六年级同步奥数
- 格式:doc
- 大小:1004.71 KB
- 文档页数:13
小学六年级奥数题100道及答案Part 1 warm up1.甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷()=36分钟,所以路程=36×(60+75)=4860米。
2. 小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。
问:小明家到学校多远(第六届《小数报》数学竞赛初赛题第1题)解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟。
这时每分钟必须多走25米,所以总共多走了24×25=600米,而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600÷6=100米。
总路程就是=100×30=3000米。
3. 小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)解:画示意图如下.第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了×3=(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是=(千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程.其中张走了×7=(千米),=++(千米).就知道第四次相遇处,离乙村(千米).答:第四次相遇地点离乙村1千米.4. 哥哥有12枚5分硬币,妹妹有10枚2分硬币,哥哥给妹妹几枚5分硬币,两人的钱数相等解答:5×12=60(分) 2×10=20(分) (60-20)÷2=20(分) 20÷5=4(枚)5.阿香去吃午饭,发现附近的中餐厅有9个,西餐厅有3个,日式餐厅有2个,他准备找一家餐厅吃饭,一共有多少种不同的选择解答:9+3+2=14(种)6.用400个棋子摆放了5层空心方阵,最内层每边有几个棋子解答:400÷5=80(个) 80-8-8=64(个) 64÷4+1=17(个)7.用棋子摆方阵恰好摆成每边为20的实心方阵,若改为4层空心方阵,最外层每边应放几枚解答:20×20=400(个) 400+8×(1+2+3)=448(个)448÷4=112(个) 112÷4+1=29(个)8.一把钥匙只能开一把锁,现有10把钥匙和10把锁,最少要试验多少次就一定能使全部的钥匙和锁相匹配解答:从最不利的情形考虑。
小学六年级奥数题1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?2.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?5.小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。
”小明原有玻璃球多少个?6.搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A 仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?7.一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?8.股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。
老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?9.某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。
第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。
小学同步奥数六年级上册答案小学同步奥数六年级上册答案 11、李明的爸爸经营个水果店,按开始的定价,每买出1千克水果,可获利0.2元。
后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。
问:每千克水果降价多少元?答案:设以前卖出X千克降价a元。
那么0.2X×(1+0.5)=(0.2-a)×2x则0.1X=2aXa=0.05答:每千克水果降价0.05元2、有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
解析与答案:首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉。
把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果。
把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉。
由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。
小学同步奥数六年级上册答案 2猎狗发现在离它10米的前方有一只奔跑着的兔子,马上追上去,兔跑9步的路程狗只需跑5步,但狗跑2步的时间,兔却跑3步。
问狗追上兔时,共跑了多少米路程?答案与解析:60米对于追及问题,我们知道:10米=速度差×追及时间狗追上兔时,所跑路程应为:总路程=狗的速度×追及时间这就是要弄清狗的速度与兔的速度差之间的倍数关系。
另一方面,在分析速度时,一定是相同时间内狗与兔的速度之间的倍数,而不是相同的步数或相同的路程。
只要分析清楚这些,就可以解出本题了。
