石英晶体振荡电路石英谐振器
- 格式:ppt
- 大小:2.07 MB
- 文档页数:48
石英晶体振荡电路设计摘要:不同的制造商提供各种形状与大小的石英晶体,其性能指标也各不一样。
这些指标包括谐振频率、谐振模式、负载电容、串联阻抗、管壳电容以及驱动电平。
本应用笔记帮助读者理解这些指标参数,并允许用户根据应用选择合适的晶体以及在MAX1470超外差接收机电路应用中获得最佳效果。
不同的制造商提供各种形状与大小的石英晶体,其性能指标也各不一样。
这些指标包括谐振频率、谐振模式、负载电容、串联阻抗、管壳电容以及驱动电平。
本篇应用笔记帮助读者理解这些指标参数,并允许用户根据应用选择合适的晶体以及在MAX1470超外差接收机电路应用中获得最佳效果。
晶体的等效电路见图1。
图中包括了动态元件:电阻Rs、电感Lm、电容Cm和并联电容Co。
这些动态元件决定了晶体的串联谐振频率和谐振器的Q值。
并联电容Co是晶体电极、管壳和引腿作用的结果。
图1. 晶体模型以下详细给出主要的性能指标。
谐振频率晶体频率可以根据接收频率指定。
由于MAX1470使用低端注入的中频,晶体频率可由下式给出(单位为MHz):对于315MHz应用,晶体的频率可为,而在应用时需要晶体。
仅基频模式的晶体需要指定(无需泛音)。
谐振模式晶体具有两种谐振模式:串联(两个频率中的低频率)和并联(反谐振,两个频率中的高频率)。
所有在振荡电路中呈现纯阻性时的晶体都表现出两种谐振模式。
在串联谐振模式中,动态电容的容抗Cm、感抗Lm相等且极性相反,阻抗最小。
在反谐振点。
阻抗却是最大的,电流是最小的。
在振荡器应用中不使用反谐振点。
通过添加外部元件(通常是电容),石英晶体可振荡在串联与反谐振频率之间的任何频率上。
在晶体工业中,这就是并联频率或者并联模式。
这个频率高于串联谐振频率低于晶体真正的并联谐振频率(反谐振点)。
图2给出了典型的晶体阻抗与频率关系的特性图。
图2. 晶体阻抗相对频率负载电容和可牵引性在使用并联谐振模式时负载电容是晶体一个重要的指标。
在该模式当中,晶体的总电抗呈现感性,与振荡器的负载电容并联,形成了LC谐振回路,决定了振荡器的频率。
其实很多人都知道分为有源晶振和无源晶振,Realgiant了解到部分人仍然分不清楚他们到底有何区别,甚至有的客户这样问过,为什么两种晶振体积都是一样的,一个只要几毛钱,而另一个却要几块钱,为什么会相差那么大?Realgiant在此教大家如何区分石英晶体谐振器和石英晶体振荡器。
石英晶体谐振器(quartz crystal unit或quartz crystal resonator,常简写成Xtal),简称石英晶体或晶振,它是利用石英晶体的压电效应,用来产生高精度振荡频率的一种电子元件。
需搭配外加电路才会产生振荡。
是被动(无源)元件,我们又称它无源晶振。
该元件主要由石英晶片、基座、外壳、银胶、银等成分组成。
根据引线状况我们把石英晶振分为直插(有引线)与表面贴装(无引线)两种类型。
无源晶振通常是两支接引的电子元件。
石英晶体振荡器(crystal oscillator,简写 OSC 或 XO)是指内含石英晶体与振荡电路的模组,它需要电源,可直接产生振荡讯号输出。
因内含主动(有源)电子元件,整个模组也属主动元件,因此,我们又称它有源晶振。
石英振荡器通常是四支接脚的电子元件,其中两支为电源,一支为振荡讯号输出,另一支为空脚或控制用。
