三相电流不平衡零线电流计算公式
- 格式:docx
- 大小:36.49 KB
- 文档页数:1
单相、三相交流电路功率计算公式相电压:三相电源中星型负载两端的电压称相电压。
用UA 、UB、UC 表示。
相电流:三相电源中流过每相负载的电流为相电流,用IAB 、IBC、ICA 表示。
线电压:三相电源中,任意两根导线之间的电压为线电压,用UAB 、UBC、UCA 表示。
线电流:从电源引出的三根导线中的电流为线电流,用IA 、IB、IC 表示。
如果是三相三线制,电压电流均采用两个互感器,按V/v 接法,测量结果为线电压和线电流;如果是三相四线制:1、电压可采用V/v 接法,电流必须采用Y/y 接法,测量结果为线电压和线电流,线电流也等于相电流。
2、电压和电流均采用Y/y 接法,测量结果为相电压和相电流,相电流也等于线电流。
Y/y 接法时,电压互感器一次接在火线及零线之间,每个电压互感器二次输出接一个独立仪表。
每根火线穿过一个电流互感器,每个电流互感器二次输出接一个独立仪表。
电压 V/v 接法时,电压互感器一次接在火线之间,二次分别连接一个电压表,如需测量 另一个线电压,可将两个互感器的二次输出的 n 端连接在一起, a 、b 端连接第三个电压 表。
电流 V/v 接法时,两根火线分别穿过一个电流互感器,每个互感器的二次分 别接一个电流表,如需测量第三个线电流,可将两个的 s2 端连接在一起,与 两个互感器的 s1 端一起共三个端子,另外,将三个电流表的负端连在一起, 其它三个端子分别与上述三个端子连接在一起。
三相电流计算公式I=P/(U*1.732)所以 1000W 的线电流应该是 1.519A 。
功率固定的情况下,电流的大小受电压的影响,电压越高,电流就越小,公式是 I=P/U 当电压等于 是 4.545A ,电压等于 380V 时,电流是 2.63A ,以上说的是指的单相的情况。
380V 三相的时候,公式是 电流大小是 1.519A三相电机的电流计算 I= P/(1.732*380*0.75) 式中: P 是三相功率 (1.732 是根号 3) 380 是三相线电压 流) 0.75是功率因数,这里功率因数取的是 0.75 ,如果功率因数取 0.8或者 0.9,计算电流还小。
单相、三相交流电路功率计算公式相电压:三相电源中星型负载两端的电压称相电压。
用UA、UB、UC 表示。
相电流:三相电源中流过每相负载的电流为相电流,用IAB、IBC、ICA 表示。
线电压:三相电源中,任意两根导线之间的电压为线电压,用UAB、UBC、UCA 表示。
线电流:从电源引出的三根导线中的电流为线电流,用IA、IB、IC 表示。
如果是三相三线制,电压电流均采用两个互感器,按V/v接法,测量结果为线电压和线电流;如果是三相四线制:1、电压可采用V/v接法,电流必须采用Y/y接法,测量结果为线电压和线电流,线电流也等于相电流。
2、电压和电流均采用Y/y接法,测量结果为相电压和相电流,相电流也等于线电流。
Y/y接法时,电压互感器一次接在火线及零线之间,每个电压互感器二次输出接一个独立仪表。
每根火线穿过一个电流互感器,每个电流互感器二次输出接一个独立仪表。
电压V/v接法时,电压互感器一次接在火线之间,二次分别连接一个电压表,如需测量另一个线电压,可将两个互感器的二次输出的n端连接在一起,a、b端连接第三个电压表。
电流V/v接法时,两根火线分别穿过一个电流互感器,每个互感器的二次分别接一个电流表,如需测量第三个线电流,可将两个的s2端连接在一起,与两个互感器的s1端一起共三个端子,另外,将三个电流表的负端连在一起,其它三个端子分别与上述三个端子连接在一起。
三相电流计算公式I=P/(U*1.732)所以1000W的线电流应该是1.519A。
功率固定的情况下,电流的大小受电压的影响,电压越高,电流就越小,公式是I=P/U 当电压等于220V时,电流是4.545A,电压等于380V时,电流是2.63A,以上说的是指的单相的情况。
380V三相的时候,公式是I=P/(U*1.732),电流大小是1.519A三相电机的电流计算 I= P/(1.732*380*0.75) 式中: P是三相功率 (1.732是根号3) 380 是三相线电压 (I是三相线电流) 0.75是功率因数,这里功率因数取的是0.75 ,如果功率因数取0.8或者0.9,计算电流还小。
