转中心, 旋转角为θ, 平面上任意一点P ( x, z) 旋转到P′( x′, z′) , 令∠XOP= α, 则∠XOP′= α+ θ, 且OP = OP ′。
数控车床加工对象为各种类型的回转面,其中对于圆柱面、锥面、圆弧面、球面等的加工,可以利用直线插补和圆弧插补指令完成,而对于椭圆等一些非圆曲线构成的回转体,加工起来具有一定的难度。
这是因为大多数的数控系统只提供直线插补和圆弧插补两种插补功能,更高档的数控系统提供双曲线、正弦曲线和样条曲线插补功能,但是一般都没有椭圆插补功能。
因此,在数控机床上对椭圆的加工大多采用小段直线或者小段圆弧逼近的方法来编制椭圆加工程序。
在这里结合工作实践对车削椭圆轮廓的宏程序的编制方法进行探讨。
一、椭圆宏程序的编制原理数控系统的控制软件,一般由初始化模块、输入数据处理模块、插补运算处理模块、速度控制模块、系统管理模块和诊断模块组成。
其中插补运算处理模块的作用是依据程序中给定的轮廓的起点、终点等数值对起点终点之间的坐标点进行数据密化,然后由控制软件,依据数据密化得到的坐标点值驱动刀具依次逼近理想轨迹线的方式来移动,从而完成整个零件的加工。
依据数据密化的原理,我们可以根据曲线方程,利用数控系统具备的宏程序功能,密集的算出曲线上的坐标点值,然后驱动刀具沿着这些坐标点一步步移动就能加工出具有椭圆、抛物线等非圆曲线轮廓的工件。
二、椭圆宏程序的编制步骤宏编程一般步骤:1.首先要有标准方程(或参数方程)一般图中会给出。
2.对标准方程进行转化,将数学坐标转化成工件坐标标准方程中的坐标是数学坐标,要应用到数控车床上,必须要转化到工件坐标系中。
3.求值公式推导利用转化后的公式推导出坐标计算公式4.求值公式选择根据实际选择计算公式5.编程公式选择好后就可以开始编程了三、加工实例下面分别就工件坐标原点与椭圆中心重合,偏离等2种情况进行编程说明。
(1)工件坐标原点与椭圆中心重合椭圆标准方程为①转化到工件坐标系中为②根据以上公式我们可以推导出以下计算公式③④在这里我们取公式③。
凸椭圆取+号,凹椭圆取-号。
即X值根据Z值的变化而变化,公式④不能加工过象限椭圆,所以舍弃。
CAD/CAM与制造业信息化60椭圆的数学模型建立及数控车削手工编程撰文/江苏省盐城市教育科学研究院 解太林椭圆属于非圆曲线,在数控车床加工中,非圆曲线工件的手工编程是比较复杂的,对编程者的数学基础要求较高。
文中主要以椭圆为例来介绍非圆曲线数学模型的建立与编程加工。
一、前言在数控车床加工中,非圆曲线工件的手工编程,要求编程者对数控原理非常熟悉,且要有一定的数学功底。
二、编程方法非圆曲线工件的手工编程,有两种方法,一是用圆弧逼近法或直线逼近法编程;二是用用户宏程序编程。
三、用圆弧逼近法或直线逼近法编程1.工件装夹如图1所示,在数控车床上直接用三爪卡盘装夹,为了方便对刀和编制程序,将程序原点设定在工件的右侧中心线上。
图1 椭圆2.数学模型工件右边部分为标准椭圆,长轴半径为20,短轴半径为14,所以标准方程为:Z 2/202+X 2/162=1在Z 轴上负向取点,通过椭圆方程计算出各点坐标如表所示。
3.参考程序(椭圆的精车程序)用车锥法粗车椭圆(程序略),用直线逼近法精车椭圆,程序如下。