相比石英晶体谐振器,石英晶体振荡器非常的复杂,这不仅体现在它的参数上,同时也体现在它的种类上。
在上一篇有关温补晶振的文章中我们已经了解到温补晶振是一种石英晶体振荡器。
在晶振行业中,通常我们将石英晶体振荡器分为以下几类:SPXO普通振荡器、TCXO温补振荡器、VCXO压控晶体振荡器、OCXO恒温振荡器以及VC-TCXO压控温补振荡器。
下面我们来逐步了解这几种石英晶体振荡器。
普通石英晶体振荡(SPXO),也有人叫它XO、OSC振荡器,SPXO可以产生10^(-5)~10^(-4)量级的频率精度,标准频率1~100MHZ,频率稳定度是±100ppm.SPXO没有采用任何温度频率补偿措施,价格低廉,通常用作微处理器的时钟器件。
石英晶体谐振器的振动实质上是一种机械振动。
实际上,石英晶体谐振器可以被一个具有电子转换性能的两端网络测出。
这个回路包括L1、C1,同时C0作为一个石英晶体的绝缘体的电容被并入回路,与弹性振动有关的阻抗R1是在谐振频率时石英晶体谐振器的谐振阻抗。
(见图1)石英晶体作为谐振器在使用时,要求其谐振频率在温度发生变化时保持稳定。
温频特性与切割角有关,每个石英晶体具有结晶轴,晶体切割是按其振动模式沿垂直于结晶轴的角度切割的。
典型的晶体切割和温频特性。
(见图2)AT型石英晶体谐振器的温度特性目前大多用三次曲线表示(见图3)。
一个石英晶片在所需要的频率范围已满足的情况下在某一角度被切割,以达到要求的工作温度范围。
当然,实际上,即使在成功的操作中,也会有一些由于切割和磨光精确性不够而造成的角度散布,由此,操作的精确度需要提高。
在图4中可以看到频率公差和生产难度等级的关系。
所有石英谐振器均有寄生(在主频率之外的不期望出现的)振荡响应。
他们在等效电路图中表现为附加的以R1、L1、C1形成的响应回路。
寄生响应的阻抗R NW与主谐振波的阻抗Rr的比例通常以衰减常数dB来表示,并被定义为寄生衰减a NW=-20 · lg对于振荡用晶体,3至6dB是完全足够的.对于滤波用晶体,通常的要求是超过40dB. 这一规格要求只有通过特殊设计工艺并使用数值非常小的动态电容方能达到.可达到的衰减随着频率的上升和泛音次数的增加而减小. 通常的平面石英晶片谐振器比平凸或双面凸晶片谐振器的寄生衰减要良好. 在确定寄生响应参数时,应同时确定一个可接受的寄生衰减水平以及寄生频率与主振频率的相对关系.在AT切型中,对于平面晶片,"不和谐的响应"只存在于主响应的+40至+150KHZ之间,对于平凸或双面凸的晶片,寄生则在+200至+400KHZ之间.在以上的测量方法中,寄生响应衰减至20至30dB时是可以测量的,对于再高一些的衰减.C0的补偿是必需的.石英振荡器的机械振动的振幅会随着电流的振幅成正比例地上升. 功率与响应阻抗的关系为Pc=12q R1, 高激励功率会导致共振的破坏或蒸镀电极的蒸发,最高允许的功率不应超过10mV.由于L1和C1电抗性的功率振荡,存在Q c=Q x P c. 若P c=1mV, Q=100.000, Q c则相当于100W. 由于低的Pc功率会导致振荡幅度的超过,最终导致晶体的频率上移.随着晶体泛音次数的增加, 对于激励功率的依赖性更加显著.上图显示了典型的结果, 但是精确的预期结果还是要受到包括晶体设计和加工,机械性晶片参数,电极大小,点胶情况等的影响.可以看出, 激励功率必须被谨慎地确定,以使晶体在生产中和使用中保持良好的关系.