详解1:为了看相同时间的路程关系,也就是速度关系,我们进行如下处理:狗跑2步的时间兔跑3步,则狗跑6步的时间兔子跑了9步,也就是兔子跑了狗的5步,那么在这段时间内,狗追上了兔子,狗的一步或狗兔间的距离缩短了狗的1步,而狗跑了6步,所以狗的速度是速度差的6倍。
小学六年级奥数题及答案六年级的奥数学习应该有更强的针对性,从最近的一些的考试可以看出一个趋势,就是题量大,时间短,对于单位时间内的做题效率有很高的要求,即速度和正确率。
下面给大家带来关于六年级奥数题及答案,希望对你们有所帮助。
小升初六年级奥数题及答案1、抽屉原理有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
解答首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果.把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉.由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。
2、牛吃草:(中等难度)一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水这类问题,都有它共同的特点,即总水量随漏水的延长而增加.所以总水量是个变量.而单位时间内漏进船的水的增长量是不变的.船内原有的水量(即发现船漏水时船内已有的水量)也是不变的量.对于这个问题我们换一个角度进行分析。
如果设每个人每小时的淘水量为1个单位.那么船内原有水量与3小时内漏水总量之和等于每人每小时淘水量×时间×人数,即1×3×10=30. 船内原有水量与8小时漏水量之和为1×5×8=40。
每小时的漏水量等于8小时与3小时总水量之差÷时间差,即(40-30)÷(8-3)=2(即每小时漏进水量为2个单位,相当于每小时2人的淘水量)。
船内原有的水量等于10人3小时淘出的总水量-3小时漏进水量.3小时漏进水量相当于3×2=6人1小时淘水量.所以船内原有水量为30-(2×3)=24。
小学六年级奥数题集锦及答案工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成;如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九;现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成;现在先请甲、丙合做2小时后,余下的乙还需做6小时完成;乙单独做完这件工作要多少小时4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天;已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成5.师徒俩人加工同样多的零件;当师傅完成了1/2时,徒弟完成了120个;当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵;单份给男生栽,平均每人栽几棵7.一个池上装有3根水管;甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完;现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只三.数字数位问题2.A和B是小于100的两个非零的不同自然数;求A+B分之A-B的最小值...4.一个三位数的各位数字之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.5.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.;6.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少7.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数.8.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.9.有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数.10.如果现在是上午的10点21分,那么在经过28799...99一共有20个9分钟之后的时间将是几点几分四.排列组合问题1.有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有A 768种B 32种C 24种D 2的10次方中2 若把英语单词hello的字母写错了,则可能出现的错误共有A 119种B 36种C 59种D 48种五.容斥原理问题1.有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是A 43,25B 32,25 C32,15 D 43,112.在多元智能大赛的决赛中只有三道题.已知:1某校25名学生参加竞赛,每个学生至少解出一道题;2在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:3只解出第一题的学生比余下的学生中解出第一题的人数多1人;4只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是A,5 B,6 C,7 D,83.一次考试共有5道试题;做对第1、2、3、、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%;如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少六.