O0001;N5 G90G97T0101;设定刀具号及刀具补偿号N10 M03 S1200; 设定转速及转向N15 G00X30Z5; 设定加工起点N20 X0;N25 G01X0Z0F0.1;精加工椭圆N30 X0.88Z-0.01;N35 X1.25Z-0.02;N40 X1.979Z-0.05;N45 X2.796Z-0.1;N50 X3.423Z-0.15;N55 X3.950Z-0.2;N60 X4.832Z-0.3;N65 X5.572Z-0.4;N70 X6.222Z-0.5;N75 X6.807Z-0.6;N80 X7.343Z-0.7;表 各点坐标N85 X7.84Z-0.8;N90 X8.305Z-0.9;N95 X8.743Z-1;N100 X9.55Z-1.2;N105 X10.29Z-1.4;N110 X10.974Z-1.6;N115 X11.610Z-1.8;N120 X12.205Z-2;N125 X13.805Z-2.6;N130 X14.750Z-3;N135 X15.617Z-3.4;N140 X16.225Z-3.7;N145 X16.8Z-4;N150 X17.695Z-4.5;N155 X18.520Z-5;N160 X19.285Z-5.5;N165 X19.996Z-6;N170 X20.659Z-6.5;N175 X21.278Z-7;N180 X21.857Z-7.5;N185 X22.4Z-8;N190 X22.908Z-8.5;N195 X23.385Z-9;N200 X23.831Z-9.5;N205 X24.249Z-10;N210 X24.640Z-10.5;N215 X25.005Z-11;N220 X25.662Z-12;N225 X26.229Z-13;N230 X26.710Z-14;N235 X27.111Z-15;N240 X27.434Z-16;N245 X27.683Z-17;N250 X27.860Z-18;N255 X27.965Z-19N260 X28Z-20;N265 X27.860Z-22;N270 X27.683Z-23;N275 X27.434Z-24;N280 X27.111Z-25;N285 X26.710Z-26;N290 X26.229Z-27;N295 X25.662Z-28;N300 X25.005Z29;N305 X24.640Z-29.5;N310 X24.249Z-30;N315 Z-31;N320 G00X30;N325 X100Z100; 快速回到换刀点N330 M05; 转速停止N335 M30; 程序结束返回程序号四、用用户宏程序编程1.以Z坐标作为变量(1)工件装夹。
国家职业资格全省统一鉴定数控车工技师论文(国家职业资格二级)论文题目:数控车床上椭圆的编程加工姓名:身份证号:所在省市:数控车床上椭圆的编程加工摘 要:要掌握椭圆的编程方法必须先理解椭圆的数学模型即方程式,在此基础上理解数控车床加工曲线的实质,然后利用宏程序来找到椭圆上各点的坐标值,依次加工出连续的各点,若椭圆的中心发生了平移则只需视具体情况对各点的坐标值进行统一的调整,就解决了椭圆的编程问题。
关键词:数控加工 椭圆 方程 宏程序椭圆曲线是一种复杂的二次曲线,一般只适合在数控机床上加工,而且椭圆曲线的编程也是比较复杂的。
然而,无论是何种曲线,都是坐标点按照曲线方程连续移动形成的,也就是点动成线。
而构成曲线的点有无数,不可能将每个点都找到,只能根据精度要求选择适合的间隔找出一些点,把它们连接起来,近似地表达曲线了。
这也是数控加工中编程计算复杂曲线坐标点的一个基本思路。
对于椭圆这类二次曲线的编程现在主要使用手工编程和自动编程。