当今,一个半导体振荡回路的激励功率一般为0.1mV,故在生产晶体时也一般按0.1mV进行.一个品质良好的晶体可以容易地起振,其频率在自1nW逐步增加时均能保持稳定.现在, 晶体两端的功率很低的半导体回路也可以在很低的功率的情况下工作良好.上图显示了一个对激励功率有或无依赖性的晶体的工作曲线的比较.晶体存在蒸镀电极不良,晶片表面洁净度不足, 都会存在如图所示的在低功率时出现高阻抗的情况, 这一影响称为激励功率依赖性(DLD). 通常生产中测试DLD是用1~10mV测试后再用1mV 测试, 发生的阻抗变化可作为测试的标准. 很显然, 在增加测试内容会相当大的提高晶体生产的成本.利用适当的测试仪器可以很快地进行DLD极限值的测定,但是只能进行合格/不合格的测试.IEC草案248覆盖了根4结构特性解剖日本生产的这种石英谐振器可见,外壳为干净、无凹隐、无污渍的HC-49/U型锌铂铜外壳,印字清晰完整。
石英晶体正弦振荡器电路图
石英晶体正弦振荡器电路图
如图所示电路是由石英谐振晶体SJT和六反相器集成电路CD4069的1个门A构成的正弦波振荡器。
与普通的RC移相振荡器相比,晶体振荡器的频率稳定度可高达10-5或更高。
这是RC移相振荡器无法达到的高指标(RC移相振荡器的频率稳定度只能达到10-2的量级)。
CMOS非门与负反馈偏置电阻Rl构成反相放大电路。
石英晶体SJT与Cl、C2构成7c型正反馈支路。
石英晶体在其固有谐振频率的附近,自身呈感性,此电感与电容Cl、C2构成谐振回路,形成选频移相反馈网络反馈到放大器输入端,产生振荡。
调整电容C2可微调振荡频率。
元器件选择:
六反相器集成块A:CD4069。
电容Cl:20pF,C2:3~22pF,C3:1000pF。
电阻Rl:10MΩ。
石英晶体SJT:32.768kHz。
电路连接方法:
六反相器集成电路CD4069只用了1/6个门,剩余门若无它用可将输入端接VDD或VSS,输出端悬空。
14脚(VDD)接正电源,7脚(VSS)接地。
石英晶体振荡电路石英晶体谐振器, 简称石英晶体, 具有非常稳定的固有频率。
对于振荡频率的稳定性要求高的电路, 应选用石英晶体作选频网络。
一、石英晶体的特点将二氧化硅(SiO2)结晶体按一定的方向切割成很薄的晶片, 再将晶片两个对应的表面抛光和涂敷银层, 并作为两个极引出管脚, 加以封装, 就构成石英晶体谐振器。
其结构示意图和符号如右图所示。
1.压电效应和压电振荡在石英晶体两个管脚加交变电场时, 它将会产有利于一定频率的机械变形, 而这种机械振动又会产生交变电场, 上述物理现象称为压电效应。
一般情况下, 无论是机械振动的振幅, 还是交变电场的振幅都非常小。
但是, 当交变电场的频率为某一特定值时, 振幅骤然增大, 产生共振, 称之为压电振荡。
这一特定频率就是石英晶体的固有频率, 也称谐振频率。
2.石英晶体的等效电路和振荡频率石英晶体的等效电路如下图(a)所示。
当石英晶体不振动时, 可等效为一个平板电容C0, 称为静态电容;其值决定于晶片的几何尺寸和电极面积, 一般约为几到几十皮法。
当晶片产生振动时, 机械振动的惯性等效为电感L, 其值为几毫亨。
晶片的弹性等效为电容C, 其值仅为0.01到0.1pF, 因此, C<<C0。
晶片的磨擦损耗等效为电阻R, 其值约为100Ω, 理想情况下R=0。
