纳米粉体材料的制备共53页文档
- 格式:ppt
- 大小:3.47 MB
- 文档页数:53
实 验 2 ZnO 纳米粉体材料的制备(一)实验类型:综合性(二)实验类别:设计性实验(三)实验学时数:16(四)实验目的(1)掌握沉淀法制备纳米粉体的工作原理。
(2)了解X-射线粉末衍射仪鉴定物相的原理。
(五)实验原理纳米ZnO 是一种新型高功能精细无机材料, 其粒径介于1~ 100 nm 之间,又称为超微细ZnO 。
由于颗粒尺寸的细微化,使得纳米ZnO 产生了其本体块状材料所不具备的表面效应、小尺寸效应、量子效应和宏观量子隧道效应等,因而使得纳米ZnO 在磁、光、电、敏感等方面具有一些特殊的性能, 主要用来制造气体传感器、荧光体、紫外线遮蔽材料、变阻器、图像记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。
合成纳米ZnO 的方法有多种,沉淀法工艺简单,成本低, 便于实现工业化生产。
合成纳米ZnO 的方法有多种,本实验采用化学沉淀法是在可溶性锌盐溶液中加入沉淀剂后,于一定条件下生成沉淀从溶液中析出,将阴离子洗去,经分离、干燥、热处理后,得到纳米氧化锌。
该方法操作简单,对设备和技术要求不太苛刻,产品纯度高,不易引入杂质,成本低。
X-射线粉末衍射仪是分析材料晶体结构的重要工具。
晶体的X射线衍射图象实质上是晶体微观结构形象的一种精细复杂的变换。
由于每一种结晶物质,都有其特定的结构参数,包括点阵类型、晶胞大小、单胞中原子(离子或分子)数目及位置等,而晶体物质的这些特定参数,反映在衍射图上机表现出衍射线条的数目、位置及相对强度各不相同。
因此,每种晶态物质与其X射线衍射图之间有着一一对应的关系。
任何一种晶态物质都有自己独立的X射线衍射图,不会因为他种物质混聚在一起而产生变化。
这就是X射线衍射物相定性分析的方法的依据。
根据粉体X-射线衍射图得到的相关数据,利用谢乐公式(如下),可以计算纳米粒子的晶粒尺寸。
0.89cos D λβθ=(λ为X 射线的波长,β为最强峰的半峰宽,θ 为衍射角)(六)实验内容1. 制备以Zn(NO 3)2·6H 2O 与NH 4HCO 3为原料,聚乙二醇(PEG 600)为模板剂,采用直接沉淀法将制得的沉淀,洗涤后经煅烧制备纳米ZnO 。
纳米粉体制备方法总结文档(最新版)Summary document on preparation methods of nano powder (latest edition)汇报人:JinTai College纳米粉体制备方法总结文档(最新版)前言:本文档根据题材书写内容要求展开,具有实践指导意义,适用于组织或个人。
便于学习和使用,本文档下载后内容可按需编辑修改及打印。
1、化学沉淀法:沉淀法主要包括共沉淀法、均匀沉淀法、多元醇为介质的沉淀法、沉淀转化化、直接沉淀法等。
共沉淀法在含有多种阳离子的溶液中加入沉淀剂,使金属离子完全沉淀的方法称为共沉淀法共沉淀法.可制备BaTiO3、PbTiO3等PZT系电子陶瓷及ZrO2等粉体.与传统的固相反应法相比,共沉淀法可避免引入对材料性能不利的有害杂质,生成的粉末具有较高的化学均匀性,粒度较细,颗粒尺寸分布较窄且具有一定形貌。
均匀沉淀法在溶液中加入某种能缓慢生成沉淀剂的物质,使溶液中的沉淀均匀出现,称为均匀沉淀法本法克服了由外部向溶液中直接加入沉淀剂而造成水热合成反应釜沉淀剂的局部不均匀性本法多数在金属盐溶液中采用尿素热分解生成沉淀剂NH4OH,促使沉淀均匀生成制备的粉体有Al、Zr、Fe、Sn的氢氧化物[12-17]及Nd2(CO3)3等。
多元醇沉淀法许多无机化合物可溶于多元醇,由于多元醇具有较高的沸点,可大于100°C,因此可用高温强制水解反应制备纳米颗粒[20]例如Zn(HAC)2·2H2O溶于一缩二乙醇(DEG),于100-220°C 下强制水解可制得单分散球形ZnO纳米粒子又如使酸化的FeCl3—乙二醇—水体系强制水解可制得均匀的Fe (III)氧化物胶粒。