在手工编程时椭圆上各点坐标值计算非常麻烦,编程也复杂。
我们就会用到宏程序来简化编程。
一、椭圆的基本方程图1所示椭圆长半轴a 、短半轴b 。
则椭圆方程为:12222=+by a x在数控车床上根据工件坐标系的建立方法,我们将X 轴转变为Z 轴,将Y 轴转变为X 轴,就将数学模型和编程的工件坐标系建立了联系。
如图2所示椭圆方程改变为:12222=+bx a z 。
若在上述方程中已知椭圆上某点P 的X 坐标值为1X ,则通过上述方程可计算出该点的Z 坐标值,即2211bXa a Z -⨯=。
因此对椭圆上的任意点只要知道X 或Z 坐标中的一个值就可以通过方程计算出另一个值,所以椭圆上各点的坐标都可以要求出来。
二、数控车床加工曲线轮廓的机理在数控车床加工时,刀具的运动轨迹是折线,而不是光滑的曲线,只能沿折线轨迹逼近所要加工的曲线运动。
实际上是以脉冲当量为最小位移单位通过X 、Z 轴交替插补进行的,由于脉冲当量很小,所以加工表面仍有较好的质量及表面光洁度,所以我们将椭圆分为足够多的小段直线来加工,关键只要找出椭圆上各点的坐标值,问题就解决了。
数控车床加工椭圆的方法摘要本文讲述在数控车床上利用椭圆直角坐标和极坐标方程,通过对宏程序进行编程来加工椭圆,同时总结了针对不同尺寸规格椭圆的编程方法。
关键词数控车床;加工椭圆;方法1概述二维轮廓的椭圆形零件在日常生活中使用得非常多,尤其是在机械制造业中更是应用广泛,但是,该零件加工起来的难度是非常大的。
椭圆形零件的加工方法有很多种,比较常见的有以下几种:在普通车床上进行近似加工[1];根据椭圆的形成原理,设计专用的加工装置进行加工[2];在数控车床上利用“虚拟轴”原理实现椭圆曲线的数控加工[3];利用圆弧逼近法[4]、直线逼近法加工等。
本文仅讨论利用直线逼近法(宏程序)加工椭圆。
2直线逼近法现今,计算机和自动化技术发展迅速,数控车床相关技术也随之不断进步,给椭圆形截面零件的加工创造了很好的条件。
从目前的技术来说,各种数控车床进行椭圆加工的插补原理基本相同,不同的是实现插补运算的方法。
圆弧插补与直线插补是两种常用的实现插补运算的方法,但是目前还没有椭圆插补。
因为受到各方面的限制,尤其在设备和条件方面,通常我们无法手工来编制程序,必须借助于电脑来实现。
一般来说,通过拟合运算及直线逼近法编写宏程序来加工椭圆。
宏程序指令适用于抛物线、双曲线、椭圆等没有插补指令的非圆曲线编程;还适用于图形相同,只是尺寸不同的一系列零件编程,同样还适用于工艺路线一样,只是位置数据不同的系列零件的编程。
相比于其他编程方法,宏程序实现椭圆形截面零件的加工的优点在于,其能有效的简化程序,提高程序的运行速度,并且能扩展数控机床的使用范围。
3用户宏程序法数控车床通过程序来实现某项功能,将编写的程序存储在数控车床中,并将这些实现某项功能的程序用某个简单命令代表,利用数控车床进行加工时,只需要写入代表命令就可以执行相应的功能,极大的减少了操作流程,提高了工作效率。
其中,把存入数控机床的一组程序称作用户宏程序主体,简称为宏程序;把代表命令称作用户宏程序命令,简称为宏命令。
数控车椭圆宏程序编程解析相关知识:●椭圆关于中心、坐标轴都是对称的,坐标轴是对称轴,原点是对称中心。
对称中心叫做椭圆中心。
椭圆和X轴有2两个交点,和Y轴有两个交点,这四个交点叫做椭圆顶点。