单相、三相交流电路功率计算公式单相电路工程公式单位说明有功功率P = UI coscp = S coscp w u x—相电压M)I x -相电流(A)%.-线电压⑺线电流(A)cos °-每相的功率因数2匕匕每相的有功功率Q A2c每相的无功功率视在功率S = UI VA无功功率Q = UI sin(p var功率因数P P cos(p =—=——S UI三相对称电路有功功率P = 3Ux【x cos(p = J3U J cos.W 视在功率S=3Uxlx =M U J L VA 无功功率Q = 3U x I x sin (p = \[3Uj /z sin (p var 功率因数P cos(p =—线电压、线电流相电压、相电流换算Y U L =闻X 】L=1XA U L=U x I L = 4^1 x三相不对称电路有功功率P = P A+P B+P C无功功率Q =Q A +Q B+ Qc相电压:三相电源中星型负载两端的电压称相电压.用UA、UB、UC表示.相电流:三相电源中流过每相负载的电流为相电流,用IAB、IBC、ICA表示.线电压:三相电源中,任意两根导线之间的电压为线电压,用UAB、UBC、UCA表示.线电流:从电源引出的三根导线中的电流为线电流,用IA、IB、IC表示.如果是三相三线制,电压电流均采用两个互感器,按V/v接法,测量结果为线电压和线电流;如果是三相四线制:1、电压可采用V/v接法,电流必须采用Y/y接法,测量结果为线电压和线电流,线电流也等于相电流.2、电压和电流均采用Y/y接法,测量结果为相电压和相电流,相电流也等于线电流.Y/y接法时,电压互感器一次接在火线及零线之间,每个电压互感器二次输出接一个独立仪表.每根火线穿过一个电流互感器,每个电流互感器二次输出接一个独立仪表.电压V/v接法时,电压互感器一次接在火线之间,二次分别连接一个电压表,如需测量另一个线电压,可将两个互感器的二次输出的n端连接在一起,a、b端连接第三个电压表.电流V/v接法时,两根火线分别穿过一个电流互感器,每个互感器的二次分别接一个电流表,如需测量第三个线电流,可将两个的s2端连接在一起,与两个互感器的s1端一起共三个端子,另外,将三个电流表的负端连在一起, 其它三个端子分别与上述三个端子连接在一起.三相电流计算公式I=P/(U* 1.732)所以1000W的线电流应该是1.519Ao功率固定的情况下,电流的大小受电压的影响,电压越高,电流就越小,公式是I=P/U当电压等于220V时,电流是4.545A,电压等于380V时,电流是2.63A,以上说的是指的单相的情况.380V三相的时候,公式是I=P/(U* 1.732), 电流大小是1.519A三相电机的电流计算I=P/(1.732*380*0.75)式中:P是三相功率(1.732是根号3) 380是三相线电压(I是三相线电流)0.75是功率因数,这里功率因数取的是0.75 ,如果功率因数取0.8或者0.9,计算电流还小.电机不是特别先进的都是按0.75计算.按10kW计算:I=10kW/(1.732*380*0.75)=10kW/493.62=20.3 A三相电机必须是三相电源, 10KW电动机工作时,三根电源线上的工作电流都是20.3 A实际电路计算的时候还要考虑使用系数,启动电流等因素来确定导线截面积、空开及空开整定电留.三相电中,功率分三种功率,有功功率P、无功功率Q和视在功率S.电压与电流之间的相位差(①)的余弦叫做功率因数,用符号cos①表示,在数值上,功率因数是有功功率和视在功率的比值,即cos⑴=P/S三种功率和功率因素cos中是一个直角功率三角形关系:两个直角边是有功功率P、无功功率Q,斜边是视在功率S.三相负荷中, 任何时候这三种功率总是同时存在:S?=p2+Q2 S= J(P?+Q2)视在功率S=1.732UI有功功率P=1.732UIcos中无功功率Q=1.732UIsinO 功率因数cos①二P/S根号3,没有软件写不上,用1.732代替系统图Pe:额定功率Pj:计算有功功率Sj:计算视在功率Ij:计算电流Kx:同时系数cos.:功率因数Pj=Kx*Pe Sj=Pj/cos6 单相供电时,Ij=Sj/Ue 三相供电时,Ij=Sj/ V 3Ue电气系统图里的符号是有标准的KM表示交流接触器KA表示中间继电器, 4KT表示时间继电器FR表示热继电器;SQ表示限位开关;SB表示按钮开关;Q表示刀开关;FU表示熔断器;FR表示热继电器LI DZ47-60 16A/2P ZDB-4B-WL1----------- X , ---------------L1L2L3DZ47LE-60 16A/3P/0. 03A ZDB-1B-WL12NH-BV-O. 45/0. 75 L1,N, PE TLB1-63C16/1 ALE-YJ-vl -3x2. 5-KZ17-ACC/WC 0. 8kW 配电箱PF4T1 ZR-BV-3x2. 