泛函分析读书笔记-副本
- 格式:doc
- 大小:1.12 MB
- 文档页数:15
《泛函分析讲义》(上)读书报告《泛函分析讲义》(上)读书报告泛函分析是一门较新的数学分支,是数学专业研究生两门专业基础课之一,是偏微分方程方向研究生为研究偏微必备的数学知识。
它把具体分析的问题抽象到一种更加纯粹的代数、拓扑结构的形式中进行研究,因此逐步形成了种种综合运用代数、几何的手段处理分析问题的新方法。
本门课以张恭庆、林源渠编著的《泛函分析讲义》(上)为教材蓝本,由安徽大学数学科学学院教授王良龙主讲,就简避烦,深入浅出,针对数学专业研究生的现实需要所开的一门课。
本册书共四章,分别为度量空间、线性算子与线性泛函、广义函数与索伯耶夫空间、紧算子与Fredholm算子,其中度量空间、线性算子与线性泛函以及线性算子的谱理论是我们掌握的重点。
度量空间又称距离空间,它是一种拓扑空间,其上的拓扑由指定的一个距离决定,这个距离必须满足正定性,对称性和三角不等式性。
引进距离空间的目的是刻画收敛,在收敛的基础上来叙述闭集、基本列和距离空间的完备性。
在这里我要强调度量空间的完备性与紧性,应该说这两种性质是我们解决空间问题绕不开的话题。
完备性是度量空间中重要的性质,并不是每个度量空间都具有完备性。
为了使某些度量空间完备,我们引入完备化这个概念,在不完备的度量空间中添加“理想元素”使之“扩充”为一个完备空间。
度量空间的完备性也是我们经常论证的问题,针对这一点,我们还是要理解完备空间的定义,适当构造基本列,使其成为收敛列。
压缩映像原理为解决常微分方程的初值问题的局部存在性的唯一性提供一种新的方法,在解决此问题的过程中,我们从中完全可以体会到泛函分析的巨大作用,也是我们偏微分方程方向的学生第一次感受到泛函在方程中的应用。
紧性也是度量空间中另一重要性质。
为什么要提出紧性?是因为并不是每个度量空间的任意点列都有收敛子列。
有限维的欧式空间可以做到这一点,但是其他空间却不能推广。
在紧性这一部分我们必须要明白几点:1.列紧、准紧、相对紧的概念等价;2.什么时候子集是准紧,是紧集;3.距离空间中紧的与自列紧的等价关系(他们分别从有限开覆盖与收敛自列的角度描绘了同一种概念,对于我们理解距离空间的紧性有很大的帮助)距离空间只有拓扑结构,对于许多分析问题只考虑拓扑结构不考虑代数结构是不够用的,因为分析中常遇到的函数空间,不但要考查收敛而且要考虑到元素间的代数运算。
《泛函分析》复习与总结第一部分 空间及其性质泛函分析的主要内容分为空间和算子两大部分. 空间包括泛函分析所学过的各种抽象空间, 函数空间, 向量空间等, 也包括空间的性质, 例如完备性, 紧性, 线性性质, 空间中集合的各种性质等等。
以下几点是对第一部分内容的归纳和总结。
一.空间(1)距离空间 (集合+距离)!验证距离的三个条件:(,)X ρ称为是距离空间,如果对于,,x y z X ∈(i) 【非负性】(,)0x y ρ≥,并且(,)0x y ρ=当且仅当x y =【正定性】;(ii) 【对称性】(,)(,)x y y x ρρ=;(iii) 【三角不等式】(,)(,)(,)x y x y y z ρρρ≤+。
距离空间的典型代表:s 空间、S 空间、所有的赋范线性空间、所有的内积空间。
(2)赋范线性空间 (线性空间 + 范数)!验证范数的三个条件:(,||||)X ⋅称为是赋范线性空间,如果X是数域K =¡(或K =£)上的线性空间,对于a K ∈和,x y X ∈,成立(i) 【非负性】||||0x ≥,并且||||0x =当且仅当0x =【正定性】; (ii) 【齐次性】||||||||||ax a x =⋅;(iii) 【三角不等式】||||||||||||x y x y +≤+。
赋范线性空间的典型代表:n ¡空间(1,2,3,n =L )、n £空间(1,2,3,n =L )、p l 空间(1p ≤≤∞)、([,])p L ab 空间(1p ≤≤∞)、[,]Cab 空间、[,]k C a b 空间、Banach 空间、所有的内积空间(范数是由内积导出的范数)。
(3)内积空间 (线性空间 + 内积)!验证内积的四个条件:(,(,))X ⋅⋅称为是内积空间,如果X 是数域K =¡(或K =£)上的线性空间,对于a K ∈和,,x y z X ∈,成立(i) 【非负性】(,)0x x ≥,并且(,)0x x =当且仅当0x =【正定性】;(ii) 【第一变元可加性】(,)(,)(,)x y z x z x z +=+;(iii) 【第一变元齐次性】(,)(,)ax z a x z =;(iv) 【共轭对称性】(,)(,)x z z x =。
学习泛函分析心得我在学习泛函分析时,深刻理解到对于数学中的函数空间,通常要考虑的是函数与函数之间的关系,而泛函分析正是研究这种关系的一门学科。
在泛函分析中,将函数看作向量,函数空间称为向量空间。
然而,这个向量空间与我们平常接触的欧几里得空间有所不同。
在欧几里得空间中,我们通常使用内积来定义空间中向量的长度、角度等性质,而泛函分析中,我们在向量空间上定义了一种新的线性映射:泛函。
泛函将函数映射到实数或复数,从而使得函数也可以看作向量空间中的元素。
同时,泛函也可以看作将向量空间中的向量映射到一个标量。
泛函分析中一个核心的概念是范数。
范数是一种将向量空间中的向量映射到非负实数的函数,可以看作在数学上定义了向量的长度。
泛函分析中的范数并不局限于欧几里得空间中常用的2-范数,我们可以定义各种各样的范数,根据不同的需求来选择合适的范数。
另一个很重要的概念是完备性。
一个向量空间是完备的,意味着空间中的任何柯西序列都可以收敛到该空间中的一个元素。
在欧几里得空间中我们已经很熟悉了柯西序列与收敛的概念,但在一般的向量空间中,柯西序列可能并不收敛,这就需要考虑向量空间的完备性。
泛函分析有很多应用,其中比较重要的一类是微积分方程。
通过泛函分析的分析工具,可以求解各种各样的微积分方程,比如把微分方程转化为积分方程。
同时,泛函分析也被应用于量子力学、图像处理、信号处理等很多学科中。
总之,学习泛函分析可以让我们从一个完全不同的角度来看待函数空间、向量空间等数学概念,提供了一个更加广阔的数学视角。
同时,泛函分析也是一个重要的研究领域,有着广泛的应用前景。
泛函分析知识点泛函分析知识点知识体系概述(一)、度量空间与赋范线性空间第一节度量空间的进一步例子1.距离空间的定义:设X 就是非空集合,若存在一个映射d:X ×X →R,使得?x,y,z ∈X,下列距离公理成立:(1)非负性:d(x,y)≥0,d(x,y)=0?x=y;(2)对称性:d(x,y)=d(y,x);(3)三角不等式:d(x,y)≤d(x,z)+d(z,y);则称d(x,y)为x 与y 的距离,X 为以d 为距离的距离空间,记作(X,d)2、几类空间例1 离散的度量空间例2 序列空间S例3 有界函数空间B(A)例4 可测函数空M(X)例5 C[a,b]空间即连续函数空间例6 l 2第二节度量空间中的极限,稠密集,可分空间1. 开球定义设(X,d)为度量空间,d 就是距离,定义U(x 0, ε)={x ∈X | d(x, x 0) <ε}为x 0的以ε为半径的开球,亦称为x 0的ε一领域、2. 极限定义若{x n }?X, ?x ∈X, s 、t 、()lim ,0n n d x x →∞= 则称x 就是点列{x n }的极限、 3. 有界集定义若()(),sup ,x y Ad A d x y ?∈=<∞,则称A 有界4. 稠密集定义设X 就是度量空间,E 与M 就是X 中两个子集,令M 表示M 的闭包,如果E M ?,那么称集M 在集E 中稠密,当E=X 时称M 为X 的一个稠密集。
5. 可分空间定义如果X 有一个可数的稠密子集,则称X 就是可分空间。
第三节连续映射1、定义设X=(X,d),Y=(Y , ~d )就是两个度量空间,T 就是X 到Y 中映射,x0X ∈,如果对于任意给定的正数ε,存在正数0δ>,使对X 中一切满足()0,d x x δ< 的x,有()~0,d Tx Tx ε<,则称T 在0x 连续、2、定理1 设T 就是度量空间(X,d)到度量空间~Y,d ?? 中的映射,那么T 在0x X ∈连续的充要条件为当()0n x x n →→∞时,必有()0n Tx Tx n →→∞3、定理2 度量空间X 到Y 中的映射T 就是X 上连续映射的充要条件为Y 中任意开集M 的原像1T M -就是X 中的开集、第四节柯西(cauchy)点列与完备度量空间1、定义设X=(X,d)就是度量空间,{}n x 就是X 中点列,如果对任意给定的正数0ε>,存在正整数()N N ε=,使当n,m>N 时,必有(),n m d x x ε<,则称{}n x 就是X 中的柯西点列或基本点列。
泛函分析知识点总结本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March泛函分析一,距离空间定义设X是任一非空集合,对于X中的任意两点x,y,均有一个实数d(x,y)与它对应,且满足:1)d(x,y)≥0(非负性)2)d(x,y)=0当且仅当x=y(严格正)3)d(x,y)=d(y,x)4)d(x,y)≤d(x,z)+d(z,y)(三角不等式)则称d(x,y)为X中的一个距离,定义了距离d的集合称为一个距离空间,记为(X,d),有时简记为X。