●椭圆标准方程:x2 / a2 + y2 / b2 = 1 ( a为长半轴,b为短半轴,a > b > 0 )●椭圆参数方程:x=a*cosM y=b*sinM ( a为长半轴,b为短半轴,a >b > 0 ,M是离心角,是椭圆上任意一点到椭圆中心连线与X正半轴所成的夹角,顺时针为负,逆时针为正。
)编程思路:如N090 #101=20N100 WHILE[#101GE0]DO1N110 #102=26*SQRT[1-[#101*#101]/[20*20]]N120 G01 X[#102] Z[#101-20]N130 #101=#101-0.1N140 END1将椭圆曲线分成200条线段,用直线进行拟合非圆曲线,每段直线在Z轴方向的直线与直线的间距为0.1,如#101=#101-0.1,根据曲线公式,以Z轴坐标作为自变量,X轴坐标作为应变量,Z轴坐标每次递减0.1MM,计算出对应的X坐标值。
宏程序变量如下:#101为非圆曲线公式中的Z坐标值,初始值为20#102为非圆曲线公式中的X坐标值(直径值),初始值为0G01 X[#102] Z[#101-20]建立非圆曲线在工件坐标系中的X Z坐标,系就是椭圆的中心坐标。
各种椭圆类型宏程序编制:图纸一:图纸一分析:加工本例工件时,试采用B类宏程序编写,先用封闭轮廓复合循环指令进行去除余量加工。
精加工时,同样用直线进行拟合,这里以Z坐标作为自变量,X坐标作为应变量,其加工程序如下:O0001G99 G97 G21G50 S1800G96 S120S800 M03 T0101G00 X43 Z2 M08G73 U21 W0 R19G73 P1 Q2 U0.5 W0.1 F0.2N1 G00 X0 S1000G42 G01 Z0 F0.08#101=25N10 #102=30*SQRT[1-[#101*#101]/[25*25]]G01 X[#102] Z[#101-25]#101=#101-0.1IF[#101GE0]GOTO10Z-37.5G02 X35 Z-40 R2.5G01 X36X40 Z-42N2 X43G70 P1 Q2G40 G00 X100 Z100 M09T0100 M05G97M30图纸二:图纸二分析:加工本例工件时,试采用B类宏程序编写,先用封闭轮廓复合循环指令进行去除余量加工。
椭圆零件在数控车床上的加工方法【摘要】轴类零件上一些高精度的曲面如椭圆、正弦曲线等,用普车难以加工,必须采用数控车床才可以加工。
本文根据平时加工中总结出的一些经验,简单谈下在广州数控系统数控车床上车削椭圆的一些看法,就编制步骤、宏程序组成、编程实例等几方面进行了探讨。
【关键字】数控加工椭圆宏程序编程椭圆加工,普通机床很难完成,而数控机床确实能够轻松的加工出来,主要是因为椭圆加工的时候X、Z两坐标是同时变化的,数控机床是通过程序控制的方式来驱动两轴,实现两轴的共同运动。
但数控车床只具有直线插补和圆弧插补两种基本插补功能,不具备椭圆插补功能,所以加工椭圆时可以采用直线逼近法的方式进行加工,即把曲线用许多小段的直线来代替,无限接近椭圆轮廓的加工方法。
下面选用广州数控980TB数控车削系统,结合教学工作实践谈谈如何巧用宏程序解决椭圆编程问题。
一、椭圆宏程序的编制步骤1.标准方程。
2.对标准方程进行转化成车床椭圆方程。
3.求值公式推导有些零件的椭圆中心不在工件原点处,就要根据实际椭圆写出正确的方程。
为编程方便,一般用Z作为变量。
二、宏程序组成1.变量的类型变量号#0,空变量;变量号#1~#33,局部变量;变量号#100~#109、#500~#999,公共变量;变量号#1000以上,系统变量。