5-SC20-CC9kW 插座C-03ZR-BV-5x4-SC20-CCI - -------------- L1:表示单相电〔一条火线〕220VLI、L2、L3:表示三相电〔三条火线〕38OVN:表示工作零线,PE:保护线PE线〔简称地线〕DZ:表标空开〔熔断器〕的材质〔塑料外壳式熔断器〕47:设计代号〔产品型号〕LE:表示空开带漏电保护装置.60:表示最高电流〔当电流到达60A时,开关就会自动跳闸断开〕16A:表时壳架等级额定电流ZDB-4B-WL1:电路回路编号〔由自己自由编排〕ZR:表示阻燃电线BV:电线的材质〔铜线〕,是绝缘单根硬铜线3X2.5 :表标3条2.5平方的电线SC20:直径为20焊接钢管CC:暗敷在天棚顶内TL:一,导线穿管表示SC-焊接钢管MT-电线管PC-PVC塑料硬管FPC-阻燃塑料硬管CT-桥架MR-金属线槽M-钢索CP-金属软管PR-塑料线槽RC-镀锌钢管二,导线敷设方式的表示DB-直埋TC-电缆沟BC-暗敷在梁内CLC-暗敷在柱内WC-暗敷在墙内CE-沿天棚顶敷设CC-暗敷在天棚顶内SCE-吊顶内敷设F-地板及地坪下SR-沿钢索BE-沿屋架,梁WE-沿墙明敷三,灯具安装方式的表示CS-链吊DS-管吊W-墙壁安装C-吸顶R-嵌入S-支架CL-柱上沿钢线槽:SR沿屋架或跨屋架:BE 沿柱或跨柱:CLE 穿焊接钢管敷设:SC电线管敷设:MT穿硬塑料管敷设:PC 穿阻燃半硬聚氯乙烯管敷设:FPC 电缆桥架敷设:CT 金属线槽敷设:MR塑料线槽敷设:PR 用钢索敷设:M 穿聚氯乙烯塑料波纹电线管敷设:KPC 穿金属软管敷设:CP 直接埋设:DB 电缆沟敷设:TC导线敷设部位的标注沿或跨梁〔屋架〕敷设:AB 暗敷在梁内:BC 沿或跨柱敷设:AC暗敷设在柱内:CLC 沿墙面敷设:WS 暗敷设在墙内:WC 沿天棚或顶板而敷设:CE 暗敷设在屋面或顶板内:CC 吊顶内敷设:SCE 地板或地面下敷设:FC照明用途是单相供电如果预算7kW功率,可以从{ 〔7000W功率/220V电压〕/3相}可以得到每一相总电流是10.6A安培每一相总电流是10.6A安培,配给电路电线应该2.5-4平方己经足够了三相电机用途是I电流=P功率〔kW〕 /{ J3xU电压xcos有功功率xu}三相电机的〔I电流〕估算一般是lkW=2A三相的功率计算公式是:P=L732*U* 户COS ① KVA=KW/ COS①三相电机的〔I电流〕估算一般是lkW=2A J 3=1.732DZ47LE系列剩余电流动作断路器百度文库•让每个人平等地提升自我2型号及含义壳架等级额定电流〔32A、63A〕DZ 47LE-口功能代号〔电子式剩余电流动作断路器〕设计代号塑料夕唬式断路器1适用范围DZ47LE系列剩余电流动作断路器适用于交流50Hz或60Hz,额定电压单极两线、两极230V,三极、三极四线、四极400V,额定电流至60A的线路中,当人身触电或电网泄漏电流超过规定值时,剩余电流动作断路器能在极短的时间内迅速切断故障电源,保护人身及用电设备的平安.剩余电流动作断路器具有过载和短路保护功能,可用来保护线路或电动机的过载和短路,亦可在正常情况下作为线路的不频繁转换启动之用. 符合标准:GB 16917.K IEC61009-1o3正常工作条件和安装条件3.1环境温度-5^~40℃, 24h内平均不超过35X:.3.2 海拔高度:安装地点的海拔不超过2000m.3.3 安装类别:II、III级.3.4 污染等级;2级.3.5 安装方式;采用TH35-7,5型钢安装轨安装.安装场所的外磁场任何方向均不应超过地磁场的5倍;剩余电流动作断路器应垂直安装, 3.6安装条件:手柄向上为接通电源位置;安装处应无显著冲击和振动.3.7 接线方式:用螺钉压紧接线.4主要参数及技术性能4.1 主要规格:411 额定电流(In);壳架等级电流32A为:6A、10A、16A、20A、25A、32A;壳架等级电流63A为:6A、1OA X 16A、20A、25A、32A、40A. 50A. f 412额定剩余动作电流En: 0.03A、0.05A、O.1A S 0.3A;4.1.3按极薮和电流回路分为:..单极两线剩余电流动作断路器(1P+N);b.两极剩余电流动作断路器(2P);c.三极剩余电流动作断路器(3P);d.三极四线剩余电流动作断路器(3P+N);e.四极剩余电流动作断路器(4P);注:a.5A, 10A, 20A, 50A, 100A, 200A, 500A 的试验仅对验证动作时进行,对大于过电流瞬时脱扣范 围下限的电流值不进行试验.b .