设(X,d)是一个距离空间,X中的一个数列,存在X中的任意点,如果当n趋于无穷时,这个数列按照距离收敛到这个点,则称这个数列以这点收敛。
(x,y)是x,y的二元函数,若当存在一个x的数列收敛到x,存在一个y 的数列收敛到y,则这个距离关于x,y的二元函数也收敛。
(利用三角不等式证明)开球的定义(X,d)是一个距离空间,r>0,集合B(x0,r)={x∈X|d(x,x0)<r}则称以x0为中心,r为半径的开球。
有界集:称A为有界集,若存在一个开球,使得A属于这个开球。
内点:称x0为集合G的内点,若存在一个开球B(x0,r)属于G。
开集:称G为开集,若G中的每一个点都是它的内点。
闭集:开集的补集就是闭集。
(若用接触点定义闭集就是,A的接触点的全体称为A的闭包,也就是闭集。
)闭集的等价条件是这个集合中的收敛点列收敛到这个集合中的元素。
全空间和空集即使开集也是闭集。
任意个开集的并是开集,有限个开集的交是开集。
任意个闭集的交是闭集,有限个闭集的并是闭集。
等价距离:两个距离空间称为等价距离,如果它们之间可以互相表示。
连续映射:在两个距离空间之间存在一个映射:T,称T为连续映射。
若在定义域的距离空间中存在一个开集,经过映射T,在另一个距离空间定义的距离下是任意小的。
映射T是连续的等价于值域里的开集的原像仍然是开集。
第一部分线性代数第一章 线性空间第一节 线性空间一、基本概念1、 定义:数域P =复数子集+四则运算封闭2、 定义:线性空间=•+),;;(P V 数域P 上的线性空间V =线性空间V ⑴、解释:=V 非空集合⑵、解释:V V V →⨯=+【加法,加法保持封闭】 ⑶、解释:V V P →⨯=•【数乘,数乘保持封闭】 ⑷、解释:=•+),(线性运算【满足8条规则】3、 8条规则加法规则:⑴、交换律:αββα+=+⑵、结合律:)()(γβαγβα++=++⑶、零元素:V ∈∃0,对于V ∈∀α,都有αα=+0⑷、负元素:对于V ∈∀α,V ∈∃β,使得0=+βα【记为:α-】数乘规则:⑸、αα=1⑹、αα)()(kl l k =加法数乘规则:⑺、βαβαk k k +=+)(⑻、αααl k l k +=+)(二、基本性质1、 性质⑴、性质:零元素唯一⑵、证明:假设:V ∈∃10,对于V ∈∀α,都有αα=+10 V ∈∃20,对于V ∈∀α,都有αα=+20 对于V ∈∀α,都有⇒=+αα10特别:212000=+对于V ∈∀α,都有⇒=+αα20特别:121000=+12120000+=+【交换律】2100=⇒ ⑶、性质:负元素唯一2、 性质⑴、性质:ααα-=-==)1(0000,,k⑵、证明:ααααααα==+=+=+1)10(100【规则5+规则8】 )()(]0[0αααααααα-+=-++⇒=+⇒αααααααα000)]([0)(]0[=+=-++=-++⇒【结合律】0)(=-+αα【负元素的定义】00=⇒α第二节 线性无关一、基本概念1、 概念:线性组合(线性表出)如果:r r k k k αααα+++=Λ2211则称:向量α是向量组r ααα,,,Λ21的一个线性组合 或称:向量α可由向量组r ααα,,,Λ21线性表出2、 概念:线性相关如果:存在不全为0的P k k k r ∈,,,Λ21 使得:02211=+++r r k k k αααΛ则称:向量组r ααα,,,Λ21线性相关3、 概念:线性无关如果:不存在不全为0的P k k k r ∈,,,Λ21 使得:02211=+++r r k k k αααΛ则称:向量组r ααα,,,Λ21线性无关 4、 关键:00212211====⇒=+++r r r k k k k k k ΛΛααα二、基本性质1、 性质⑴、性质:向量组r ααα,,,Λ21线性相关 ⇔其中某一向量可由其余向量线性表出 ⑵、证明:必要性:r r r r k kk k k k k αααααα)()(0121212211-++-=⇒=+++ΛΛ 充分性:0)()(221221=-++-+⇒++=r r r r k k k k ααααααΛΛ2、 性质⑴、性质:如果:向量组r ααα,,,Λ21线性无关 并且:可由向量组s βββ,,,Λ21线性表出 则有:s r ≤⑵、证明:∑∑===⇒=⇒+++=sj j ji i sj j j s s t tt t t 111112211111βαβαβββαΛ∑∑∑∑∑=======⇒=+++s j ri j ji i ri sj j jiiri iir r t k tk k k k k 111112211][][0ββααααΛ⎪⎪⎩⎪⎪⎨⎧⇒=+++=+++=+++⇒000221122222111122111sr r s s rr r r t k t k t k t k t k t k t k t k t k ΛΛΛΛs 个方程,r 个未知数⇒如果s r >,则方程存在非零解r k k k ,,,Λ21 ⇒向量组r ααα,,,Λ21线性相关⇒矛盾3、 等价⑴、概念:两个向量组等价【互相线性表出】⑵、性质:两个等价的线性无关向量组,必定含有相同数目的向量⑶、证明:假设:向量组r ααα,,,Λ21线性无关 向量组s βββ,,,Λ21线性无关4、 性质⑴、性质:如果:向量组r ααα,,,Λ21线性无关 并且:向量组βααα,,,,r Λ21线性相关 那么:β可由向量组r ααα,,,Λ21线性表出,并且表法唯一 ⑵、证明:向量组βααα,,,,r Λ21线性相关 ⇒存在不全为0的P k k k k r ∈β,,,,Λ21 使得:02211=++++βαααβk k k k r r Λr r k kk k k k k αααβββββ)()()(02221-++-+-=⇒≠⇒Λ 假设:r r k k k αααβ+++=Λ2211r r l l l αααβ+++=Λ22110)()()(222111=-++-+-⇒r r r l k l k l k αααΛ⇒===⇒r r l k l k l k ,,,Λ2211表法唯一第三节 维数、基和坐标1、 定义:n 维线性空间V :恰好存在n 个线性无关的向量2、 定义:n 维线性空间V 的一组基:n 个线性无关的向量n εεε,,,Λ213、定义:坐标:对于V ∈∀α,向量组n εεε,,,Λ21线性无关 向量组n a εεε,,,,Λ21线性相关【否则1+n 维】 n n a a a εεεα+++=⇒Λ2211⇒坐标)(21n a a a ,,,Λ=4、 定理⑴、定理:如果:向量组n ααα,,,Λ21线性无关 并且:线性空间V 中的任意向量,均可由它们线性表出那么:V 的维数n =,并且n ααα,,,Λ21是V 的一组基 ⑵、证明:假设:V 的维数1+=n⇒121+n βββ,,,Λ线性无关,可由向量组n ααα,,,Λ21线性表出 ⇒n n ≤+1⇒矛盾第四节 极大线性无关组1、 定义:极大线性无关组:一个向量组的一部分组称为极大线性无关组 如果:该部分组线性无关并且:添加任一向量均线性相关2、 性质⑴、性质:极大线性无关组与向量组本身等价⑵、证明:假设:向量组r k αααα,,,,,ΛΛ21= 极大线性无关组k ααα,,,Λ21= k ααα,,,Λ21⇒可由r k αααα,,,,,ΛΛ21线性表出 对于}{21r k ααααβ,,,,,ΛΛ∈∀ βααα,,,,k Λ21⇒线性相关【否则与极大线性无关组矛盾】 β⇒可由k ααα,,,Λ21线性表出3、 性质⑴、性质:向量组的极大线性无关组,含有相同个数的向量 ⑵、证明:向量组与极大线性无关组1等价 向量组与极大线性无关组2等价⇒极大线性无关组1与极大线性无关组2等价【等价的传递性】第五节 线性子空间1、 定义:),;;(•+P W 是线性空间),;;(•+P V 的一个子空间 =W 是数域P 上的线性空间V 的一个子空间 =W 是线性空间V 的一个子空间如果:⑴、V W =的非空子集⑵、两种运算封闭:W W W ∈+∈∀∈∀βαβα,, W k W P k ∈∈∀∈∀αα,,2、 )(21r L ααα,,,Λ ⑴、性质:如果:∈r ααα,,,Λ21线性空间V 那么:所有可能的线性组合r r k k k ααα+++Λ2211构成V 的一个子空间称为:由r ααα,,,Λ21生成的子空间 记为:)(21r L ααα,,,Λ ⑵、证明:非空子集+两种运算封闭3、 性质⑴、性质:)()(2121s r L L βββααα,,,,,,ΛΛ= ⇔向量组r ααα,,,Λ21与向量组s βββ,,,Λ21等价⑵、证明:①:充分性:∑==+++=⇒∈∀ri ii r r r k k k k L 1221121)(αααααααααΛΛ,,,∑∑===⇒=+++=sj j ji i s j j j s s i t t t t t 1111221111βαββββαΛ∑∑∑∑∑========⇒s j ri j ji i r i sj j jiir i ii t k tk k 11111][][ββαα)()()(212121s r s L L L βββαααβββα,,,,,,,,,ΛΛΛ⊂⇒∈⇒ ②:必要性:)()(2121s i r i L L βββααααα,,,,,,ΛΛ∈⇒∈ i α⇒可由向量组s βββ,,,Λ21线性表出4、 性质⑴、性质:如果:W 是n 维线性空间V 的一个m 维子空间并且:m ααα,,,Λ21是W 的一组基 那么:m ααα,,,Λ21可以扩充为线性空间V 的一组基 ⑵、证明:V ∈∃β,使得βααα,,,,m Λ21线性无关 反证法:βαααβ,,,,,m V Λ21∈∀线性相关 β∀⇒可由m ααα,,,Λ21线性表出 ⇒线性空间V 的维数⇒=m 矛盾第六节 子空间的交与和1、 定义:}|{22112121V V V V ∈∈+=+αααα,2、 性质⑴、性质:如果:21V V ,是线性空间V 的两个子空间 那么:21V V I 也是线性空间V 的子空间 ⑵、证明:=21V V I 非空子集【至少都包含零元素】 2121V V V V ∈∈⇒∈∀ααα,I 2121V V V V ∈∈⇒∈∀βββ,I2121V V V V I ∈+⇒∈+∈+⇒βαβαβα,3、 性质⑴、性质:如果:21V V ,是线性空间V 的两个子空间 那么:21V V +也是线性空间V 的子空间 ⑵、证明:22112121V V V V ∈∈+=⇒+∈∀αααααα,, 22112121V V V V ∈∈+=⇒+∈∀ββββββ,, 222111V V ∈+∈+⇒βαβα,2122112121)()()()(V V +∈+++=+++=+⇒βαβαββααβα4、 维数公式⑴、公式:维+1V 维=2V 维+)(21V V I 维)(21V V +⑵、证明:假设:m αα,,Λ1是21V V I 的一组基 111n m ββαα,,,,,ΛΛ是1V 的一组基 211n m γγαα,,,,,ΛΛ是2V 的一组基证明:21111n n m γγββαα,,,,,,,,ΛΛΛ是21V V +的一组基①、线性无关:022********=++++++++n n n n m m q q p p k k γγββααΛΛΛ2211111111n n n n m m q q p p k k γγββααα---=+++++=ΛΛΛm m l l V V V V αααααα++=⇒∈⇒∈-∈⇒ΛI 112121, m m n n m m l l p p k k ααββαα++=+++++ΛΛΛ11111111 01111====⇒n m m p p l k l k ,,m m n n l l q q ααγγ++=++ΛΛ11221100211=====⇒n m q q l l ,Λ②、21V V +∈∀α,均可由21111n n m γγββαα,,,,,,,,ΛΛΛ线性表出第七节 子空间的直和1、 直和⑴、定义:=+21V V 直和⇔任何元素的分解式唯一⑵、分析:22112121V V V V ∈∈+=⇒+∈∀αααααα,,唯一2、 性质⑴、性质:=+21V V 直和⇔零元素的分解式唯一⑵、证明:充分性:假设:22112121V V V V ∈∈+=⇒+∈αααααα,,221121V V ∈∈+=ββββα,,)()()()(022112121βαβαββαα-+-=+-+=⇒ 2211βαβα==⇒,3、 性质⑴、性质:=+21V V 直和}0{21=⇔V V I⑵、证明:充分性:22112121V V V V ∈∈+=⇒+∈∀αααααα,,2211210V V ∈∈+=⇒αααα,,1221221121V V V V ∈∈∈∈⇒-=⇒αααααα,,, 021212211==⇒∈∈⇒ααααV V V V I I , 必要性:212121V V V V V V ∈-∈⇒∈∈⇒∈∀ααααα,,I 00)(=⇒=-+ααα4、 性质⑴、引理:⇔=}0{V 维0=V⑵、证明:必要性:向量0线性相关⇒不存在线性相关的向量组 充分性:假设:线性空间V 至少包括一个非零向量α ⇒≠⇒0α向量α线性无关α⇒可以扩充为线性空间V 的一组基⇒维1≥V ⇒矛盾⑶、性质:=+21V V 直和⇔维+1V 维=2V 维)(21V V +第八节 线性空间的同构1、 定义:同构如果:=W V ,线性空间并且:存在W V →的双射σ【双射=一一映射=满射+单射】并且:σ满足两条性质:①)()()(βσασβασ+=+②)()(ασασk k = 则称:V 和W 同构,=σ同构映射2、 基本性质⑴、性质:数域P 上的n 维线性空间V 与n P 同构⑵、证明:①、=•+)(,,;P P n线性空间【两种运算封闭+满足8条性质】 n n n n P b b b P a a a ∈=∀∈=∀)()(2121,,,,,,,ΛΛβα )(2211n n b a b a b a +++=+⇒,,,Λβα n n P a a a P k ∈=∀∈∀)(21,,,,Λα)(21n ka ka ka k ,,,Λ=•⇒α ②、构造nP V →的双射σ【向量到坐标的双射】假设:V n =εεε,,,Λ21的一组基 )()(212211n n n a a a a a a V ,,,ΛΛ=⇒++=⇒∈∀ασεεεαα ③、σ满足两条性质)()(212211n n n a a a a a a V ,,,ΛΛ=⇒++=⇒∈∀ασεεεαα )()(212211n n n b b b b b b V ,,,ΛΛ=⇒++=⇒∈∀βσεεεββn n n b a b a b a εεεβα)()()(222111+++++=+⇒Λ)()()()(2211βσασβασ+=++++=+⇒n n b a b a b a ,,,Λ3、 性质群1⑴、性质:)()()()(22112211r r r r k k k k k k ασασασααασ+++=+++ΛΛ ⑵、证明:σ的两条性质⑶、性质:r ααα,,,Λ21线性无关)()()(21r ασασασ,,,Λ⇔线性无关 ⑷、证明:必要性:假设:0)()()(2211=+++r r k k k ασασασΛ0)(2211=+++⇒r r k k k ααασΛ由于0)0(=σ,并且=σ双射00212211====⇒=+++⇒r r r k k k k k k ΛΛααα⑸、性质:r ααα,,,Λ21线性相关)()()(21r ασασασ,,,Λ⇔线性相关 ⑹、证明:反证法⑺、性质:同构的线性空间同维⑻、证明:假设:线性空间V 和W 同构,并且维n V =)(,维m W =)(维⇒=n V )(存在n 个线性无关的向量组V n ∈ααα,,,Λ21 ⇒存在n 个线性无关的向量组W n ∈)()()(21ασασασ,,,Λ ⇒维n m W ≥=)( 同理:n m n m =⇒≤4、 性质群2⑴、性质:如果:1V 是线性空间V 的一个子空间那么:}|)({)(11V V ∈=αασσ是线性空间)(V σ的子空间 ⑵、证明:①、=1V 非空子集=⇒)(1V σ非空子集②、两种运算封闭假设:111*)()(*)(*V V ∈=⇒=⇒∈∀-αασασασα【双射】 111*)()(*)(*V V ∈=⇒=⇒∈∀-ββσβσβσβ111*)(*)(V ∈+⇒--βσασ【运算封闭】)(*)](*)([111V σβσασσ∈+⇒--【定义】【σ的两条性质】***)]([*)]([*)](*)([1111βαβσσασσβσασσ+=+=+----)(**1V σβα∈+⇒⑶、性质:=-στσ、1同构映射 ⑷、证明:①、=-1σ双射②、1-σ的两条性质)]([)]([)]([111βσσασσβασσβαβα---+=+⇒+=+ )]()([)]([111βσασσβασσ---+=+⇒【σ的两条性质】)()()(111βσασβασ---+=+⇒第二章 欧几里得空间第一节 实线性空间1、 定义:实线性空间)(•+=,;;R R n⑴、两种运算:①、向量加法n n n n R b b b R a a a ∈=∀∈=∀)()(2121,,,,,,,ΛΛβα)(2211n n b a b a b a +++=+⇒,,,Λβα ②、向量数乘n n R a a a R k ∈=∀∈∀)(21,,,,Λα)(21n ka ka ka k ,,,Λ=•⇒α ⑵、两种运算封闭+满足8条性质第二节 欧几里得空间一、基本概念1、 定义:内积==)(βα,内积的4条性质 ⑴、交换:)()(αββα,,= ⑵、数乘:)()(βαβα,,k k =⑶、分解:)()()(γβγαγβα,,,+=+ ⑷、正定:0)(≥αα,,00)(=⇔=ααα,2、 欧几里得空间【欧氏空间】⑴、定义:欧几里得空间+•+=)(,;;R V 内积⑵、分析:未确定因素;③,;②①•+V 内积⑶、典例:=nE 实线性空间+•+)(,;;R R n内积 ⑷、分析:①、nR V =;②、=•+,向量加法+向量数乘;③、内积:n n n n R b b b R a a a ∈=∀∈=∀)()(2121,,,,,,,ΛΛβα n n b a b a b a +++=⇒Λ2211)(βα,【满足内积的4条性质】3、 基本概念⑴、概念:向量长度)(||ααα,== ⑵、概念:单位向量||αα=⑶、概念:向量距离)(||)(βαβαβαβα--=-==,,d ⑷、概念:夹角||||)(cos 1βαβαβα,,->==<二、柯西不等式1、 基本公式⑴、公式:|||||)(|βαβα≤,⑵、证明:①0)(0||0==⇒=βαββ,, ②⇒≠0β令βαγt +=022≥++=++=⇒),(),(),(),(),(βββαααβαβαγγt t t t04]2[2≤-=∆⇒),)(,(),(ββααβα【开口向上+单根或者无根】),)(,(),(ββααβα≤⇒2][③等号成立条件:βαβαγγγt t -=⇒=+⇒=⇒=000),(),(),(βββα-=-=a b t 