2.变量的运算定义#1=#2;加法#1=#2+#3、减法#1=#2-#3、乘法#1=#2*#3、除法#1=#2/#3;正弦#1=SIN[#2]、余弦#1=COS[#2]、正切#1=TAN[#2];平方根#1=SQRT[#2]、绝对值#1=ABS[#2]。
3.运算符EQ(=)、GE(≥)、NE(≠)、LT()、LE(≤)。
按照优先的先后顺序依次是函数→乘和除运算→加和减运算。
4.条件转移(IF)功能语句IF[表达式]GOTO n。
指定的条件不满足时,转移到标有顺序号n的程序段。
三、980TB系统宏指令加工椭圆曲线编程实例1.凸椭圆中心不在零件轴线上例:毛坯直径为Ф40,总长为40,用变量进行编程,经计算椭圆起点的X 轴坐标值为10.141。
数控椭圆编程举例加工左半部分一、数控椭圆编程简介在数控机床加工过程中,椭圆是常见的图形之一。
数控椭圆编程可以使机床根据预先设置的参数自动加工椭圆形状的工件。
本文将以加工左半部分的数控椭圆编程为例,介绍该过程的具体步骤和注意事项。
二、数控椭圆编程步骤2.1 绘制椭圆图形在进行数控编程之前,需要先绘制椭圆的图形。
可以使用CAD软件或者手工绘制。
绘制时需要确定椭圆的长轴和短轴长度、椭圆的中心坐标等参数。
2.2 确定数控椭圆加工起点和终点加工左半部分的椭圆,需要确定起点和终点坐标。
起点通常为椭圆的左顶点,终点为椭圆的右顶点。
起点和终点坐标既可以手动测量,也可以通过CAD软件计算得到。
2.3 计算椭圆的参数数控椭圆编程需要计算椭圆的参数,主要包括长轴和短轴半径、旋转角度。
通过起点和终点坐标,可以利用数学公式计算出这些参数。
2.4 编写数控椭圆编程代码根据数控机床的编程语言,编写数控椭圆编程代码。
代码中需要包括椭圆加工的起点、终点坐标等参数,以及椭圆的参数。
根据编程语言的不同,代码的格式和语法会有所不同。
2.5 调试和优化编程代码编写完数控椭圆编程代码后,需要进行调试和优化。
通过数控模拟软件可以模拟加工过程,检查代码是否正确,并根据实际情况进行代码的优化和调整。
三、数控椭圆编程注意事项3.1 坐标系选择和坐标转换在进行数控椭圆编程时,需要选择合适的坐标系,并进行坐标转换。
通常选择的坐标系有绝对坐标系和相对坐标系。
在编写编程代码时,需要正确地进行坐标转换。
3.2 边界判断和避免误差积累在进行数控椭圆编程时,需要考虑边界情况和误差积累的问题。
特别是当椭圆的长短轴相差较大时,误差的积累会导致加工结果的偏差。
因此,需要在编程过程中进行边界判断,并采取合适的补偿措施。
3.3 加工刀具选择数控椭圆加工需要选择合适的刀具。
刀具的直径应该满足椭圆的要求,并考虑到刀具与工件的碰撞等问题。
刀具的选择要兼顾加工效率和加工质量。
3.4 程序调试和优化编写完数控椭圆编程代码后,需要进行程序调试和优化。
国家职业资格全省统一鉴定
数控车工技师论文
(国家职业资格二级)
论文题目:数控车床上椭圆的编程加工
姓名:
身份证号:
所在省市:
数控车床上椭圆的编程加工
摘 要:要掌握椭圆的编程方法必须先理解椭圆的数学模型即方程式,在此基础上理解数控车床加工曲线的实质,然后利用宏程序来找到椭圆上各点的坐标值,依次加工出连续的各点,若椭圆的中心发生了平移则只需视具体情况对各点的坐标值进行统一的调整,就解决了椭圆的编程问题。
关键词:数控加工 椭圆 方程 宏程序
椭圆曲线是一种复杂的二次曲线,一般只适合在数控机床上加工,而且椭圆曲线的编程也是比较复杂的。