抽屉原理、奇偶性问题1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样答案为213.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球4.地上有四堆石子,石子数分别是1、9、15、31如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数都相同如果能请说明具体操作,不能则要说明理由七.路程问题1.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它;问:狗再跑多远,马可以追上它2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米3.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒米,两人起跑后的第一次相遇在起跑线前几米6.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,轨道是直的,声音每秒传340米,求火车的速度得出保留整数7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子; 8.AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟9.甲乙两车同时从AB两地相对开出;第一次相遇后两车继续行驶,各自到达对方出发点后立即返回;第二次相遇时离B地的距离是AB全程的1/5;已知甲车在第一次相遇时行了120千米;AB两地相距多少千米从A地到B地,甲、乙两人骑自行车分别需要4小时、6小时,现在甲乙分别AB两地同时出发相向而行,相遇时距AB两地中点2千米;如果二人分别至B地,A地后都立即折回;第二次相遇点第一次相遇点之间有千米10.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时;如果水流速度是每小时2千米,求两地间的距离11.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程;12.小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米八.比例问题1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分快快快2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几3.甲乙两车分别从两地出发,相向而行,出发时,甲.乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米,那么两地相距多少千米4.一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少答案为64:275.某市场运来香蕉、苹果、橘子和梨四种水果其中橘子、苹果共30吨香蕉、橘子和梨共45吨;橘子正好占总数的13分之2;一共运来水果多少吨。
小学六年级数学奥数题1.小学六年级数学奥数题篇一1、某个体商人以年利息14%的利率借别人4500元,第一年末偿还2130元,第二年以某种货物80件偿还一部分,第三年还2736元结清,他第二年末还债的货物每件价值多少元?2、小明于今年七月一日在银行存了活期储蓄100元,如果年利率是1。
98%,到明年七月一日,小明可以得到多少利息?3、买了8000元的国家建设债卷,定期3年,到期他取回本息一共10284元,这种建设债卷的年利率是多少?答案与解析:1、解:根据“总利息=本金×利率×时间”第一年末的本利和:4500+4500×14%×1=5130(元)第二年起计息的本金:5130-2130=3000(元)第二年末的本利和:3000+3000×14%×1=3420(元)第三年的本利和为2736元,故第三年初的本金为:2736÷(1+14%)=2736÷1.14=2400(元)第二年末已还款的金额为3420-2400=1020(元)每件货物的单价为1020÷80=12.75(元)答:他第二年末还债的货物每件价值12.75元2、解:1000×1.98%×1×(1-20%)=15.84(元)答:小明可以得到15.84元利息3、解:设年利率为X%(1)(单利)8000+8000×X%×3=10284X%=9.52%(2)(复利)8000(1+X%)3=10284X%=9.52%答:这种建设债卷利率是9.52%2.小学六年级数学奥数题篇二数学竞赛后,小明、小华、小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌。
王老师猜测:"小明得金牌;小华不得金牌;小强不得铜牌。
"结果王老师只猜对了一个。
那么小明得多少牌,小华得多少牌,小强得多少牌。
逻辑问题通常直接采用正确的推理,逐一分析,讨论所有可能出现的情况,舍弃不合理的情形,最后得到问题的解答。
六年级能学的奥数题及答案奥数,即奥林匹克数学竞赛,是一种旨在培养学生数学思维和解决问题能力的竞赛形式。
六年级学生学习奥数,不仅可以锻炼他们的数学能力,还能提高逻辑推理和创新思维。
以下是一些适合六年级学生的奥数题目及答案:题目1:小明有3个红球和2个蓝球,他随机从袋子里拿出一个球,然后放回袋子里再拿一次。
请问小明两次都拿到红球的概率是多少?答案:第一次拿到红球的概率是3/5,因为总共有5个球,其中3个是红球。
由于每次拿球后都放回,第二次拿到红球的概率也是3/5。