2【单根】 βαββββαα、),(),(⇒=⇒线性相关2、 推论⑴、推论:||||||βαβα+≤+⑵、证明:),(),(),(),(βββαααβαβα++=++2 222|]||[|||||||2||βαββαα+=++≤⑶、推论:||||||γββαγα-+-≤-⑷、证明:令γαβαγβββαα-=+⇒-=-=,【代入上式】第三节 标准正交基1、 基本概念⑴、定义:两个向量正交【如果0)(=βα,,则称βα、正交,记为βα⊥】⑵、性质:n 维欧几里得空间V 的内积∑∑====n j ni jiji b a 11)()(εεβα,,⑶、证明:假设:V n =εεε,,,Λ21的一组基 n n a a a V εεεαα+++=⇒∈∀Λ2211n n b b b V εεεββ+++=⇒∈∀Λ22112、 基本概念⑴、定义:正交向量组=两两正交的非零向量组⎩⎨⎧≠==≠==ji ji j i 00)(αα,⑵、定义:正交基=正交向量组+基⑶、定义:标准正交基=正交基+单位向量3、 基本性质⑴、性质:正交向量组线性无关⑵、证明:假设:=r ααα,,,Λ21正交向量组 02211=+++++⇒r r i i k k k k ααααΛΛ0)()(2211==+++++⇒i i i i r r i i k k k k k ααααααα,,ΛΛ 0=⇒i k4、 定理⑴、定理:任何一个正交向量组,可以扩充为一组正交基⑵、证明:①假设:=m ααα,,,Λ21线性空间V 的正交向量组 V ∈∃β,使得βααα,,,,m Λ21线性无关 否则:βαααβ,,,,,m V Λ21∈∀线性相关 β∀⇒可由m ααα,,,Λ21线性表出 ⇒维V ⇒=m 矛盾 ②∑=+-=mj jj m k 11αβαm i k i mj j j i m ,,,,,,Λ21)()(11=-=⇒∑=+ααβαα0))1=-=-=∑=),(,(),(,(i i i i i mj j j i k k αααβαααβ),(,(i i i i k αααβ)=⇒5、 定理⑴、定理:如果:V n =εεε,,,Λ21的一组基 那么:可以找到一组标准正交基n ηηη,,,Λ21 并且:)()(2121n n L L ηηηεεε,,,,,,ΛΛ= ⑵、证明:①||111εεη=②假设:已经找到一组单位正交向量m ηηη,,,Λ21 使得:)()(2121m m L L ηηηεεε,,,,,,ΛΛ= ∑=+++-=⇒mj j j m m m 1111)(ηηεεγ,m i i mj j j m m i m ,,,,,,,Λ21))(()(1111=-=⇒∑=+++ηηηεεηγ))(()())(()(11111i i i m i m i mj j j m i m ηηηεηεηηηεηε,,,,,,++=++-=-=∑0))(()(11=-=++i i i m i m ηηηεηε,,, ||111+++=⇒m m m γγη ③∑=++++-=nj j j m m m m 11111)(||ηηεεγη,1+⇒m η可由121+m εεε,,,Λ线性表出 1+m ε可由121+m ηηη,,,Λ线性表出121+⇒m εεε,,,Λ与121+m ηηη,,,Λ等价 )()(121121++=⇒m m L L ηηηεεε,,,,,,ΛΛ第四节 正交补1、 基本概念⑴、定义:V ⊥α:如果V ∈∀β,都有0)(=βα,则称V 、α正交,记为V ⊥α⑵、定义:W V ⊥:如果W V ∈∀∈∀βα,,都有0)(=βα,则称W V 、正交,记为W V ⊥⑶、定义:正交补:假设:=21V V ,线性空间V 的两个子空间 如果:V V V V V =+⊥2121,则称:12V V =的正交补,记为:⊥=12V V2、 性质⑴、性质:如果:s V V V ,,,Λ21两两正交 那么:=+++s V V V Λ21直和 ⑵、证明:假设:i i s V ∈+++=αααα,Λ21000)(0)(21=⇒=⇒=+++⇒i i i i s ααααααα,,Λ3、 性质⑴、性质:任何子空间的正交补,存在并且唯一⑵、证明:假设:=1V 线性空间V 的一个子空间,⊥=12V V ①、V V V =⇒=21}0{②、1211}0{V V m =⇒≠εεε,,,Λ的一组正交基 ⇒可以扩充为=n m εεε,,,,ΛΛ1V 的一组正交基 )(12n m L V εε,,Λ+=⇒⊥=⇒12V V 【证明集合相等】【根据定义证明正交】③、假设:21V V ⊥,并且V V V =+2131V V ⊥,并且V V V =+313311312222V V V V ∈∈+=⇒∈∀⇒∈∀ααααααα,,00((111131112=⇒=⇒+=⇒ααααααααα),),(),),( 32323323V V V V ⊂⇒∈⇒∈=⇒αααα, 同理可证:3223V V V V =⇒⊂第三章 线性变换一、线性变换的定义1、 定义:线性变换假设:=T 线性空间),;;(•+P V 的一个变换 如果:T 满足两个条件⑴、V T T T ∈∀+=+βαβαβα,,)()()( ⑵、V P k kT k T ∈∀∈∀=ααα,,)()(则称:=T 线性变换2、 等价条件⑴、性质:T 的两个条件等价于V P k k T k T k k k T ∈∀∈∀+=+βαβαβα,,,,212121)()()(⑵、证明:①必要性:)()()()()(212121βαβαβαT k T k k T k T k k T +=+=+②充分性:)()()(121βαβαT T T k k +=+⇒==)()(021ααkT k T k k k =⇒==,二、线性变换的运算1、 线性变换的乘积⑴、定义:V T T T T ∈=ααα,))(())((2121 ⑵、性质:线性变换的乘积,仍是线性变换⑶、证明:①))(())(())((2212121βαβαβα()T T T T T T T +=+=+))(())(())(())((21212121βαβαT T T T T T T T +=+=②)))ααααα)(()(()(())(())((2121212121T T k T kT kT T k T T k T T ====2、 线性变换的加法⑴、定义:V T T T T ∈+=+αααα,)()())((2121 ⑵、性质:线性变换的加法,仍是线性变换 ⑶、证明:同上类似三、线性变换的矩阵1、 定理:⑴、定理:如果:=V 数域P 上的n 维线性空间),;;(•+=P V V n =εεε,,,Λ21的一组基 =n a a a ,,,Λ21任意一组向量那么:存在唯一的一个线性变换T使得:n i a T i i ,,,,Λ21==ε ⑵、证明:存在性和唯一性2、 唯一性⑴、性质:如果:n i T T i i ,,,,Λ2121==εε 那么:21T T =⑵、证明:n n x x x x V x εεε+++=⇒∈∀Λ2211n n n n T x T x T x x x x T x T εεεεεε1212111221111)(+++=+++=⇒ΛΛ x T x x x T T x T x T x n n n n 2221122222121)(=+++=+++=εεεεεεΛΛ3、 存在性⑴、性质:如果:=V 数域P 上的n 维线性空间),;;(•+=P V V n =εεε,,,Λ21的一组基=n a a a ,,,Λ21任意一组向量那么:存在一个线性变换T使得:n i a T i i ,,,,Λ21==ε⑵、证明:①变换T :∑==+++=⇒∈∀ni ii n n x x x x x V x 12211εεεεΛ∑==+++=⇒ni ii n n ax a x a x a x Tx 12211Λ②线性变换T :假设:∑∑===⇒∈∀=⇒∈∀ni ii ni i i z z V z y y V y 11εε,∑∑===+=+⇒ni i i ni i i iky ky z yz y 11)(εε,Tz Ty a z a y a z yz y T ni i i n i i i ni i i i+=+=+=+⇒∑∑∑===111)()(kTy a y k aky ky T ni i i ni ii ===⇒∑∑==11)(③证明i i a T =ε:n i i εεεεε010021+++++=ΛΛi n i a a a a a T =+++++=⇒0100221ΛΛε4、 定义:如果:=V 数域P 上的n 维线性空间),;;(•+=P V V n =εεε,,,Λ21的一组基 V T =的一个线性变换那么:⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=⇒nnn n n n n n n n a a a T a a a T a a a T εεεεεεεεεεεεΛΛΛΛ22112222112212211111 )()(2121222211121121n nn n n n n n T T T a a a a a a a a a εεεεεε,,,,,,ΛΛΛΛΛΛΛΛΛ=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⇒ )()(2121n n T T T A εεεεεε,,,,,,ΛΛ=⇒ 则称:=A 线性变换T 在n εεε,,,Λ21下的矩阵⑵、性质:如果:取定一组基并且:=ϕ线性变换n