(名师整理)最新北师大版数学8年级上册第4章第4节《一次函数的应用》市优质课一等奖课件
- 格式:ppt
- 大小:4.68 MB
- 文档页数:37
4.4一次函数的应用(1)教学设计一、学生起点分析本节课之前,学生已初步掌握了函数的概念、一次函数的图象及性质,并了解了函数的三种表达方式:图象法、列表法、解析式法。
在此基础上引导学生根据图象等信息列出一次函数表达式的方法,并进一步感受数形结合的思想方法.二、教学任务分析本节课是北师大版义务教育教科书八年级上第四章《一次函数》第四节的第一课时,主要内容是利用图象、表格等信息,确定一次函数的表达式.与原教材相比,新教材更注重与实际联系,更加注重培养学生掌握数形结合这一重要的思想方法;并且让学生更加明确确定一次函数的表达式需要两个独立的条件,这个问题虽然简单,但它涉及数学对象的一个本质概念---基本量.值得一提的是确定一次函数表达式,需要根据两个条件列出关于k、b的方程组,而二元一次方程组是下一章的学习内容,因此本节所研究的一次函数,某个参数应较易于从所给条件中获得,从而转化为通过另一个条件确定另一个参数的问题.因此,在教学中要注意控制问题的难度,对于一般问题,可在下一章的学习中再加强训练.本节课的教学目标是:①了解两个条件可确定一次函数;能根据所给信息(图象、表格、实际问题等)利用待定系数法确定一次函数的表达式;并能利用所学知识解决简单的实际问题.②经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步发展数形结合的思想方法;③经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.三、教学过程设计本节课设计了六个教学环节:本节课设计了六个教学环节:第一环节:复习引入;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习与知识拓展;第五环节:课时小结;第六环节:作业布置.第二环节初步探究内容1:展示实际情境提供两个问题情境,供老师选用.实际情境一:某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒 )的关系如图所示.(1)写出v与t之间的关系式;(2)下滑3秒时物体的速度是多少?分析:要求v与t之间的关系式,首先应观察图象,确定函数的类型,然后根据函数的类型设它对应的解析式,再把已知点的坐标代入解析式求出待定系数即可.实际情境二:假定甲、乙二人在一项赛跑中路程y与时间x的关系如图所示.(1)这是一次多少米的赛跑?(2)甲、乙二人谁先到达终点?(3)甲、乙二人的速度分别是多少?(4)求甲、乙二人y与x的函数关系式.目的:利用函数图象提供的信息可以确定正比例函数的表达式,一方面让学生初步掌握确定函数表达式的方法,即待定系数法,另一方面让学生通过实践感受到确定正比例函数只需一个条件.情景一、二可根据学生情况进行选取,情景二几个问题有一定的梯度,学生可能更易写出函数关系式.教学注意事项:学生可能会用图象所反映的实际意义来求函数表达式,如先求出速度,再写表达式,教师应给予肯定,但要注意比较两种方法异同,并突出待定系数法.内容2:想一想:确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?目的:在实践的基础上学生加以归纳总结。
第四章第四节一次函数的应用(2)一、教材分析本节课内容选自义务教育课程标准实验教科书北京师范大学版的数学教材八年级上册的第四章第四节,课题为《一次函数图象的应用》。
本节课为第2课时。
其主要内容是学生已经学习掌握了一次函数的意义、一次函数的图象及其性质、确定一次函数的表达式的基础之上,通过开展经历体验探究活动,进行应用一次函数的图象解决简单的实际问题并发现一元一次方程与一次函数之间关系的过程。
使学生体会到数学学习过程中“数形结合”思想的重要性。
在整个函数知识体系中,对于图象的感受、解读、分析特别是应用函数的图象解决问题是极其重要的内容,而一次函数图象的应用是学生在整个学习生涯中所接触的第一个相关内容,对于后续其它函数图象应用的学习将积累宝贵的学习经验和经历,因此本节课内容的重要性不言而喻。
二、教学目标及分析知识与能力目标:(1)能通过函数图象获取信息,发展形象思维。
(2)能利用函数图象解决简单的实际问题,发展学生的数学应用能力。
过程与方法目标:(1)在亲身的经历与实践探索过程中体会数学问题解决的办法。
(2)初步体会方程与函数的关系,体会数形结合思想。
情感态度与价值观目标:(1)进一步体会数学知识与现实生活的密切联系,丰富数学情感。
(2)树立良好的环境保护意识,引发热爱自然、热爱家乡的情感。
重点:利用函数图象解决简单的实际问题,提高数学的应用意识和能力。
难点:体会函数与方程的关系,发展“数形结合”的思想”。
三、教学对象分析学生已学习了一次函数及其图象,认识了一次函数的性质。
在现实生活中也见识过大量的函数图象,所以具备了从函数图象中获取信息,并借助这些信息分析问题、解决问题的基础。
但由于初中学生的年龄特点,他们认识事物还不够全面、系统,所以还需通过具体实例来培养他们这方面的能力。
四、教法学法根据本节课的特点、目标要求及学生的实际情况,在教法上主要采用探究式教学法,引导学生进行观察探索、合作交流、归纳总结等学习活动。
八年级数学上册4.4.1 一次函数的应用教案(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册4.4.1 一次函数的应用教案(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册4.4.1 一次函数的应用教案(新版)北师大版的全部内容。