两次都拿到红球的概率是两个独立事件同时发生的概率,所以是(3/5) * (3/5) = 9/25。
题目2:一个数字钟的时针和分针在12点整重合。
请问在接下来的12小时内,时针和分针会再次重合多少次?答案:在12小时内,时针和分针会重合11次。
因为时针每小时走30度(360度/12小时),而分针每分钟走6度(360度/60分钟)。
每小时分针都会超过时针,除了12点整之外,它们会在每个小时的某个时刻再次重合。
题目3:一个长方形的长是宽的两倍,如果长和宽都增加10厘米,新的长方形的面积比原来的长方形面积大300平方厘米,求原来的长方形的长和宽。
答案:设原来的长方形宽为x厘米,那么长就是2x厘米。
原来的面积是x * 2x = 2x^2平方厘米。
增加后的长为2x + 10厘米,宽为x +10厘米,面积为(2x + 10) * (x + 10)平方厘米。
根据题意,我们有方程:(2x + 10) * (x + 10) - 2x^2 = 300。
解这个方程,我们可以得到x = 5厘米,所以原来的长方形的长是10厘米,宽是5厘米。
题目4:一个数字序列如下:2, 4, 7, 11, ...。
这个序列的第20项是多少?答案:这个序列是一个等差数列,第一项a1=2,公差d=2。
根据等差数列的通项公式an = a1 + (n - 1) * d,我们可以计算出第20项的值:a20 = 2 + (20 - 1) * 2 = 2 + 19 * 2 = 2 + 38 = 40。
小学六年级奥数题100道及答案Part 1 warm up1.甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。
2. 小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。
问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟。
这时每分钟必须多走25米,所以总共多走了24×25=600米,而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600÷6=100米。
总路程就是=100×30=3000米。
3. 小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了3.5×3=10.5(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2=8.5(千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程.其中张走了3.5×7=24.5(千米),24.5=8.5+8.5+7.5(千米).就知道第四次相遇处,离乙村8.5-7.5=1(千米).答:第四次相遇地点离乙村1千米.4. 哥哥有12枚5分硬币,妹妹有10枚2分硬币,哥哥给妹妹几枚5分硬币,两人的钱数相等?解答:5×12=60(分) 2×10=20(分) (60-20)÷2=20(分) 20÷5=4(枚)5.阿香去吃午饭,发现附近的中餐厅有9个,西餐厅有3个,日式餐厅有2个,他准备找一家餐厅吃饭,一共有多少种不同的选择?解答:9+3+2=14(种)6.用400个棋子摆放了5层空心方阵,最内层每边有几个棋子?解答:400÷5=80(个) 80-8-8=64(个) 64÷4+1=17(个)7.用棋子摆方阵恰好摆成每边为20的实心方阵,若改为4层空心方阵,最外层每边应放几枚?解答:20×20=400(个) 400+8×(1+2+3)=448(个)448÷4=112(个) 112÷4+1=29(个)8.一把钥匙只能开一把锁,现有10把钥匙和10把锁,最少要试验多少次就一定能使全部的钥匙和锁相匹配?解答:从最不利的情形考虑。
(完整)小学六年级奥数题100道带答案有解题过程姓名:__________班级:__________学号:__________1.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的工程由乙单独完成,还需要几天?解:设工程总量为单位“1”,甲的工作效率是1/10,乙的工作效率是1/15,两人合作4天完成的工作量是(1/10+1/15)×4=2/3,剩下的工作量是1-2/3=1/3,那么乙单独完成需要的时间是1/3÷1/15=5天。
思路:先求出合作完成的工作量,再求剩余工作量以及乙完成剩余工作所需时间。
2.一个数的20%比它的3/5少30,这个数是多少?解:设这个数为x,则3/5x-20%x=30,即0.6x-0.2x=30,0.4x=30,解得x=75。
思路:根据数量关系列方程求解。
3.甲乙两车分别从A、B两地同时出发,相向而行,甲车每小时行60千米,乙车每小时行80千米,3小时后两车相距40千米,A、B两地相距多少千米?解:两车3小时行驶的路程之和再加上相距的40千米就是A、B两地的距离,(60+80)×3+40=460千米。
思路:先求两车行驶的路程和,再加上相距距离。
4.一个圆柱的底面半径是2厘米,高是5厘米,求它的侧面积和体积。
解:侧面积=2πrh=2×3.14×2×5=62.8平方厘米,体积=πr²h=3.14×2²×5=62.8立方厘米。
思路:根据圆柱侧面积和体积公式计算。
5.有浓度为20%的盐水80克,要把它变成浓度为40%的盐水,需要加盐多少克?解:设需要加盐x克,根据盐的质量关系可列方程,(80×20%+x)÷(80+x)=40%,即(16+x)÷(80+x)=0.4,16+x=0.4×(80+x),16+x=32+0.4x,0.6x=16,解得x=80/3。
小学六年级奥数难题100道及答案(完整版)1. 一个数的2/3加上4等于这个数的1/2,求这个数。