n T ⨯→矩阵的一个映射那么:=ϕ双射⑶、证明:①单射:假设:2211)()(A T A T ==ϕϕ,212121T T T T A A i i =⇒=⇒=εε【唯一性】②满射:i i ni i i i a T a a a a A =⇒=⇒ε)(21,,,Λ【存在性】5、 定理⑴、线性变换的加法,对应于矩阵的加法⑵、线性变换的乘积,对应于矩阵的乘积⑶、线性变换的数乘,对应于矩阵的数乘⑷、线性变换的逆,对应于矩阵的逆第二部分泛函分析第一章 度量空间第一节 度量空间一、度量空间1、 符号约定:),;;(),;;(•+⇒•+F R P V2、 定义:距离ρρ==),(y x 的两条性质⑴、正定:R y x y x y x y x ∈∀=⇔=≥,;),(,),(00ρρ⑵、三角不等式:R z y x z y z x y x ∈∀+≤,,);,(),(),(ρρρ3、 定义:度量空间)ρ,(R =【距离空间】⑴、解释:=R 非空集合⑵、解释:=ρ距离【满足ρ的两条性质】4、 对称性⑴、性质:),(),(x y y x ρρ= ⑵、证明:),(),(),(z y z x y x ρρρ+≤),(),(),(),(),(x y y x x y x x y x ρρρρρ≤⇒+≤⇒同理可证:),(),(),(),(x y y x y x x y ρρρρ=⇒≤二、基本概念1、 子空间⑴、性质:度量空间的任何子空间,仍是度量空间⑵、证明:假设:=)ρ,(R 度量空间, =)ρ,(M 度量空间的子空间证明:=M 非空子集,ρ的两条性质仍然满足2、 一致离散:如果:0>∃α使得:y x R y x ≠∈∀,,;都有:αρ>),(y x则称:=R 一致离散的度量空间3、 等距映射和等距同构⑴、定义:等距映射:假设:=))11ρρ,,(,(R R 度量空间;1R R →=ϕ的映射 如果:),(),(y x y x ϕϕρρ1= 则称:1R R →=ϕ的等距映射⑵、性质:1R R →=ϕ的等距映射1R R →=⇒ϕ的单射⑶、证明:y x y x y x y x ϕϕϕϕρρ≠⇒≠⇒≠⇒≠001),(),(⑷、定义:等距同构:假设:1R R →=ϕ的等距映射如果:1)(R R =ϕ则称:=))11ρρ,,(,(R R 等距同构【双射】 ⑸、性质:11)(R R R R →=⇒=ϕϕ的满射三、极限1、 极限⑴、定义:假设:=R 度量空间,R x n x n ∈=,,,)21(Λ 如果:0)(lim =∞→x x n n ,ρ则称:点列}{n x 按距离收敛于x记为:x x n →【x x n n =∞→lim 】 并称:=}{n x 收敛点列,}{n x x =的极限⑵、归纳:0)(lim lim =⇔=⇔→∞→∞→x x x x x x n n n n n ,ρ2、 性质⑴、性质:收敛点列的极限唯一⑵、证明:假设:0)(lim =⇒→∞→x x x x n n n ,ρ 0)(lim =⇒→∞→y x y x n n n ,ρ )()()(0y x x x y x n n ,,,ρρρ+≤≤⇒【三角不等式】0)]()([lim )(0=+≤≤⇒∞→y x x x y x n n n ,,,ρρρ【夹逼原则】 y x y x =⇒=⇒0)(,ρ3、 性质⑴、性质:如果:00y y x x n n →→,那么:)()(lim 00y x y x n n n ,,ρρ=∞→【y x y x ,,=)(ρ的连续函数】 ⑵、证明:0)(lim 00=⇒→∞→x x x x n n n ,ρ 0)(lim 00=⇒→∞→y y y y n n n ,ρ )()()()(0000n n n n y y y x x x y x ,,,,ρρρρ++≤)()()()(0000y y x x y x y x n n n n ,,,,ρρρρ+≤-⇒)()()()(0000y y y x x x y x n n n n ,,,,ρρρρ++≤)()()()(0000y y x x y x y x n n n n ,,,,ρρρρ+≤-⇒)()(|)()(|00000y y x x y x y x n n n n ,,,,ρρρρ+≤-≤⇒0)]()([lim |)()(|lim 00000=+≤-≤⇒∞→∞→y y x x y x y x n n n n n n ,,,,ρρρρ )()(lim 00y x y x n n n ,,ρρ=⇒∞→4、 定义:开球})(|{)(00R x r x x x r x O ∈<==,,,ρ其中:=R 度量空间,R x ∈0,+∞<<r 0【=r 有限正数】5、 定义:有界集:假设:=R 度量空间,R M =中的点集如果:M 包含在某个开球)(0r x O ,中则称:R M =中的有界集6、 性质⑴、性质:如果=}{n x 收敛点列,那么=}{n x 有界集⑵、证明:=}{n x 收敛点列0lim x x n n =⇒∞→ 0>∃⇒N ,使得当N n >时,都有1)(0<x x n ,ρ1)1)()(m ax (001+=⇒,,,,,x x x x r N ρρΛ }{n x ⇒包含在开球)(0r x O ,中四、常见的度量空间1、 欧氏空间nE =,其中:)()(y x y x y x --=,,ρ【内积】2、 函数空间==][b a C ,区间][b a ,上的连续函数的全体其中:|)()(|max )(][t y t x y x b a t -=∈,,ρ第二节 范数一、范数1、 定义:R 上的实值函数)(x P 的4个条件【范数的4个条件】⑴、正定1:R x x P ∈∀≥,0)(⑵、齐次性:R x F x P x P ∈∀∈∀=,,ααα)(||)(⑶、三角不等式:R y x y P x P y x P ∈∀+≤+,,)()()(⑷、正定2:00)(=⇔=x x P2、 定义:范数:假设:=•+),;;(F R 实数域F 上的线性空间如果:R 上的实值函数)(x P 满足范数的4个条件则称:x x P =)(的范数记为:x x =||||的范数【)(||||x P x =】并称:=R 赋范线性空间【赋范空间】3、 性质⑴、定义:半范数:如果满足范数的前3个条件⑵、性质:范数的第4个条件可以简化为:00)(=⇒=x x P⑶、证明:0)0(0)(|0|)0()0(00=⇒===⇒=P x P x P P x4、 典例:函数空间][b a C ,⑴、性质:如果:][|)(|max ||||][b a C f x f f b a x ,,,∈∀=∈ 那么:=][b a C ,赋范线性空间⑵、证明:①=][b a C ,线性空间),;;(•+F R 定义:=+向量加法,=•向量数乘⇒两种运算封闭+满足8个条件②范数的4个条件正定1:0|)(|max ||||][≥=∈x f f b a x , 齐次性:||||*|||)(|max |||)(|max ||||][][f x f x f f b a x b a x αααα===∈∈,, 三角不等式:|)()(|max ||||][x g x f g f b a x +=+∈, |||||||||)(|max |)(|max ][][g f x g x f b a x b a x +=+≤∈∈,, 正定2:0)(0|)(|max 0||||][=⇒=⇒=∈x f x f f b a x ,5、 典例:n 维向量空间n R⑴、范数1:n n ni i R x x x x x x x x x ∈=∀===∑=)()(||||||2112,,,,,Λ ⑵、范数2:∑==n i ix x 1|||||| ⑶、范数3:||max ||||1i ni x x ≤≤=二、范数和距离1、 性质⑴、性质:利用范数可以定义距离:||||)(y x y x -=,ρ⑵、证明:距离的两个条件①正定:0||||)(≥-=y x y x ,ρy x y x y x =⇔=-⇔=0||||0)(,ρ②三角不等式:||||||||||||y x y x +≤+y x y x y z y z x x -=+⇒-=-=,||||||||||||||||||||z y z x y z z x y x -+-=-+-≤-⇒)()()(z y z x y x ,,,ρρρ+≤⇒⑶、归纳:赋范线性空间+利用范数定义距离⇒度量空间【线性空间+范数+距离】2、 极限⑴、定义:假设:=R 赋范线性空间,R x n x n ∈=,,,)21(Λ 如果:0||||lim =-∞→x x n n 则称:点列}{n x 按范数收敛于x记为:x x n →【x x n n =∞→lim 】 ⑵、归纳:0||||lim lim =-⇔=⇔→∞→∞→x x x x x x n n n n n3、 性质⑴、性质:如果0x x n →,那么||||||||lim 0x x n n =∞→【x x =||||的连续函数】 ⑵、证明:0||||lim 00=-⇒→∞→x x x x n n n ||||||||||||||||||||||||0000x x x x x x x x n n n n -≤-⇒+-≤||||||||||||||||||||||||0000x x x x x x x x n n n n -≤-⇒+-≤||||||||||||||000x x x x n n -≤-≤⇒0||||lim |||]||||[|||lim 000=-≤-≤⇒∞→∞→x x x x n n n n ||||||||lim 