在山等于C 型或D 型的过电流瞬时脱扣范围下限的电流值进行试验.4.2.6 过电流保护特性见表2序号额定电流INA)起始状态 试验电流 规定时间t预期结果 备注 16~60泠态1.13lnt^lh不脱而423额定剩余接通和分断水平Lmn): 2000; 424额定剩余不动作电流Mno : 0.5lAn ; 4.2.5剩余电流动作的分断时间见下表1ln(A)lAn(A)剩余电流等于以下值时分断时间(s)lz\n 2I AH, 5A t 10A, 20A, 50A「5lAn 100A, 200A, 500AlAt b 6~60 0.03, 0.05, 0.1, 0.3 0.10.050.040.040.04表4.2.7 机械电气寿命:电气寿命:2000次,854>=085~0 9;机械寿命:2000次;操作频率:Inw25A 240次/h;ln>25A 120次小;428绝缘耐冲击电压性能各极连接在一起与中性极之间能承受峰值为6000V的冲击电压;各极与中性极连接在一起和金属支架之间能承受峰值为8000V的冲击电压.4.2.9剩余电流动作断路器在峰值电流为200A冲击电流,有承受水平,并不引起误动作.4210脱扣特性曲线0.5 1 2 3 4 5 7 K〕】6 20 8 5070100 200l/ln Is0.20.10.050.020.010.0050.002\\\\\\、、\A0 -2^^2 3 4 5 7 10 16 20 30 5070 】00 200l/lnoohooooooX)®lx))oQoo500(5(X21212021524.2.11接线螺钉扭矩应不小于1.5N ♦ m;4.3周围空气温度:周围空气温度最高温度40c t最氐不低于-53 24h平均不超过+35.周围空气温度对断路器的影响见表3.表3 温度七-15 -5 0 10 20 30 40 55额定电流修正系数 1.19 L15 1.13 1.06 1.05 1 0.96 08944安装铜导线选型见表4 主.表4】0及以下 1.510-20 2.520~25 425~32 632-50 1050 ~ 60 165外形及安装尺寸TH35-7.5型安装导轨尺寸极数Umm)- H(mm)lnm=32lnm=631P+N45 i.62 54 4).74 74 :202P 63 3).74 72 3).74 78.3P 90 51.40 103.5〃"•83P+N 99 〃117北77.8^.204P 117 13516G"8,.电机功率电梳配线配管开关接触物继由器线径明线暗线KW HP A ■ iran"rran A A ITOT T A A0.18 0. 25 0.63 4*1.5 16 6\15 3 0. 48^0.72 0.5 7 6 0.37 0. 5 1.1 4*1. 5 16 6\15 3 0.8^1.2 1 13 100.75 1 1.8 4*1.5 16 6X15 3 1.4^2. 2 1.25 16 141.1 1.52.4 4*2.5 20 10\15 3 2. 2^3. 4 1.5 17 141.5 2 3.2 4*2.5 20 15\15 3 「6 2 20 182. 2 3 4. 7 4*2. 5 20 20\30 3 4~6 2. 5 24 203 4 6.5 4*2.5 20 20\30 3 必6 3 25 233.7 5 7.7 4*2.5 20 30\60 3 5飞 4 31 26 5.5 7.5 11.5 4*4 20 30\60 0 F134.5 33 30 7.5 10 15 4*4 20 40\60 4—0 12^18 641 34 11 15 22 3* 6+1*4 25 40\60 4—1 16^22 6.75 41 3715 20 29 3*10+1*6- 32 60\60 N1 2广36 9.5 52 46 18.5 25 35 3*10+1+6 32 80X100 N2 24飞6 10 57 4622 30 41 3*1 S+1*10 32 100\100 N2S "50 15 67 60 30 40 56 3*16+1*10 32 100\100 N3 45% 7 16 73 61 37 50 68 3*25+1*16 40 125X250 N4 53飞0 20 79 71 45 60 83 3*35+1*25 40 175\250 M5 65-95 25 95 80 55 70 103 3*50+1*35 50 200X250 N5 *5~105 35 115 98 60 _80 114 3*70+1*35 50 21M250 N6 &5~125 40 125 108 65 86 124 3*70+1*35 50 200X250 N7 85~125 50 146 123 70 90 133 3*95+1*50 60 200\250 M7 11CT160 65 180 15575 