解:设这个数为x,根据题意可得方程:(2/3)x + 4 = (1/2)x。
解得x = -24。
2. 一个水池,第一天放水1/3,第二天放水1/4,第三天放水1/5,第四天放水1/6,最后剩下15立方米的水,求水池原来有多少立方米的水。
解:设水池原来有x立方米的水,根据题意可得方程:x * (1 - 1/3 - 1/4 - 1/5 - 1/6) = 15。
解得x = 60。
3. 一个长方形的长比宽多4厘米,周长是32厘米,求长方形的长和宽。
解:设长方形的长为x厘米,宽为y厘米。
根据题意可得方程组:x - y = 4;2x + 2y = 32。
解得x = 10,y = 6。
所以长方形的长为10厘米,宽为6厘米。
4. 一个数的3倍减去5等于这个数的2倍加上7,求这个数。
解:设这个数为x,根据题意可得方程:3x - 5 = 2x + 7。
解得x = 12。
5. 一个三角形的三边长分别为a、b、c,已知a + b > c,a + c > b,b + c > a,求三角形的面积。
解:根据海伦公式,三角形的面积S = sqrt[p * (p - a) * (p - b) * (p - c)],其中p = (a + b + c) / 2。
将已知的三边长代入公式即可求得三角形的面积。
6. 一个数的5倍减去8等于这个数的3倍加上12,求这个数。
解:设这个数为x,根据题意可得方程:5x - 8 = 3x + 12。
解得x = 10。
7. 一个正方形的边长增加2厘米,面积增加20平方厘米,求原来正方形的边长。
解:设原来正方形的边长为x厘米,根据题意可得方程:(x + 2)^2 - x^2 = 20。
解得x = 4。
所以原来正方形的边长为4厘米。
8. 一个数的4倍加上6等于这个数的3倍加上18,求这个数。
目录
本内容适合六年级学生培优拔尖使用。
要求在掌握基础知识、训练基本技能、领悟基本思想、积累基本活动经验的同时,培养发现问题的能力,提出问题的能力,分析问题的能力,解决问题的能力。
做到会说、会辩、会用。
使同学们具有数学抽象、逻辑推理、数学建模、数学运算、直观想象和数据分析等素养。
教学内容难度适中,讲练结合,由浅入深,是学生提高数学水平的好资料。
另外,在本次培训中,我们在紧扣教材的同时也做了适当的拓展延伸,将有效提高学生的学习兴趣、拓展知识面、提升学习能力。
一圆
第一讲圆的周长
第二讲圆的面积(一)第三讲圆的面积(二)第四讲圆的面积(三)检测题(一)
二分数混合运算
第一讲画图解决问题
第二讲列方程解决问题第三讲工程问题
第四讲假设法解决问题第五讲倒推法解决问题第六讲单位“1”的转化检测题(二)
三观察物体
第一讲观察物体(一)第二讲观察物体(二)四百分数
检测题(三、四)
五数据处理
六比
第一讲巧妙求比
第二讲比的应用(一)
第三讲比的运用(二)
数学好玩
第一讲看图找关系
第二讲画图与列表
检测题(五、六)
六百分数的应用
第一讲折扣问题
第二讲行程问题
第三讲利润问题
第四讲设数法解决百分数问题检测题(七)
说明:1. 老师在教学的过程中,根据学生的具体情况和教学进度灵活的处理资料,要求讲清讲透,不能盲目的赶资料的进度。
2. 为了丰富内容,绝大部分资料按120分钟/次编排,老师可以根据学生实际从中选取80分钟内容讲授,余下的部分作为同学们自由练习用。
第一章、圆
第一讲圆的周长
知识框架
计算与圆有关的不规则图形的周长,常用的方法有两种:一是利用图形的平移、旋转等方法,先把不规则的图形转化为规则图形,在计算出图形的周长;另一种是先把图形分割,然后将分割的弧进行重新接拼,组成规则的圆或者半圆,再计算出周长。
王牌例题
【例1】下面图形的周长是多少厘米?
【举一反三】
1、下面图形的周长是多少厘米?
2、下面图形的周长是多少厘米?
3、下面图形的阴影部分的周长是多少厘米?
【例2】如图所示,AB=10cm,请分别求出外面大圆的周长和里面两个小圆的周长并比较
【举一反三】
1、大圆的周长与里面三个小圆的周长之和哪个比较长?
2、AB=10cm,求下图各圆的周长之和
3、如图所示,已知AB=CD,左边半圆周长与右边所有小半圆的周长之和哪个长?为什么?
【例3】下面图形的阴影部分的周长是多少厘米?
第二讲圆的面积(一)
知识框架
有一些组合图形结构复杂,不能直接运用公式求出面积。
通过观察,可以将不规则的面积划分成几个部分,再利用这几部分图形的面积之和或面积之差计算出图形的面积。
王牌例题
【例1】求下面图形中阴影部分的面积。
【方法分享】此题的阴影部分不是规则图形,用正方形的面积减去空白部分的面积即可求出阴影部分的面积
【试一试】你能求出下面图形中的阴影部分的面积吗?【举一反三】求下面图形中阴影部分的面积。
第三讲圆的面积(二)
知识框架
有一些组合图形结构复杂,不能直接运用公式求出面积。
通过观察,可以将不规则的面积划分成几个部分,再利用这几部分图形的面积之和或面积之差计算出图形的面积。
王牌例题
【例1】如图所示,圆中图中的半径为10m。
求阴影部分的面积。
【举一反三】求阴影部分的面积。
【例2】求下面图形中阴影部分的面积。
【举一反三】求阴影部分的面积。
在解决有关圆的面积的问题时,有时需要利用特殊的数据进行计算。
如在正方形内画一个最大的圆,圆的面积就是正方形面积的
200
157
(或78.5%),还有在计算圆的面积时,如果无法直接得到半径r 的大小,可以利用计算半径2r 的方法进行解答。
知识框架
第四讲 圆的面积(三)
王牌例题
【例1】在一个正方形内画一个最大的圆,如果圆的面积是3.142
cm,那么正方形的面积是多少平方厘米?
【举一反三】
1、在一个正方形内画一个最大的圆,圆的面积是12.56dm2。
这个正方形的面积是多少平方分米?