0||]||||[||lim 0||||||||||lim 000x x x x x x n n n n n n =⇒=-⇒=-⇒∞→∞→∞→4、 性质⑴、性质:利用范数定义距离,必然满足两个条件①、)0()(,,y x y x -=ρρ②、)0(||)0(,,x x ρααρ=⑵、证明:①、||||)(y x y x -=,ρ||||||0||)0(y x y x y x -=--=-,ρ②、||||*||||||||0||)0(x x x x ααααρ==-=,||||*||||0||*||)0(||x x x ααρα=-=,5、 性质⑴、性质:如果:)(y x ,ρ满足两个条件那么:可以利用距离定义范数:)0(||||,x x ρ=⑵、证明:范数的4个性质①正定1:0)0(||||≥=,x x ρ②齐次性:||||*||)0(||)0(||||x x x x αρααρα===,,③三角不等式:),(),(),(z y z x y x ρρρ+≤ ),(),(),(),(),(),(00000y x y x y x y x ρρρρρρ+≤-⇒+≤⇒ ),(),(),(00|1|0y y y ρρρ=-=- ),(),(),(),(),(),(000000y x y x y x y x ρρρρρρ+≤+⇒-+≤-⇒ ||||||||||||y x y x +≤+⇒④正定2:00)0(0||||=⇒=⇒=x x x ,ρ6、 定理⑴、利用范数,可以定义距离⑵、利用函数,可以定义距离+满足两个条件⑶、利用距离+满足两个条件,可以定义范数⑷、利用距离,不一定可以定义范数【反例】第二章 有界线性算子第一节 度量空间中的点集1、 基本概念⑴、概念:0x 的-ε环境})(|{)(00R x x x x x O ∈<==,,,ερε⑵、概念:A x =0的内点:如果存在0x 的一个-ε环境A x O ⊂=)(0ε,⑶、概念:=A 开集:如果A 的每一个点都是内点⑷、概念:0x 的环境==)(0x O 包含0x 的开集2、 基本性质⑴、性质:)(00ε,x O x ∈,)(00ε,x O x =的内点【ερ<=0)(00x x ,】【2*εε=】⑵、性质:)(00x O x ∈,)(00x O x =的内点【定义】3、 重要性质⑴、性质:=)(0ε,x O 开集⑵、证明:ερε<⇒∈∀)()(00x z x O z ,,)(*0)(000x z x z ,,ρεερε-<<⇒-<⇒*)(*)(ερε<⇒∈∀z x z O x ,, ερερρρ<+<+≤⇒)(*)()()(000z x z x z x x x ,,,,)(*)()(00εεε,,,x O z O x O x ⊂⇒∈⇒)(0ε,x O z =⇒的内点=⇒)(0ε,x O 开集4、 重要性质⑴、性质:0x 的任何一个-ε环境)(0ε,x O =,都是0x 的环境⑵、意义:-ε环境=环境的特殊情况⑶、证明:=∈)()(000εε,,,x O x O x 开集⑷、性质:A x =0的内点⇔存在0x 的一个环境A x O ⊂=)(0⑸、意义:利用环境定义内点⑹、证明:①:A x =0的内点⇒存在0x 的一个-ε环境A x O ⊂=)(0ε,⇒存在0x 的一个环境A x O ⊂=)(0②:存在0x 的一个环境A x O ⊂=)(0)(00x O x =⇒的内点⇒存在0x 的一个-ε环境)()(00x O x O ⊂=ε,⇒存在0x 的一个-ε环境A x O ⊂=)(0ε,A x =⇒0的内点5、 定理⑴、定理:⇔→0x x n对于0x 的任何环境)(0x O =,存在0>N ,当N n >时,)(0x O x n ∈⑵、意义:利用环境定义收敛点列⑶、证明:①:任取0x 的一个环境)(0x O =)(00x O x =⇒的内点⇒存在0x 的一个-ε环境)()(00x O x O ⊂=ε,⇒→0x x n 对于0>ε,存在0>N ,当N n >时,ερ<)(0x x n ,)()(00x O x x O x n n ∈⇒∈⇒ε,②:对于0x 的任何环境)(0x O =,存在0>N ,当N n >时,)(0x O x n ∈⇒对于0x 的任何一个-ε环境)(0ε,x O =,存在0>N ,当N n >时,)(0ε,x O x n ∈00)(x x x x n n →⇒<⇒ερ,⑷、推论:⇔→0x x n对于0x 的任何-ε环境)(0ε,x O =,存在0>N ,当N n >时,)(0ε,x O x n ∈ ⑸、意义:利用-ε环境定义收敛点列第二节 连续映射1、 函数)(x f 在0x 点连续⑴、传统描述:对于00>∃>∀δε,,当δ<-||0x x 时,ε<-|)()(|0x f x f⑵、环境描述:对于)(0x f 的任何-ε环境))((0ε,x f O =存在0x 的一个-δ环境)(0δ,x O =当)(0δ,x O x ∈时,))(()(0ε,x f O x f ∈2、 映射f 在0x 点连续【双重扩展】⑴、定义:假设:=Y X ,度量空间,X D =的一个子空间,Y D f →=的映射如果:对于)(0x f 的任何环境Y x f O ⊂=))((0存在0x 的一个环境D x O ⊂=)(0当)(0x O x ∈时,))(()(0x f O x f ∈则称:映射f 在0x 点连续⑵、定义:如果:映射f 在D 上的每一点都连续则称:D f =上的连续映射3、 等价定理⑴、定理:①:映射f 在0x 点连续②:对于)(0x f 的任何-ε环境))((0ε,x f O =存在0x 的一个-δ环境)(0δ,x O =当)(0δ,x O x ∈时,))(()(0ε,x f O x f ∈③:)()(00x f x f x x n n →⇒→⑵、证明:①⇒②映射f 在0x 点连续⇒对于)(0x f 的任何环境))((0x f O =存在0x 的一个环境)(0x O =当)(0x O x ∈时,))(()(0x f O x f ∈【定义】⇒对于)(0x f 的任何-ε环境))((0ε,x f O =存在0x 的一个环境)(0x O =当)(0x O x ∈时,))(()(0ε,x f O x f ∈【-ε环境=环境的特殊情况】 )(00x O x =的内点⇒存在0x 的一个-δ环境)()(00x O x O ⊂=δ,⇒结论【全局满足则局部满足】⑶、证明:②⇒③⇒→0x x n 对于0>∀δ,存在0>N ,当N n >时,)(0δ,x O x n ⊂ N 由δ决定,δ由ε决定⇒N 由ε决定⇒对于0>∀ε,存在0>N ,当N n >时,))(()(0ε,x f O x f n ∈)()(0x f x f n →⇒⑷、证明:③⇒①反证法:映射f 在0x 点不连续⇒存在)(0x f 的一个环境))((0x f O =对于0x 的任何环境)(0x O =存在)(0x O x ∈,))(()(0x f O x f ∉⇒对于0x 的任何环境)1(0nx O ,=,存在)(0x O x n ∈,))(()(0x f O x f n ∉ 0)(lim 1)(0)(000=⇒<<⇒∈∞→x x nx x x O x n n n n ,,ρρ【夹逼定理】 )()(00x f x f x x n n →⇒→⇒【条件】⇒对于0>∀ε,存在0>N ,当N n >时,))(()(0ε,x f O x f n ∈ ))(()(00x f O x f =的内点⇒存在)(0x f 的一个-*ε环境))((*))((00x f O x f O ⊂=ε,⇒对于0*>ε,存在0>N ,当N n >时,))((*))(()(00x f O x f O x f n ⊂∈ε, ⇒存在0>N ,当N n >时,))(()(0x f O x f n ∈⇒矛盾【N 由*ε决定,*ε由))((0x f O 决定】第三节 线性算子1、 算子⑴、定义:算子=映射⑵、定义:泛函=取值于实数域或者复数域的算子2、 线性算子⑴、定义:假设:=Y X ,实数域F 上的线性空间X D =的子空间Y D T →=的映射如果:T 满足条件:D F k k T k T k k k T ∈∀∈∀+=+βαβαβα,,,,212121)()()(则称:=T 线性算子并称:T D =的定义域,T D x Tx TD =∈=}|{的值域⑵、定义:如果:=T 线性算子并且:F TD ⊂则称:=T 线性泛函第四节 线性算子的有界性与连续性一、有界算子1、 连续定理⑴、定理:线性算子一点连续,处处连续⑵、描述:假设:=Y X ,赋范线性空间,X D =的一个子空间,Y D T →=的线性算子 如果:T 在D x ∈0连续那么:D T =上的连续算子⑶、证明:①:假设:x x D x n →∀⇒∈∀②:x x n →⇒对于0>∀ε,存在0>N ,当N n >时,ερ<)(x x n ,||||)(x x x x n n -=,ρ【=X 赋范线性空间】||||)(00x x x x x x n n -=+-,ρ⇒对于0>∀ε,存在0>N ,当N n >时,ερ<+-)(00x x x x n ,00x x x x n →+-⇒③:T 在0x 点连续00)(Tx x x x T n →+-⇒【等价定理①⇒③】00Tx Tx Tx Tx n →+-⇒【=T 线性算子】Tx Tx n →⇒【=Y 赋范线性空间】T ⇒在x 点连续【+∀n x 等价定理③⇒①】T ⇒在D 上处处连续【x ∀】。
1.非线性算子:1.1基本定义:一致连续:略过例子。