然而,无论是何种曲线,都是坐标点按照曲线方程连续移动形成的,也就是点动成线。
而构成曲线的点有无数,不可能将每个点都找到,只能根据精度要求选择适合的间隔找出一些点,把它们连接起来,近似地表达曲线了。
这也是数控加工中编程计算复杂曲线坐标点的一个基本思路。
对于椭圆这类二次曲线的编程现在主要使用手工编程和自动编程。
在手工编程时椭圆上各点坐标值计算非常麻烦,编程也复杂。
我们就会用到宏程序来简化编程。
一、椭圆的基本方程
图1所示椭圆长半轴a 、短半轴b 。
则椭圆方程为:122
22=+b
y a x 在数控车床上根据工件坐标系的建立方法,我们将X 轴转变为Z 轴,将Y 轴转变为X 轴,就将数学模型和编程的工件坐标系建立了
联系。
如图2所示椭圆方程改变为:12222=+b
x a z 。
若在上述方程中已知椭圆上某点P 的X 坐标值为1X ,则通过上
述方程可计算出该点的Z 坐标值,即2211b
Xa a Z -⨯=。
因此对椭圆上的任意点只要知道X 或Z 坐标中的一个值就可以通过方程计算出另一个值,所以椭圆上各点的坐标都可以要求出来。
二、数控车床加工曲线轮廓的机理
在数控车床加工时,刀具的运动轨迹是折线,而不是光滑的曲线,只能沿折线轨迹逼近所要加工的曲线运动。
实际上是以脉冲当量为最小位移单位通过X 、Z 轴交替插补进行的,由于脉冲当量很小,所以加工表面仍有较好的质量及表面光洁度,所以我们将椭圆分为足够多的小段直线来加工,关键只要找出椭圆上各点的坐标值,问题就解决了。
因此结合上述两点内容,我们可以将椭圆上各点的x 坐标值或Z 坐标值中的一个设为可变化的参数,从加工起点开始,只要使其按一定规律改变参数值(递增或递减),那么通过公式即可计算出另一坐标值,则加工点不断继续,当参数达到最终值时,加工即达到终点,椭圆曲线也就加工完成了。
三、利用宏程序编制椭圆曲线
1、基本的椭圆曲线
在上述椭圆中若以AB 段为例进行编程,若以x 坐标值为自变量,将其设为#l 参数,则从A 点到B 点的X 坐标由0逐渐增大每走一步增加0.1 ilam ,一直变化到b 即到达终点。
编程时采用直径编程则程序中的x 值应为2×#1设为#3,#4为该点的z 坐标值,程序编
图1 椭圆坐标系 图2 椭圆编程的工件坐标系
制如下(基本程序):
N10 #1=0
N20 #2=b
N30 #3=2×#l
N40 #4=a×SQRT[1-#1×#1/b×b]
N50 G0lX#3Z#4
N60 #1=#1+O.1
N70 IF[#1LT#2]GOTO 30
2、椭圆平移后的编程方法
(1)、上下平移
如图3所示,若将坐标原点沿x轴进行上下平移,则只需对基本程序中#3即x坐标值作偏移修改。
设椭圆中心向上移动距离为e,即椭圆上各点的x值都增大2e,那么#3=2×#1+2e;若椭圆中心向下移动距离为e,即椭圆上各点的x值都减小2e,那么#3=2×#1—2e;程序中其余部分不必修改。
图3 坐标原点沿X偏移图4 坐标原点沿Z轴偏移
(2)、左右平移
如图4所示,若将坐标原点沿z轴进行左右平移,则只需对基本程序中#4即z坐标值作偏移修改。
设椭圆中心向左移动距离为e,即椭圆上各点的z值都减小e,那么#4=a×SQRT[1一#1×#1/b×b]- e;若椭圆中心向右移动距离为e,即椭圆上各点的z值都增大e,那么#4=a×SQRT[1一#l×#1/13×h1+e;程序中其余部分不必修改。