沉淀转化法本法依据化合物之间溶解度的不同,通过改变沉淀转化剂的浓度、转化温度以及表面活性剂来控制颗粒生长和防止颗粒团聚例如:以Cu(NO3)2·3H2ONi(NO3)2·6H2O为原料,分别以Na2CO3、NaC2O4为沉淀剂,加入一定量表面活性剂,加热搅拌,分别以NaC2O3、NaOH为沉淀转化剂,可制得CuO、Ni(OH)2、NiO超细粉末。
納米粉體的製備材料的開發與應用在人類社會進步上起了極為關鍵的作用。
人類文明史上的石器時代、銅器朝代、鐵器時代的劃分就是以所用材料命名的。
材料與能源、資訊為當代技術的三大支柱,而且資訊與能源技術的發展也離不一材料技術的支援。
江澤民主席在接見青年材料科學家時指出:“材料是人類文明的物質基礎”,又一次強調了材料研究的重要性。
納米材料指的是顆粒尺寸為1~100nm的粒子組成的新型材料。
由於它的尺寸小、比表面大及量子尺寸效應,使之具有常規粗晶材料不具備的特殊性能,在光吸收、敏感、催化及其它功能特性等方面展現出引人注目的應用前景。
早在1861年,隨著膠體化學的建立,科學家就開始對直徑為1~100nm的粒子的體系進行研究。
真正有意識地研究納米粒子可追溯到30年代的日本,當時為了軍事需要而開展了“沉煙試驗”,但受到實驗水平和條件限制,雖用真空蒸發法制成世界上第一批超微鉛粉,但光吸收性能很不穩定。
直到本世紀60年代人們才開始對分立的納米粒子進行研究。
1963年,Uyeda用氣體蒸發冷凝法制得金屬納米微粒,對其形貌和晶體結構進行了電鏡和電子衍射研究。
1984年,德國的H. Gleiter等人將氣體蒸發冷凝獲得的納米鐵粒子[1],在真空下原位壓製成納米固體材料,使納米材料研究成為材料科學中的熱點。
國際上發達國家對這一新的納米材料研究領域極為重視,日本的納米材料的研究經歷了二個七年計畫,已形成二個納米材料研究製備中心。
德國也在Ausburg 建立了納米材料製備中心,發展納米複合材料和金屬氧化物納米材料。
1992年,美國將納米材料列入“先進材料與加工總統計畫”,將用於此專案的研究經費增加10%,增加資金1.63億美元。
美國Illinois大學和納米技術公司建立了納米材料製備基地。
我國近年來在納米材料的製備、表徵、性能及理論研究方面取得了國際水平的創新成果,已形成一些具有物色的研究集體和研究基地,在國際納米材料研究領域佔有一席之地。
纳米粉体制备方法纳米粉体制备办法纳米技术是当今世界各国争先进展的热点技术,纳米技术和材料的生产及其应用在中国已起步,可以产业化的惟独为数不多的几个品种,纳米二氧化钛(TiO2)、纳米氧化锌(ZnO)、纳米碳酸钙(CaCO3)便是其中较具代表性的几个品种。
纳米粉体的制备办法无数,可分为物理办法和化学办法。
以下是对各种办法的分离阐述并举例。
1. 物理办法(1)真空冷凝法用真空蒸发、加热、高频感应等办法使原料气化或形成等离子体,然后骤冷。
其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。
1。
金属烟粒子结晶法是早期讨论的一种试验室办法。
将金属原料置于真空室电极处,真空室抽空(真空度1P a)导入102到103 P a 压力的氩气或不活泼性气体,然后像通常的真空蒸发那样,用钨丝蓝蒸发金属。
在气体中,通过蒸发、凝结产生的金属蒸气形成金属烟粒子,像煤烟粒子一样沉积于真空室内壁上。
在钨丝篮上方或下方位置可以预先放置格网收集金属烟粒子样品,以备各类测试所用。
2。
流淌油面上的真空蒸发沉积法(VEROS),VEROS法是将物质在真空中延续的蒸发到流淌着的油面上,然后把含有纳米粒子的油回收到储藏器内,再经过真空蒸馏、浓缩,从而实现在短时光制备大量纳米粉体。
(2)物理粉碎法通过机械粉碎、电火花爆炸等办法得到纳米粒子。
其特点操作容易、成本低,但产品纯度低,颗粒分布不匀称。
例,有一种制备纳米粉体材料新办法,最适用于碳化物、氮化物及部分金属粉体的制备。
第1页/共4页其办法是先对反应器抽真空,然后充入庇护气体或反应气体,在反应器中设置石墨电极,在石墨电极与反应器坩埚中的金属之间通电,使之产生高温碳电弧,由高温电弧产生金属蒸汽。
采纳庇护气体可以生产出由石墨原子包覆的纳米镍粉、铜粉、铝粉等不易团圆的金属纳米粉末;采纳反应气体可以生产碳化物、氮化物纳米粉末。