100 139 3*95+1*50 60 225X250 N7 110^160 70 183 156 85 113 162 3*120+1*70 80 250\250 N8 125= 85 95 225 192 95 126 181 3*150+1*95 80 300\400 N8 12521a5 100 230 195 110 150 197 3*150+1*95 R0 3501400 N10 160)40 120 266 224115 153 219 3*150+1*95 80 350X400 Nil 160^240 130 275 235130 173 247 3*150+1*95 80 400X400 Nil 200^300 150 2g5 262 135 180 2E7 7松月400X400 1瓯340 2的155 207 295 国9 5 500X600 240 430180 240 342 7*120 500X600 300 500185 247 352 7*120 600\600 400 610210 280 399 7*1 50 600\600 500 710。
三相不平衡详解三相不平衡:是指在电力系统中三相电流(或电压)幅值不一致,且幅值差超过规定范围。
三相不平衡是电能质量的一个重要指标,虽然影响电力系统的因素非常的多,但正常性不平衡的情况大多是因为三相的元器件、线路参数或负荷的不对称。
由于三相负荷的因素是不一定的,所以供电点的三相电压和电流极易出现三相不平衡的现象,损耗线路。
一个三相平衡电路的三相电压源必须是正弦波,且频率相同,幅度相同,相位互差120度;三相的负荷阻抗相同且均为线性阻抗,因此三相的电流都是正弦波,且频率相同,幅度相同,相位互差120度。
绝对的三相平衡是不存在的,实际的三相系统总是存在不同程度的不平衡现象。
▍分类事故性不平衡:是由于三相系统中某一相(或两相)出现故障所致。
例如一相或两相断线,或者单相接地故障等。
这种状况是系统运行所不允许的,一定要在短期内排除故障使系统恢复正常。
正常性不平衡:是由于系统三相元件或负荷不对称引起的。
作为电能质量指标之一的“三相电压允许不平衡度”是针对正常不平衡运行工况而定的。
▍机房设备用电三相负载不平衡造成的危害1. 增加线路的电能损耗,大大降低配电变压器的供电效率。
2. 低压总配电输配电能力减少。
3.三相负载严重不平衡时,将导致技术机房配电柜总开关处于临界额定值运行,影响电缆的安全运行,使配电系统处于不安全运行状态。
4.影响播出设备的安全运行。
三相电源负载不平衡会产生零序电流,零线电位偏移,导致三相电压不稳,严重时会损坏播出设备。
5.技术机房内三相电源负荷不平衡将造成技术电源和UPS电源资源利用率大大降低。
▍三相供电合理分配及三相负荷不平衡度计算在低压电网中,三相线路的导线截面积相同,当三相负荷电流大小不等时,负荷电流大的一相线路压降将增大,端电压降低,造成中性点偏移。
当三相负荷严重不平衡时,一旦中性线断线,就会造成三相相电压严重不平衡,电压髙的一相就会把用电设备烧坏,而电压低的一相用电器也不能正常工作。
380v功率电压电流公式当用于三相平衡的380V用电器时(如三相电动机),I=P/(1.732x380),这个公式就是以220V计算的(具体下面会讲解)。
因为三相电机不论是星形还是三角形接法,电流计算都是按相电压(220V)计算的。
如星形连接,各相电对电机的中性点都是220V,就相等于ABC三相电都接了一只功率相同的220V灯泡,在中性点实现三相归零。
三角形连接时,电机内虽然没有中性点,但ABC三相电在电机内部是连通的,且电流相等,所以也能在电机内部实现三相归零。
当三相归零时,则相对零的电压肯定是220V,所以电流也是按220V计算。
电流计算公式:I=P/(1.732x380)=P/(380x3/1.732)=P/(3x220)=P/660。
这个I是一根线上的电流。
别忘了将I/cosφ,就得到了正常的电流。
因为 P=3xIx220,三相电机的功率就是3根220VxI的总和。
也就是说380V三相电机的功率是三个220V功率之和。
当用于三相不一定平衡的用电器时(如照明箱),因为它们一定有根工作零线,相对零是220V,各相的电流I=P/220V。
遇有电感器,也别忘了将I/cosφ,就得到了正常的电流。
以上功率P单位为W,电流I单位为A。
现在有很多人认为380V电机的电流是380V的电流,看过这个公式,你就能知道他们都是误解了。
现在我们来看一下三相电机的电流计算公式:(我们先把不确定的功率因素拿掉,这样直观些。
当求出电流后,只要将I/cosφ,就得到了正常的电流)I=P/(1.732x380) I=P/(1.732x380)。