若椭圆中心上下及左右均有平移则应对x、z2个坐标值同时
作修改。
3、凹椭圆曲线的编程
如果掌握了凸椭圆的编程方法之后,凹椭圆的编程也就迎刃而解了,基本原理是相同的就是对x坐标值进行修改。
图3所示椭圆上半部分各点的x坐标为2e+#3,而下半部分各点的x坐标为2e-#3,其余都相同。
4、不同起点或终点的部分椭圆曲线
利用宏程序编程最主要的是选定合适的参数作为自变量,要明确该参数变化的起始值和最终值。
一般要选择所给图样中容易得到坐标值的参数,所以要视具体条件来定义和终点判别,可以是x值也可以是z值,若椭圆采用极坐标方程还可以取圆心角作为自变量参数例如图5所示零件加工其中椭圆部分(设毛坯余量已大部分切除)可按以下方法编制程序:
图5 加工零件的椭圆部分
此图采用公式法编制程序,以椭圆圆心为(0,0)编制椭圆T0101(
30尖刀)
M3S600F0.2(粗加工)
G0X40Z2
G73U6R7
G73P1OQ30UO.3 WO FO.2
N10 G1X45
Z0
X48Z- 1.5
Z-35.54
#1=26.46
#2=-26.46
N20 #3=24×SQRT[1-#1×#1/1600] #4=2×#3
G1 X[84一#4] Z[#l一62]
#1=#l-0.1
IF[#1GT#2]GOTO 20
N30 G1X50
G0X1O0
Z100
M3 S1500 T0101 F0.08(精加工)
G0 X40 Z2
G70 PIO Q20
G0X100
Z100
M5
MO2
图中椭圆的X坐标经历由大变小再由小变大的两次变化规律,若要以X坐标为自变参数则要编两段循环才能完成.所以在上述程序中我们将z坐标值作为自变量参数,其起点、终点坐标值容易获得且变化趋势单一稳定从26.46到-26.46,是否到达终点,判断也较清晰。
四、自动编程
自动编程又称计算机辅助编程,是利用计算机和相应的前置、后置处理程序对零件源程序进行处理,以得到加工程序的一种编程方式。
零件源程序是计算机进行各种处理工作的依据,其内容包括零件的形状、尺寸、刀具及其动作、切削条件等方面的参数,并包括了数控机床各种辅助功能的调用。
而前置处理是对源程序进行编译,进行几何学的计算机处理,将刀具路径计算出来,并输出刀位文件;后置处理则是计算机与数控机床之间的翻译,它将前置处理完成的刀位文件通过处理,转变为符合数控装置格式要求的指令与数值,直接用于数控机床。
如今自动编程主要使用自动编程软件,即CAD/CAM软件,根据用户对零件的要求,自动生成刀具轨迹和加工程序。
自动编程操作具体包括以下几个步骤:
(1)几何造型,(2)加工工艺分析,(3)刀具轨迹生成,(4)刀位验证
及刀具轨迹编辑,(5)后置处理,(6)数控程序生成。
五、刀具选择
由于椭圆加工时余量较大,且不均匀,轮廓有凹有凸,为减少切削热和较大的车削阻力,避免出现扎刀和切削干涉现象,应采用硬质合金刀具,并要根据具体情况选择合适的刀具几何角度。
一般来说,车削轮廓为外凸的椭圆时,可选择主偏角为 93
90 ,为避免发生切削干涉应选择较大的副偏角。
为了减少刀尖磨损,提高椭圆加工精度,应选择有刀尖圆角的刀片,编程时,可使用刀具半径补偿指令。
车削内凹的椭圆时,为了避免发生切削干涉,提高加工精度,
可选择圆形刀片,编程时,可使用刀具半径补偿指令
六、结论
只要掌握基本椭圆的编程方法,搞清楚平移椭圆的移动特征,将移动量在椭圆上各点的x、z坐标值中体现出来,那么不管它如何变化,我们都能很顺利的编制出椭圆的加工程序了。