课题:4。
4.1 一次函数的应用教学目标:1.了解两个条件可确定一次函数;能根据所给信息(图象、表格、实际问题等)利用待定系数法确定一次函数的表达式;并能利用所学知识解决简单的实际问题.2.经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步发展数形结合的思想方法;3.经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.教学重点与难点重点:根据所给信息,利用待定系数法确定一次函数的表达式.难点:在实际问题情景中寻找条件,确定一次函数的表达式.课前准备教师准备:彩色粉笔,对多媒体课件.学生准备:三角尺.教学过程一、创设情境,导入新课活动内容:回顾与思考下列问题.(多媒体出示)问题1.一次函数的一般形式是什么?正比例函数呢?问题2.一次函数图像是什么?正比例函数的图像呢?问题3.一次函数具有什么性质?问题4.已知一次函数表达式,如何画一次函数图像?处理方式:学生口答,教师用多媒体展示上述各题。
然后教师提出问题:若已知一次函数的图像,你能确定一次函数表达式吗?(师板书课题——4。
4一次函数的应用)设计意图:学生回顾一次函数正比例函数相关知识,使学生深信确定了两点,一次函数图像也就确定了.为下边根据题意(或图像)确定函数表达式做好铺垫.二、探究学习,感悟新知活动内容1:某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒)的关系如图所示.(1)写出v与t之间的关系式;(2)下滑3秒时物体的速度是多少?问题1:观察图象,你知道它是什么函数吗?问题2:如何写出v与t之间的关系式?问题3:求下滑3秒时物体的速度是多少,实质是已知什么?求什么?处理方式:学生讨论交流,在完成上述3个问题后再完成(1)、(2)题的解答,学生之间互相补充.教师适时点评,强调:图象是一条过原点的直线,确定函数的类型是正比例函数,然后设它对应的解析式,再把已知点的坐标代入解析式求出k即可.教师要规范解题过程。
4.4 一次函数的应用(3)教学设计一、学生起点分析在前几节课,学生已经分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛.在此基础上,通过生活中的实际问题进一步探讨一次函数图象的应用.二、教学任务分析本节课是北师大版义务教育教科书八年级(上)第四章《一次函数》第四节的第3课时,主要是利用两个一次函数的图象解决一些生活中的实际问题.和前一课时一样,教科书注重从函数图象中获取信息从而解决具体问题,关注数形结合思想的揭示,关注形象思维能力的发展,同时,这为今后学习用图象法解二元一次方程组打下基础.教学目标1.进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题;2.在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维;3.在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.4.在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.教学重点一次函数图象的应用教学难点从函数图象中正确读取信息三、教法学法1.教学方法:“问题情境—建立模型—应用与拓展”2.课前准备:教具:教材,课件,电脑学具:教材,练习本,铅笔,直尺四、教学过程:本节课设计了五个环节:第一环节:情境引入;第二环节:问题解决;第三环节:反馈练习;第四环节:课时小结;第五环节:作业布置.第二环节:问题解决 内容1:例1小聪和小慧去某风景区游览,约好在“飞瀑”见面,上午7:00小聪乘电动汽车从“古刹”出发,沿景区公路去“飞瀑”,车速为 36km /h ,小慧也于上午7:00从“塔林”出发,骑电动自行车沿景区公路去“飞瀑”,车速为26km /h . (1)当小聪追上小慧时,他们是否已经过了“草甸”? (2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多少千米? 分析:当小聪追上小慧时,说明他们两个人的什么量是相同的?是否已经过了“草甸”该用什么量来表示?你会选择用哪种方式来解决?图象法?还是解析法?解:设经过t 时,小聪与小慧离“古刹”的路程分别为1S 、2S ,由题意得:t S 361=,10262+=t S 将这两个函数解析式画在同一个直角坐标系上,观察图象,得⑴两条直线t S 361= ,10262+=t S 的交点坐标为(1,36)这说明当小聪追上小慧时,1236km S S ==,即离“古刹”36km ,已超过35km ,也就是说,他们已经过了“草甸”⑵当小聪到达“飞瀑”时,即145km S =,此时242.5km S = . 所以小慧离“飞瀑”还有45-42.5=2.5(km )思考:用解析法如何求得这两个问题的结果?小聪、小慧运行时间与路程之间的关系式分别是什么(小聪的解析式为t S 361= ,小慧的解析式为10262+=t S )?活动目的:培养学生的识图能力和探究能力,调动学生学习的自主意识.通过问题串的精心设计,引导学生根据实际问题建立适当的函数模型,利用该函数图象的特征解决这个问题.在此过程中渗透数形结合的思想方法,发展学生的数学应用能力.说明:在这个环节的学习过程中,如果学生入手感到困难,可用以下问题串引导学生进行分析。