这个公式就是以220V来计算电流的:I=P/(1.732x380)=P/(380x3/1.732)=P/(3x220)P=3xIx220,三相电机的功率就是3根220VxI的总和。
三相电(380V)功率、电压、电流的计算公式:功率=电流×(1.732×380电压×0.85功率因数×0.9效率)。
电线电缆工作电流计算公式电(线)缆工作电流计算公式:单相电流计算公式I=P÷(U×cosΦ)P-功率(W);U-电压(220V);cosΦ-功率因素(0.8);I-相线电流(A)三相电流计算公式I=P÷(U×1.732×cosΦ)P-功率(W);U-电压(380V);cosΦ-功率因素(0.8);I-相线电流(A)一般铜导线的安全截流量为5-8A/平方毫米,铝导线的安全截流量为3-5A/平方毫米。
在单相220V线路中,每1KW功率的电流在4-5A左右,在三相负载平衡的三相电路中,每1KW功率的电流在2A左右。
也就是说在单相电路中,每1平方毫米的铜导线可以承受1KW功率荷载;三相平衡电路可以承受2-2.5KW的功率。
但是电缆的工作电流越大,每平方毫米能承受的安全电流就越小。
电缆允许的安全工作电流口诀:十下五(十以下乘以五)百上二(百以上乘以二)二五三五四三界(二五乘以四,三五乘以三)七零九五两倍半(七零和九五线都乘以二点五)穿管温度八九折(随着温度的变化而变化,在算好的安全电流数上乘以零点八或零点九)铜线升级算(在同截面铝芯线的基础上升一级,如二点五铜芯线就是在二点五铝芯线上升一级,则按四平方毫米铝芯线算)裸线加一半(在原已算好的安全电流数基础上再加一半)电能表功率计算公式功率单位是w或kw,电度单位是kwh,1kw工作1小时耗电量是1kwh(度)电功W:电流所做的功叫电功.电流作功过程就是电能转化为其它形式的能.公式:W=UQ W=UIt=U2t/R=I2Rt W=Pt 单位:W焦U伏特I安培t秒Q库P 瓦特电功率P:电流在单位时间内所作的电功,表示电流作功的快慢.【电功率大的用电器电流作功快.】公式:P=W/t P=UI (P=U2/R P=I2R)单位:W焦U伏特I安培t秒Q库P瓦特⒊电能表(瓦时计):测量用电器消耗电能的仪表.1度电=1千瓦时=1000瓦×3600秒=3.6×106焦耳例:1度电可使二只“220V、40W”电灯工作几小时?解t=W/P=1千瓦时/(2×40瓦)=1000瓦时/80瓦=12.5小时电气线路功率负荷相关计算式功率的基本计算公式为——功率W(P)=电流A(I)*电压V(U)。
三相电流不平衡零线电流计算公式摘要:1.三相电流不平衡的概念及原因2.三相电流不平衡的计算方法3.零线电流的计算方法4.应用实例正文:一、三相电流不平衡的概念及原因三相电流不平衡是指在三相电力系统中,各相电流不相等的现象。
其主要原因包括:电源所带负载不全部是三相负载,各相具有各不相同的单相负载;电压波动,造成电压不平衡,从而引起三相电流不平衡;三相负载不平衡,造成三相电流不平衡;相与相之间短路,相与零线短路,都会造成三相电压,电流不平衡。
二、三相电流不平衡的计算方法三相电流不平衡的计算方法主要包括以下两种:1.第一个计算公式是(最大电流- 最小电流)/最大电流。
2.第二个计算公式是(MAX 相电流- 三相平均电流)/三相平均电流。
三、零线电流的计算方法在三相四线供电系统中,当三相电流不平衡时,零线电流的计算方法如下:1.假设A 相、B 相、C 相的电流分别为IA、IB、IC,则三相电流的向量和为:Ia+Ib+IC=(10A,120°)、(20A,120°)、(30A,-120°)。
2.计算三相电流的平均值:I_avg = (IA+IB+IC)/3 = (10A+20A+30A)/3 = 20A。
3.计算三相电流不平衡度:不平衡度= (最大电流- 最小电流)/最大电流= (30A-10A)/30A ≈ 0.67。
4.根据不平衡度计算零线电流:I_neutral = I_avg * 不平衡度= 20A *0.67 ≈ 13.4A。
四、应用实例假设某三相四线供电系统中,A 相、B 相、C 相的电流分别为10A、20A、30A,则可按照上述方法计算零线电流:1.计算三相电流的向量和:Ia+Ib+IC=(10A,120°)、(20A,120°)、(30A,-120°)。
2.计算三相电流的平均值:I_avg = (IA+IB+IC)/3 = (10A+20A+30A)/3 = 20A。
单相、三相交流电路功率计算公式标准文档相电压:三相电源中星型负载两端的电压称相电压。
用UA、UB、UC 表示。
相电流:三相电源中流过每相负载的电流为相电流,用IAB、IBC、ICA 表示。