2、在一个正方形内画四个同样大的圆,每个圆的面积是28.26cm2。
这个正方形的面积最小是多少平方厘米?
3、在一个长方形内画三个同样大的圆,每个圆的面积是3014cm2。
这个长方形的面积最小是多少平方厘米?
【例2】如图所示,正方形的面积为16cm2。
圆的面积是多少平方厘米?
【试一试】如果上题中正方形的面积是20cm 2,你还会解答吗?
【举一反三】
1、下面图形中正方形的面积是60cm 2,圆的面积是多少平方厘米?
2、下面图形中阴影部分的面积为64m 2,求环形的面积。
3、下面图形中阴影部分的面积为25m 2,求环形的面积。
检测题(一)
时间:50分钟 分值:50分
一、选择。
(10分)
1、一个圆的周长是直径的( )倍。
A 、
π21 B 、π
1
C 、3倍多一些
D 、π 2、在下面关于π的叙述中,错误的是( )。
)π是一个无限小数(114.32 )π(14
.33)π>(
的比值)π是圆的周长与半径(4
A 、(2)(3)
B 、(1)(2)
C 、(1)(3)
D 、(2)(4)
3、小明的妈妈准备买一块台布,用来铺在家中一个直径是1m的圆形桌面上,规格为()的台布最合适。
A、120cm×120cm
B、120cm×80cm
C、3140cm2
D、314cm2
4、下面关于直径的说法:(1)通过圆心的线段;(2)两端都在圆上的线段;(3)圆内最长的直线;(4)圆的任意一条对称轴;(5)任意两条半径相连;(6)周长和圆周率的比值。
其中正确的有()。
A、1个
B、2个
C、3个
D、4个
5、一个挂钟的时针长5cm,经过12时,这根时针的尖端走了()。
A、15.7cm
B、31.4cm
C、783.5cm
D、62.8cm
二、填空。
(10分)
1、战国时期的<<墨经>>一书中记载:“圆,一中同长也。
”表示圆心到圆上各点的距离都相等,即-------------都相等。
2、在一个周长为16dm的正方形里,画一个最大的圆,这个圆的直径是-------------dm,半径是-------------dm。
3、在同一个圆里,最长的线段是-------------。
用同样长的绳子围成的图形中-------------的面积最大。
4、一根绳子长2.4m,它的一头栓在木桩上,另一头拴着一只羊(接头处不计)。
这只羊在草地上吃草的最大范围是------------m2。
5、一辆汽车,车轮的外直径约1m,如果平均每分转100圈,从家到学校要行驶8分,那么从家到学校的距离大约是-------------Km.。
三、按要求计算(10分)
1、正方形的边长是10cm,求图中阴影部分的周长。
(5分)
2、计算下面图形中阴影部分的面积。
(5分)
四、解决问题。
(20分)
1、一个圆形栅栏的半径是12m,要用多长的粗铁线才能把栅栏围上3圈(接头处忽略不计)?如果每隔2m装一根水泥柱,大约要装多少根水泥柱?(5根)
2、北京奥运会的奖牌创造性地将玉嵌入其中,已知奖牌中玉环的外直径约为58mm,内直径约为32mm,厚约为3mm。
你能求出玉环的面积吗?
3、如图所示,圆与长方形的面积相等,长方形的长为12.56m。
(1)长方形的宽是多少米?(2分)
(2)阴影部分的面积是多少平方米?(3分)
4、要将一个圆的周长增加25.12m,那么这个圆的半径应该增加多少米?(5分)
第二章、分数混合运算
借助线段图分析题意,可以把复杂的问题直观化,达到化繁为简的。
线段图分为单线分段图和复式并列图两种。
单线分段图就是用一条线段表示总量单位“1”,然后在图中标注部份量占总量的分率;复式并列图指的是用几条线段图来表示题意,画复式并列图时,一般先画标准量(表示单位“1”的量),然后画比较量。
【例1】食堂买来萝卜、青椒和土豆三种蔬菜。
萝卜的质量是200kg ,土豆的质量是萝卜质量的53,青椒的质量是土豆质量的43。
食堂买来青椒多少千克?
知识框架
王牌例题
第一讲 画图解决问题。