当等效电路中的L、C、R支路产生串联谐振时, 该支路呈纯阻性, 等效电阻为R, 谐振频率谐振频率下整个网络的电抗等于R并联C0的容抗, 因R<<ω0C0, 故可近似认为石英晶体也呈纯阻性, 等效电阻为R。
当f<fs时, C0和C电抗较大, 起主导作用, 石英晶体呈容性。
当f>fs 时, L、C、R支路呈感性, 将与C0产生并联谐振, 石英晶体又呈纯阻性, 谐振频率石英晶体基础知识1、石英晶体的应用:a、石英钟 b、温度计 c、压力指示器(频率与应力)d、加速度计2、晶体的自然面及解理面平行于原子面3、石英的机械、电气、化学和温度等综合性能,都满足需要电气通讯领域。
石英晶体的应用一.石英晶体元器件的分类和相关术语石英晶体元器件一般分为三大类,即石英晶体谐振器,石英晶体振荡器和石英晶体滤波器。
1.1 石英晶体谐振器相关的术语标称频率晶体元件规范指定的频率串联谐振频率(Fs) 等效电路中串联电路的谐振频率并联谐振频率(Fp) 等效电路中并联电路的谐振频率负载频率(FL) 晶体带负载时的频率负载电容(CL) 与谐振器联合决定工作频率的有效外界电容静电容(C0) 等效电路中与串联臂并联的电容动电容(C1) 等效电路中串联臂中的电容动态电感(L1) 等效电路中串联臂中的电感动态电阻(R1) 等效电路中串联臂中的电阻频率精度工作频率与标称频率的偏差等效电阻(ESR) 谐振器与规定的负载电容串联的总阻抗频率温度特性频率随温度变化的特性室温频率偏差谐振器在室温下频率的偏差频率/负载牵引系数(Ts) 负载电容对频率影响的能力老化率晶体频率随时间的漂移Q值晶体的品质因数激励功率(电平)谐振器工作时消耗的功率激励功率依赖性(DLD) 谐振器在不同激励功率下参数的特性温度频率偏差频率随温度变化与标称频率的偏差工作温度范围谐振器规定的工作温度范围泛音晶体的机械谐波寄生响应晶体除主响应(主频率)外的其他频率的响应1.2 石英晶体振荡器石英晶体振荡器是目前精确度和稳定度最高的振荡器。
石英晶体振荡器是由品质因素极高的谐振器(石英晶体振子)和振荡电路组成。
晶体的品质、切割取向、晶体振子结构及电路形式等因素共同决定了振荡器的性能。
相关术语标称频率晶体元件规范指定的频率频率温度特性振荡频率随温度变化而改变的特性长期频率稳定度振荡器长时间工作频率的稳定性短期频率稳定度振荡器短时间工作频率的稳定性温度频率偏差振荡频率随温度的偏差室温频率偏差在室温时振荡频率的偏差起振时间振荡输出达到规定值的时间上升时间(方波输出)方波输出时波形从10%到90%所需的时间下降时间(方波输出)方波输出时波形从90%到10%所需的时间占空比(方波输出) 方波输出时正脉冲宽度占周期的百分比频率精度振荡频率相对标称频率的精确程度消耗电流振荡器工作时消耗的电流相位噪声信号中相位的随机变化量最大电压(方波输出)振荡器输出电压最大值最小电压(方波输出)振荡器输出电压最小值基准温度初始精度振荡器在规定基准温度下的振荡频率的精度频率—电压允差根据输入电压的最大,最小和标称值来确定频率—负载允差根据负载的最大,最小和标称负载来确定谐波与副谐波失真谐波和副谐波响应的程度杂波响应规定带宽内与杂波输出有关的非谐波响应耐过压能力振荡器经受120%规定电源电压的最大的过压能力峰-峰值(Vpp)输出电压最大与最小的差值负性阻抗晶体串联电阻,使振荡器从振到不振时的阻值当前石英晶体振荡器的发展,不仅表现在系列品种的增加和市场需求量的增长方面,而且体现在产品技术创新上。