线电压:三相电源中,任意两根导线之间的电标准文档压为线电压,用UAB、UBC、UCA 表示。
线电流:从电源引出的三根导线中的电流为线电流,用IA、IB、IC 表示。
如果是三相三线制,电压电流均采用两个互感器,按V/v接法,测量结果为线电压和线电流;如果是三相四线制:1、电压可采用V/v接法,电流必须采用Y/y 接法,测量结果为线电压和线电流,线电流也等于相电流。
2、电压和电流均采用Y/y接法,测量结果为相电压和相电流,相电流也等于线电流。
Y/y接法时,电压互感器一次接在火线及零线之间,每个电压互感器二次输出接一个独立仪表。
每根火线穿过一个电流互感器,每个电流互感标准文档器二次输出接一个独立仪表。
电压V/v接法时,电压互感器一次接在火线之间,二次分别连接一个电压表,如需测量另一个线电压,可将两个互感器的二次输出的n端连接在一起,a、b端连接第三个电压表。
电流V/v接法时,两根火线分别穿过一个电流互感器,每个互感器的二次分别接一个电流表,如需测量第三个线电流,可将两个的s2端连接在一起,与两个互感器的s1端一起共三个端子,另外,将三个电流表的负端连在一起,其它三个端子分别与上述三个端子连接在一起。
三相电流计算公式标准文档I=P/(U*1.732)所以1000W的线电流应该是1.519A。
功率固定的情况下,电流的大小受电压的影响,电压越高,电流就越小,公式是I=P/U 当电压等于220V时,电流是4.545A,电压等于380V时,电流是2.63A,以上说的是指的单相的情况。
380V三相的时候,公式是I=P/(U*1.732),电流大小是1.519A三相电机的电流计算 I= P/(1.732*380*0.75) 式中: P是三相功率 (1.732是根号3) 380 是三相线电压 (I是三相线电流) 0.75是功率因数,这里功率因数取的是0.75 ,如果功率因数取0.8或者0.9,计算电流还小。
三相电路功率公式三相电路在我们的日常生活和工业生产中可是起着至关重要的作用哦!说到三相电路,那就不得不提到三相电路功率公式啦。
先给大家科普一下啥是三相电路。
简单来说,三相电路就是由三根火线和一根零线组成的供电系统。
这三根火线的电压和电流在时间上有一定的相位差,正是这种相位差让三相电路具有了很多独特的优点,比如功率大、稳定性好等等。
那三相电路功率公式到底是啥呢?三相电路的功率分为有功功率、无功功率和视在功率。
有功功率的公式是P = √3UIcosφ ,其中 U 是线电压,I 是线电流,cosφ 是功率因数。
无功功率的公式是 Q =√3UIsinφ ,视在功率的公式是S = √3UI 。
就拿我之前遇到的一个事儿来说吧。
有一次,我去一家工厂参观,正好碰到他们的电工在检修设备。
那台设备老是出故障,运转不正常。
电工师傅经过一番检查,发现问题就出在三相电路的功率计算上。
原来,之前负责设计和安装这台设备的人,在计算功率的时候把公式用错了,导致选用的电线和电器元件都不符合实际需求。
电工师傅一边重新计算功率,一边给我讲解。
他说:“你看啊,如果功率计算不准确,就像人吃饭没吃饱一样,没力气干活儿。
这设备也一样,功率不够,就带不动那么大的负载,能不出问题嘛!”我在旁边听得津津有味,也深深感受到了正确运用三相电路功率公式的重要性。
再来说说有功功率这个公式里的各个参数。
线电压 U 就是两根火线之间的电压,线电流 I 就是通过火线的电流。
而功率因数cosφ 呢,它反映了电路中电能的利用效率。
功率因数越高,说明电能被有效利用的程度越高,也就越节能。
无功功率虽然不做功,但它对电路的稳定运行也很重要。
如果无功功率不足,会导致电压下降,影响设备的正常运行。
视在功率则是有功功率和无功功率的矢量和,它反映了电源提供的总功率。
在实际应用中,我们要根据具体的情况选择合适的功率公式进行计算。
比如在电力系统的设计和运行中,准确计算三相电路的功率可以帮助我们合理选择变压器、开关设备和电线电缆等,从而提高电力系统的经济性和可靠性。
三相四线电路零线电流的计算
由三相电力变压器的输出端低压三相对称绕的中点引出线(中心线)并且接地之后的回路引线,这条线就是我们日常所说的零线。
零线有两个重大的作用,其一是作为单相负载的必经回路,其次最重要的是零线在三相供电系统中通过不平衡电流,维持电压相对稳定的回路总线。
其意义非浅,对于工业用电中我们更加不能轻意忽视,而且我们要更加深入了解并施执这一安全供电原则,下面是我在学习计算这一相关知识的总结与归纳,错误之处敬请指正。
2014/02/26 北森科技。
三相电中的电功率的计算公式:1.732*线电压U*线电流I*功率因数COSΦ