全连续算子:1.2.一些引理:集合测度的非负性和单侧性。
可测函数证明:一个函数满足如下条件x的集合为可测集的话,则为可测函数依测度收敛传递性。
证明f(S)为Lp2(G)中的有界集即可。
重点!:1.3.把数学分析中的全微分和方向导数概念推广到巴拿赫空间上的算子(抽象函数)中去。
抽象函数积分定义:用积分的任意划分定义。
抽象导数定义:附带几个定理:正题:两种算子介绍是数学分析中全微分(及其算子)的推广证明中喜欢用:证明其可该微分记住如下证明:巴拿赫空间下抽象函数的复合函数求导:特别重要的一般算子中值定理不成立:因为根据多元微分学向量表示法和代数方程组解变量的个数的时候不一定有公共解。
反证法,设A’(无穷)不连续。
其泰勒公式:证明用变参的方法,将其变到m(t)一个数学分析函数,然后对其泰勒展开换回F,让t取得特定值的时候就是上述泰勒公式。
部分与F微分的关系,重点!:F强于G微分关键性在于:所以存在略,所以说只要让h支离破碎,就算t是满足导数定义的,则为处处有界线性G微分但不可以F微分。
2.拓扑度理论:2.1.Brouwer度重点引理:Deg的重要定义:2.2不过要注意:PS:一些引理:用borsuk定理证明。
重点!:拓扑度乘积定理不动点定理与其相关:重点!核心:原则:反证法。
固有值和固有元以及歧点。
注意:歧点的定义非紧性测度:因为是有限个所以是松的,如果不能表现成有限的话可能就会是紧的。
解释第一个为0,则为强迫单点压缩从而导致有限的也能紧。
3.非线性算子方程正解:仅记录部分作用:AX=X的正解。
根据代数的集合关系构建的形状模型,数学家们给出了锥这个集合形状概念,类似于凸包的定义过程。
其中,引入的是半序集。
Ps:3.2增减与凹凸算子类似于函数增减和凹凸。
4.多解定理与单调映像重点定义:希尔伯特投影定义单调映像:MINIMAX原理重要的前提:最后的一个简单掌握需要:一. 名词解释弱收敛:弱*收敛:, 0()k pW :强制:Gateaux可微:Frechet可微:紧映射:正则点:临界点,正则值,临界值:2C映射的Brouwer度全连续场全连续场的Leray-Schauder度二. 举例说明无穷维空间中的有界闭集不是紧集。
泛函分析知识总结与举例、应用学习感悟一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间nR (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。
1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。
(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。
这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。
⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。
⑶ 集合X 不一定是数集,也不一定是代数结构。
为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。
⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。
1.1举例1.11离散的度量空间:设X 是任意的非空集合,对X 中任意两点x,y ∈X ,令 ()1x y d x y =0x=y≠⎧⎨⎩,当,,当,则称(X ,d )为离散度量空间。
泛函分析知识点总结1.Baire定理定理(Baire纲定理)完备的距离空间是第⼆类型集。
解释:完备的距离空间(X,d),∀x∈X都是内点,因为X在X中是开集。
⼀个⽆处稠密(nowhere dense)的集合就是闭包不含内点的集合不会是整个X,即X不是第⼀类型集,所以只能是第⼆类型集。
注:完备的距离空间是第⼆类型集,那么它的闭包⾄少存在⼀个内点。
这个经常被⽤来证明。
例如,开映射定理、闭图像定理等。
2. 闭包和导集的区别根据定义,集合的闭包是集合的导集和集合的并。
导集是集合所有聚点组成的集合,不包含孤⽴点。
所以闭包是集合导集和孤⽴点组成的集合。
3.闭集在度量空间中,如果⼀个集合所有的极限点都是这个集合中的点,那么这个集合是闭集。
4.不动点定理压缩映射:设(X,d)是距离空间,T是X到X的映射,如果存在⼀个常数θ(0≤θ<1),对于所有的x,y∈X,满⾜下述不等式:d(Tx,Ty)<θd(x,y)则称T是X上的⼀个压缩映射。
不动点定理:设X是完备的距离空间,T是X到X的压缩映射,则T在X上有唯⼀的不动点x∗.即Tx∗=x∗是⽅程Tx=x在X上的唯⼀解。
5.施密特正交化将⼀个线性⽆关的集合{x n}进⾏施密特正交化。
e1=x1 ||x1||e2=x2−<x2,e1>e1 ||x2−<x2,e1>e1||e j+1=x j+1−j∑k=1<x j+1,e k>e k ||x j+1−j∑k=1<x j+1,e k>e k||注:本质上说就是让x j+1减去其在e k,k=0,…,j上的分量,就正交化了。
然后再除以对应范数,进⾏单位化。
6.Hilbert空间的同构n为的实(复)Hilbert空间与R n(C n)同构。
(保距离,保线性,保范数,保内积)⽆限维可分Hilbert空间与l2空间(L2[0,1])等距同构。
7.算⼦的连续性和有界性连续性:对于X中的任何收敛于x0的点列{x n},恒有Tx n→Tx0,n→=∞有界性:存在正常数M,使得对⼀切x∈X,有||Tx||≤M||x||⼀点连续,则处处连续:设X和Y是数域\textbf{F}上的线性赋范空间,T:X→Y是⼀个线性算⼦。
泛函分析读书笔记在学习泛函分析之前,就听说泛函是大学里最难学的一门课,却也是很重要而不得不学的!泛函分析结课之际,利用上课所做的笔记,加上课外阅读,简单谈谈我对泛函分析的了解。
泛函分析是20世纪30年代形成的数学分科,是从变分问题,积分方程和理论物理的研究中发展起来的。
它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的泛函,算子和极限理论。
它可以看作无限维向量空间的解析几何及数学分析。
泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。
近十几年来,泛函分析在工程技术方面有获得更为有效的应用。
它还渗透到数学内部的各个分支中去,起着重要的作用。
泛函分析是现代数学的一个分支,隶属于分析学,其研究的主要对象是函数构成的空间。
泛函分析是由对函数的变换(如傅立叶变换等)的性质的研究和对微分方程以及积分方程的研究发展而来的。
泛函分析的特点是它不但把古典分析的基本概念和方法一般化了,而且还把这些概念和方法几何化了。
比如,不同类型的函数可以看作是“函数空间”的点或矢量,这样最后得到了“抽象空间”这个一般的概念。
它既包含了以前讨论过的几何对象,也包括了不同的函数空间。
这是泛函分析的发展、应用、研究对象以及特点。
由于泛函分析源自研究各种函数空间,在函数空间里函数列的收敛有不同的类型(比如逐点收敛、一致收敛、弱收敛等),这说明函数空间里有不同的拓扑。
而函数空间一般是无穷维线性空间。
所以抽象的泛函分析研究的是一般的(无穷维的)带有一定拓扑的线性空间。
拓扑线性空间的定义就是一个带有拓扑结构的线性空间,使得线性空间的加法和数乘都是连续映射的空间。
泛函中存在诸多空间,这里对于几个重要的空间予以认识。
1. 度量空间(距离空间)定义:设X 是一个集合,,x y X ∀∈,若能定义实函数(),x y ρ,使距离满足: (1) 非负性:(),0x y ρ≥ (2) 对称性:()(),=x y y x ρρ,(3) 三角不等式:()()(),x y x z z ρρρ≤+,y , z X ∀∈ 则称X 为度量空间。
《泛函分析》读书笔记Reading Notes about Functional Analysis崔继峰所谓的泛函呢,就是一般函数,泛函分析当然就是一般函数的分析研究。
在学习泛函之前,需要有扎实的《实变函数》知识。
大学期间,曾用半年时间学过由南开大学刘炳初教授编著,科学出版社出版的《泛函分析》,讲课的是哈尔滨工业大学的包革军教授,他讲泛函的最大特点是把泛函与几何图形有机结合,把艰深的纯理论讲的惟妙惟肖。
在进入研究生学习阶段,《泛函分析》作为计算数学研究生的基础理论课程,是必选的。
我们选用的教材是由武汉大学刘培德教授主编,武汉大学出版社出版的《泛函分析(第二版)》,该教材是面向本科生的,系里之所以考虑选择此教材,是由于考虑到有些学生在本科阶段没有或者很粗浅的认识了《泛函分析》这门课程,主讲该课程的是高云兰博士,她的方向就是算子方面的研究,所以讲解该课程那是轻车熟路了。
课时大约是48学时(粗略估计)。
由于以下两方面的原因:1)对于《泛函分析》认识很粗浅;2)第一次写读书笔记(尤其是专业课类),不知道如何从略。
所以读书笔记可能从在诸多问题,希望老师见谅!下面我从几个方面写本学期学习《泛函分析》的感受和认识。
我本着这样态度写该笔记:1)了解泛函是什么,泛函的发展(很多教材把这个从略)2)把空间的理论知识系统学习,对于其他理论的学习作抛砖引玉之用。
3)学习泛函的实际作用(也就是附录里的滤波器理论的应用)。
泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。