与现有技术相比,生产的纳米粉末不易团圆,具有成本低,电弧功率大,可以实现规模化生产,具有广泛的有用性。
纳米粉体的制备方法及团聚简介摘要:本文简要综述了制备纳米粉体的相关方法,物理方法有气体冷凝法、侧射法、高能机械球磨法等,化学方法有固相配位化学法、溶胶-凝胶法、沉淀法、化学气相沉积法等。
并且简要的介绍了团聚的原因及如何防止纳米团聚关键词:纳米粉体;制备方法;团聚近年来,随着科学技术的发展,世界各地许多科学家都在积极开展新材料尤其是纳米材料的研究。
纳米材料包括零维颗粒材料、一维纳米针、二维纳米膜材料以及三维纳米晶体材料。
纳米颗粒一般在1~100nm之间,处于微观粒子和宏观物体之间的过渡区域。
它具有小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等特性。
这些特性使其呈现出一系列奇异的物理、化学性质,目前在国防、电子、化工、轻工、核技术、航空航天、医学和生物工程等领域中具有重要的应用价值。
为此,本文简要综述了纳米粉体的相关方法。
1 . 纳米粉体材料的制备方法1.1 物理法1.1.1 气体冷凝法[1]气体冷凝法(IGC),其主要过程是在低压的氩、嗐等惰性气体中加热金属,使其蒸发,产生原子雾,经泠凝后形成纳米颗粒。
纳米合金可通过同时蒸发数种金属物质得到;纳米氧化物可在蒸发过程中真空室内通以纯氧使之氧化得到。
这种方法是制备清洁界面的纳米粉体的主要方法之一。
1.1.2 侧射法[1]用两块金属板分别作阳极和阴极,阴极为蒸发用的材料,在两电极间充入氩气,在两电极之间施加适当电压,两电极间的辉光放电促使氩离子的形成,在电场作用下,氩离子冲击阴极材料,使靶材原子从其表面沉积下来。
而且加大被溅射的阴阳表面可提高纳米微粒的获得量。
该方法可有效控制多种高熔点和低熔点的纳米金属;能制备多组元的化合物纳米颗粒。
1.1.3 高能机械球磨法[1]高能球磨法是近年来发展起来的一种制备纳米粉体材料的方法,该方法尤其是在制备合金粉末方面具有良好的工业应用前景。
它是将欲合金化的元素粉末混合起来,在高能球磨机长时间运转,将回转机械能传递给金属粉末,依靠求魔过程中粉末的塑形变形产生复合,并发生扩散和固态反应而形成合金粉末。
纳米粉体的制备方法纳米粉体是指粒径在1-100纳米范围内的粉末材料。
制备纳米粉体的方法可以分为物理法、化学法和生物法等。
下面将就几种常见的制备方法进行详细介绍。
1. 物理法:物理法主要包括磨粉法、凝聚法和蒸发法等。
磨粉法是通过机械力对粉末样品进行研磨,使粉末颗粒缩小到纳米尺寸。
常用的磨粉设备有球磨机、立式研磨机等。
磨粉法的优点是操作简单、制备成本较低,但是对于某些材料而言,会引入不可避免的杂质。
凝聚法是通过凝结剂的作用使粉末颗粒快速降落而形成纳米尺寸的颗粒。
常用的凝聚法有压电焙烧、喷雾凝固等。
凝聚法的优点是制备的纳米粉体结晶度高、纯度好,但对于一些材料而言,需要高温、高压等条件,制备成本较高。
蒸发法主要通过控制凝结条件来制备纳米粉体。
常用的蒸发法有电子束蒸发法、溅射法等。
蒸发法制备的纳米粉体尺寸均匀,但是需要较复杂的设备和条件。
2. 化学法:化学法主要包括溶胶-凝胶法、沉淀法和水热合成法等。
溶胶-凝胶法是通过溶胶液形成纳米粒子,然后通过凝胶化反应制备纳米粉体。
溶胶-凝胶法制备的纳米粉体尺寸均匀,且形貌可调控,但是操作较复杂。
沉淀法是通过溶液中的化学沉淀反应制备纳米粉体。
常用的沉淀法有共沉淀法、控制沉淀法等。
沉淀法的优点是操作简单、制备成本低,但是对于一些材料而言,纳米粉体尺寸分布不均匀。
水热合成法是通过在高温高压的水热条件下,使溶液中的金属盐或金属氧化物与还原剂等反应生成纳米颗粒。
水热合成法制备的纳米粉体尺寸均匀,且可以控制成分和形貌,但是需要高温高压条件,设备成本较高。
3. 生物法:生物法主要包括微生物法、植物法和动物法等。
微生物法是利用微生物对金属离子的还原作用,生成纳米金属颗粒。
植物法是通过提取植物中的特定物质,将其还原为纳米颗粒。
动物法是通过提取动物中的特殊成分,制备纳米颗粒。
生物法制备的纳米粉体具有尺寸均匀、纯度高的特点,但是操作较为繁琐,制备周期较长。
总的来说,纳米粉体的制备方法多种多样,每种方法都有其优缺点。