大学数学《方向导数与梯度》习题及答案
- 格式:pdf
- 大小:855.26 KB
- 文档页数:8
第2讲方向导数与梯度偏导数的几何应用第2讲方向导数与梯度偏导数的几何应用一、方向导数与梯度1.向量的方向余弦(复习) (,)a x y =cos α=,cos β=(,,)a x y z =cos α=,cos β=cos γ=2.方向导数的定义00000(,)(,)limx f x x y f x y zx x→+?-?=?? 00000(,)(,)lim x f x y y f x y zy y→+?-?=?? 设l 为xOy 平面上以000(,)P x y 为始点的一条射线,指向终点00(,)P x x y y +?+?,它的方向向量(cos ,cos )l e αβ=是与l 同方向的单位向量.显然cos α=,cos β=.函数沿方向l 的方向导数为:00(,)x y f l00000(,)(,)limf x x y y f x y ρρ→+?+?-=(ρ=如果函数(,)f x y 在点(,)P x y 可微,那么函数在该点沿任一方向l 的方向导数存在,且有其中cos ,cos αβ是方向l 的方向余弦.类似地,如果函数(,,)u f x y z =在点000(,,)x y z 可微,那么函数在该点沿方向(cos ,cos ,cos )l e αβγ=的方向导数为cos ,cos ,cos αβγ是方向l 的方向余弦.例 1. 求函数22xz xy ye =+在点(0,1)P 处沿着从点(0,1)P 到点(1,2)Q -的方向的方向导数.练习;求函数2yz xe =在点(1,0)P 处沿(1,0)P 到(2,1)Q -的方向的方向导数. 答案:2-3、梯度函数(,)f x y 在点000(,)P x y 的梯度,记作000000(,)(,)(,)x y gradf x y f x y i f x y j =+00(,)x y f l0000(,)cos (,)cos x y f x y f x y αβ=+0000((,),(,))(cos ,cos )x y f x y f x y αβ=?00(,)l gradf x y e =?0000|(,)|||cos |(,)|cos l gradf x y e gradf x y θθ=?=这一式子表明函数在某点沿l 的方向的方向导数,等于梯度在l 方向上的投影,特别当0θ=时,方向导数取得最大值00(,)x y f l00|(,)|gradf x y =.梯度是向量,它的方向是函数在这点的方向导数取最大值的方向,它的模等于方向导数的最大值.函数(,,)u f x y z =在点0000(,,)P x y z 的梯度000000000000(,,)(,,)(,,)(,,)x y z gradf x y z f x y z i f x y z j f x y z k =++最大方向导数为000(,,)gradf x y z 例1. 求221grad x y +例 2. 求函数2232u x y z =+-在点(1,2,1)P -处,分别沿什么方向时方向导数取得最大值和最小值?并求出其最大值和最小值.二、偏导数的几何应用(一)、空间曲线的切线与法平面空间曲线的割线: 空间曲线的切线:空间曲线的法平面:过切点垂直于切线的平面1.空间曲线方程为参数方程()()()x t y t z t ?ψω=??=??=?其中(),(),()t t t ?ψω可导且导数不全为零.0000(,,)M x y z 对应0t t =000(,,)M x x y y z z +?+?+?对应0t t t =+?则割线0M M 的方向向量为(,,x y zt t t)割线0M M 的方程为:000x x y y z z x y z t---==令0M M →,即得切线方程为:切向量:('(),'(),'())s t t t ?ψω= 法平面方程为:例1 求曲线23,,x t y t z t ===在点(1,1,1)处的切线及法平面方程.解:21,2,3dx dy dzt t dt dt dt=== 在点(1,1,1)处的切向量为(1,2,3)s =切线方程:111123x y z ---==法平面方程:(1)2(1)3(1)0x y z -+-+-=,即236x y z ++=练习: 求曲线2,,tx t y t z e ===在点(1,1,)e 处的切线及法平面方程. 对应点1t = 切线方程:1112x y z ee---==法平面方程(1)2(1)()0x y e z e -+-+-= 2.空间曲线方程为()()y y x z z x =??=?,可化为()()x xy y x z z x =??=??=?,在对应点000(,,)x y z 处切向量: (1,'(),'())s y x z x = 切线方程:法平面方程:3.空间曲线方程为(,,)0(,,)0F x y z G x y z =??=?,()()y y x z z x ==?()()x xy y x z z x =??=??=?方程组对x 求导数得切向量0(1,'(),'())s y x z x =切线方程法平面方程:例 2 求球面22240x y z ++-=与圆柱面2220x y x +-=的交线Γ在点0(1,1P 处的切线方程与法平面方程.解:2222212220401202220dy x dy dz x y z x y z dx ydx dxdy dz x y x x y dx dx z -??=++=++-=??+-=+-==-在点0(1,1P 处,切向量(1,0,s = 切线方程: 11110x y z --==,即1z y ==? 法平面方程:(1)0x z -=0z -= 练习:求曲线2226x y z x y z ?++=?++=?在点(1,2,1)-处的切线及法平面.答案: 切线方程:121101x y z -+-==- 法平面方程:0x z -= (二)、曲面的切平面与法线1.曲面S 方程为(,,)0F x y z =0000(,,)M x y z 为曲面上的一点,并设函数(,,)F x y z 的偏导数在该点连续且不同时为零.过0M 任意引一条曲线Γ,其参数方程为(),(),()x t y t z t ?ψω===,(t αβ≤≤),0t t =对应点0000(,,)M x y z 且000'(),'(),'()t t t ?ψω不同时为零.则Γ在点0M 的切向量为000('(),'(),'())s t t t ?ψω=.因为Γ完全在曲面S 上,所以[(),(),()]0F t t t ?ψω=,两端对t 求导,并令0t t =得000000000000(,)'()(,)'()(,)'()0x y z F x y z t F x y z t F x y z t ?ψω++=记000000000((,),(,),(,))x y z n F x y z F x y z F x y z = 则0n s ?= 这表明曲面S 上过点0M 的任一条曲线在这一点的切向量s 都与同一个向量n 垂直,所以曲面上过0M 的一切曲线的切线都在同一平面上,称此平面为切平面.2.令(,,)(,)F x y z f x y z =-法向量:切平面的方程法线方程:例1 求椭球面236x y z ++=在点(1,1,1)处的切平面方程及法线方程.练习:求球面22214x y z ++=在点(1,2,3)处的切平面及法线方程.答案:法向量: (2,4,6)n =切平面方程:23140x y z ++-=法线方程:123123x y z ---==即123x y z== 例2 求旋转抛物面221z x y =+-在点(2,1,4)处的切平面及法线方程.解: 22(,)1f x y x y =+-(2,2,1)n x y =-切平面方程:4(2)2(1)(4)0x y z -+---=法线方程: 214x y z ---==- 练习:求3ze z xy -+=在点(2,1,0)处的切平面及法线方程.例 3 (0)a a =>上任一点处的切平面在三个坐标轴上截距之和为一个常数.例4 已知旋转抛物面224z x y =--上点P 处的切平面平行于平面2210x y z ++-=,求点P 的坐标及平面在点P 处的切平面方程和法线方程。