它是20世纪30年代形成的。
从变分法、微分方程、积分方程、函数论以及量子物理等的研究中发展起来的,它运用几何学、代数学的观点和方法研究分析学的课题,可看作无限维的分析学。
一、泛函分析的产生十九世纪以来,数学的发展进入了一个新的阶段。
这就是,由于对欧几里德第五公设的研究,引出了非欧几何这门新的学科;对于代数方程求解的一般思考,最后建立并发展了群论;对数学分析的研究又建立了集合论。
这些新的理论都为用统一的观点把古典分析的基本概念和方法一般化准备了条件。
本世纪初,瑞典数学家弗列特荷姆和法国数学家阿达玛发表的著作中,出现了把分析学一般化的萌芽。
随后,希尔伯特和海令哲来创了“希尔伯特空间”的研究。
到了二十年代,在数学界已经逐渐形成了一般分析学,也就是泛函分析的基本概念。
由于分析学中许多新部门的形成,揭示出分析、代数、集合的许多概念和方法常常存在相似的地方。
比如,代数方程求根和微分方程求解都可以应用逐次逼近法,并且解的存在和唯一性条件也极其相似。
这种相似在积分方程论中表现得就更为突出了。
泛函分析的产生正是和这种情况有关,有些乍看起来很不相干的东西,都存在着类似的地方。
因此它启发人们从这些类似的东西中探寻一般的真正属于本质的东西。
非欧几何的确立拓广了人们对空间的认知,n维空间几何的产生允许我们把多变函数用几何学的语言解释成多维空间的影响。
这样,就显示出了分析和几何之间的相似的地方,同时存在着把分析几何化的一种可能性。
这种可能性要求把几何概念进一步推广,以至最后把欧氏空间扩充成无穷维数的空间。
这时候,函数概念被赋予了更为一般的意义,古典分析中的函数概念是指两个数集之间所建立的一种对应关系。
现代数学的发展却是要求建立两个任意集合之间的某种对应关系。
这里我们先介绍一下算子的概念。
算子也叫算符,在数学上,把无限维空间到无限维空间的变换叫做算子。
研究无限维线性空间上的泛函数和算子理论,就产生了一门新的分析数学,叫做泛函分析。
在二十世纪三十年代,泛函分析就已经成为数学中一门独立的学科了。
二、泛函分析的特点和内容泛函分析的特点是它不但把古典分析的基本概念和方法一般化了,而且还把这些概念和方法几何化了。
比如,不同类型的函数可以看作是“函数空间”的点或矢量,这样最后得到了“抽象空间”这个一般的概念。
它既包含了以前讨论过的几何对象,也包括了不同的函数空间。
泛函分析对于研究现代物理学是一个有力的工具。
n维空间可以用来描述具有n个自由度的力学系统的运动,实际上需要有新的数学工具来描述具有无穷多自由度的力学系统。
比如梁的震动问题就是无穷多自由度力学系统的例子。
一般来说,从质点力学过渡到连续介质力学,就要由有穷自由度系统过渡到无穷自由度系统。
现代物理学中的量子场理论就属于无穷自由度系统。
正如研究有穷自由度系统要求n维空间的几何学和微积分学作为工具一样,研究无穷自由度的系统需要无穷维空间的几何学和分析学,这正是泛函分析的基本内容。
因袭,泛函分析也可以通俗的叫做无穷维空间的几何学和微积分学。
古典分析中的基本方法,也就是用线性的对象去逼近非线性的对象,完全可以运用到泛函分析这门学科中。
泛函分析是分析数学中最“年轻”的分支,它是古典分析观点的推广,它综合函数论、几何和代数的观点研究无穷维向量空间上的函数、算子、和极限理论。
他在二十世纪四十到五十年代就已经成为一门理论完备、内容丰富的数学学科了。
半个多世纪来,泛函分析一方面以其他众多学科所提供的素材来提取自己研究的对象,和某些研究手段,并形成了自己的许多重要分支,例如算子谱理论、巴拿赫代数、拓扑线性空间理论、广义函数论等等;另一方面,它也强有力地推动着其他不少分析学科的发展。
它在微分方程、概率论、函数论、连续介质力学、量子物理、计算数学、控制论、最优化理论等学科中都有重要的应用,还是建立群上调和分析理论的基本工具,也是研究无限个自由度物理系统的重要而自然的工具之一。
今天,它的观点和方法已经渗入到不少工程技术性的学科之中,已成为近代分析的基础之一。
泛函分析在数学物理方程、概率论、计算数学、连续介质力学、量子物理学等学科有着广泛的应用。
近十几年来,泛函分析在工程技术方面有获得更为有效的应用。
它还渗透到数学内部的各个分支中去,起着重要的作用。
三、《泛函分析》空间知识认识泛函中存在诸多空间,这里对于几个重要的空间予以认识。
1. 度量空间我们在作物理、化学、生物等实验时,通过观察会得到很多值,但总是近似的,这时自然要考虑近似值与准确值的接近程度,反映在数学上这是一个极限问题。
数学分析中定义R 中点列n x 的极限是x 时,我们是用||x x n -来表示n x 和x 的接近程度,事实上,||x x n -可表示为数轴上n x 和x 这两点间的距离,那么实数集R 中点列n x 收敛于x 也就是指n x 和x 之间的距离随着∞→n 而趋于0,即0),(lim =∞→x x d n n 。
于是人们就想,在一般的点集X 中如果也有“距离”,那么在点集X 中也可借这一距离来定义极限,而究竟什么是距离呢?1.1度量空间的定义Definition 1.1设X 为一非空集合。
若存在二元函数R X X d →⨯:,使得X z y x ∈∀,,,均满足以下三个条件:(1),0),(≥y x d 且y x y x d =⇔=0),((非负性)(2)),(),(x y d y x d =(对称性)(3)),(),(),(z y d y x d z x d +≤(三角不等式),则称d 为X 上的一个距离函数,(d X ,)为度量空间或距离空间,),(y x d 为y x ,两点间的距离。
Notes : 若(d X ,)为度量空间,Y 是X 的一个非空子集,则(d Y ,)也是一个度量空间,称为(d X ,)的子空间。
我们可以验证:欧式空间n R ,离散度量空间,连续函数空间],[b a C ,有界数列空间∞l ,p 次幂可和的数列空间p l ,p 次幂可积函数空间],[b a L p )1(≥p ,均满足距离空间的性质。
Appendix :p 次幂可积函数空间],[b a L p )1(≥p 介绍}L b][a,|)(| |)({],[可积上在p p t f t f b a L =,在],[b a L p 中,我们把几乎处处相等的函数视为同一函数。
],[b a L p 有下列重要性质:(1)对线性运算是封闭的。
即若],[,b a L g f p ∈,则],[],,[b a L g f b a L f p p ∈+∈α,其中α是常数。
(2))1](,[],[≥⊂p b a L b a L p 。
设],[b a L f p ∈,令)1|(|≥=f E A ,],[),1|(|b a E f E B =<=,则dm f dm f dm f B A ba ⎰⎰⎰+=||||||)(||a b dm f Ap-+≤⎰ +∞<-+≤⎰)(||a b dm f pb a 故),(b a L f ∈。
(3)],[,b a L g f p ∈∀,定义=),(g f d p pp b a dm t g t f 1|)()(|⎪⎭⎫ ⎝⎛-⎰ (2.6) 则p d 是一个距离函数。
称)],,[(p p d b a L 为p 次幂可积函数空间,简记为],[b a L p 。
1.2度量空间有重要的定理Theory 1 对度量空间),(d X 有(1)任意个开集的并集是开集; 有限个开集的交集是开集;(2)任意个闭集的交集是闭集; 有限个闭集的并集是闭集;(3)X 与Φ既是开集又是闭集.Theory 2设),(d X 是度量空间,X E X x ⊂∈,0,则0x 是E 的聚点的充要条件是存在E 中点列{})(0x x x n n ≠,使)(0),(0∞→→n x x d n .Theory 3 设),(d X 是度量空间,E x X E ∈⊂,,则下面的三个陈述是等价的: (1) E x ∈;(2) x 的任一邻域中都有E 的点;(3)有点列E x n ∈,使)(0),(0∞→→n x x d n .Theory 4 设),(d X 是度量空间, E 是X 的非空子集,则E 为闭集的充要条件是E E ⊂'.要比较透彻的研究度量空间,不得不提到一下内容:2. 映射的连续与一致连续性Definition 2.1 设X ,Y 是距离空间,f 是X 到Y 的一个映射。
X x ∈0如果对任何0>ε,存在0>δ当δρ<),(0x x 时,有ερ<),(0fx fx 则称f 在0x 连续。
又若f 在X 中每一点都有连续,则称f 是X 上的连续映射。
若对任何0>ε,存在0)(>=εδδ,只要X x x ∈21 ,,且δ<),(21x x d ,就有ερ<))(),((21x f x f 成立,则称f 在X 上一致连续。
Example 1 ),(0x x ρ是距离空间X 上的连续函数,其中0x 是X 的一固定点。
proof: 任取x '∈X 。
因为对X x ∈,),(),(),(),(),(0000x x x x x x x x x x '-'+'≤'-ρρρρρ=),(x x 'ρ),(),(),(),(),(0000x x x x x x x x x x ρρρρρ-+'≤-'=),(x x 'ρ所以 ),(),(),(00x x x x x x '≤'-ρρρ.于是任给0>ε,只要取εδ=,当δρ<'),(x x 时,就有ερρ<'-),(),(00x x x x ,因此,),(0x x ρ是X 上的连续函数。