【P=√3×线电压U(380V)×线电流I×功率因数COSΦ】
三相电电器的总功率等于:3*相电压*相电流*功率因数COSΦ
【P= 3×相电压U(220V)×相电流I×功率因数COSΦ】
单相电中的电功率的计算公式:电压U*电流I【P=U×I】
星形的相电压是每项火线对地线为220V,线电压是ABC三相火线分别间的电压为380V。
星形(Y)接法的负载引线为三条火线、一条零线和一条地线,三条火线之间的电压为380V,任一火线对零线或对地线的电压为220V。
星形接法:P=(U相*I相*cosφ)* 3 =(220*I*cosφ)* 3 =380/根号3 *cosφ * 3 ==√3UICOSΦ星形时线电流=相电流,线电压=相电压的根号三倍。
三角形(△)接法的负载引线为三条火线和一条地线,三条火线之间的电压为380V,任一火线对地线的电压为220V;
三角接法:P=380v*I线*COSΦ=380v* √3 I相 COSΦ = √3UICOSΦ
三角时线电流=相电流的根号三倍,相电压=线电压。
由于三相电源相线之间电压为380V,相线与中线之间电压为220V。
将三个负荷(一般为相等的负荷)连接在相线之间(每两相之间接一个负载),为三角形接法;将三个符合接在三根相线与中线之间(同样每个相线到中线连接一个负载)为星型接法。
可以看出,三角形接法每个负载两端所加电压为380V,星型接法则为220V;因此,前者负载输出功率大,后者较小。
同时,三角形接法对负载的耐压要求相应也较高。
三相不平衡零线电流走向
在三相不平衡的情况下,电流会在三相导线之间不平衡地分配。
此时,零线电流的走向取决于不平衡情况的具体表现。
如果三相电流不平衡是由于负载不平衡导致的,意味着各相负载的大小不同,零线电流会根据不同的负载分布情况而变化。
一般来说,零线电流的走向会趋向于较大负载所在的相,以达到电流平衡。
然而,如果三相电源的电压不平衡导致电流不平衡,则零线电流的走向取决于电源线与负载线之间的电压关系。
当电源电压不平衡导致某一相电压较高时,零线电流会在该相的负载线和其他两相之间流动,以平衡电流。
总之,在三相不平衡的情况下,零线电流的具体走向是根据不平衡情况而变化的,可以根据具体情况进行分析。
三相负载不平衡时零线电流的三次谐波电流在三相电路中,负载不平衡是一个常见的现象。
当三相负载不平衡时,系统中会出现三次谐波电流,其中零线电流是三次谐波电流的一种表现。
本文将探讨三相负载不平衡时零线电流的三次谐波电流产生机理及其影响。
一、三次谐波电流的产生机理负载不平衡导致了三相电压的不平衡,进而引起了三相电流中的谐波分量。
在三相系统中,当负载不平衡时,会产生三次谐波电流。
这是由于非对称负载导致了电流与电压之间的相位差,从而使得系统中出现三次谐波成分。
三次谐波电流通过零线回路而形成零线电流,进而影响系统的性能和稳定性。
二、零线电流的影响负载不平衡所引起的零线电流会对系统产生一定的影响。
首先,零线电流会导致系统中零线的过载,降低系统的可靠性。
其次,零线电流会加大系统中的能耗,增加电力损耗。
此外,零线电流还会影响系统的功率因数,导致系统的效率降低。
因此,合理控制零线电流是保证系统正常运行的重要措施。
三、零线电流的调节方法为了减小三次谐波电流及零线电流的影响,可以采取以下几种调节方法。
首先,通过合理设计系统的负载结构,避免负载不平衡。
其次,采用合适的配电设备,如三相四线制电源系统,有效减小谐波电流的产生。
此外,可以安装滤波器等设备,对系统进行滤波处理,降低零线电流的水平。
四、结论三相负载不平衡时零线电流的三次谐波电流是一个复杂的问题,需要系统综合考虑电路结构、负载特性和配电设备等因素。
通过合理调节系统参数,可以有效减小零线电流的水平,提高系统的稳定性和效率。
希望本文对读者们在实际工程中解决相关问题提供参考与帮助。
三相不平衡损耗计算农村低压电网改造后低压电网结构发生了很大的变化,电网结构薄弱环节基本上已经解决,低压电网的供电能力大大增强,电压质量明显提高,大部分配电台区的低压线损率降到了10%以下,但仍有个别配电台区因三相不平衡负载等原因而造成线损率居高不下,给供电管理企业特别是基层供电所电工组造成较大的困难和损失,下面针对这些情况进行分析和探讨。
一、原因分析在前几年的农网改造时,对配电台区采取了诸如增添配电变压器数量,新增和改造配电屏,配电变压器放置在负荷中心,缩短供电半径,加大导线直径,建设和改造低压线路,新架下户线等一系列降损技术措施,也收到了很好的效果。
但是个别台区线损率仍然很高,针对其原因,我们做了认真的实地调查和分析,发现一些台区供电采取单相二线制、二相三线制,即使采用三相四线制供电,由于每相电流相差很大,使三相负荷电流不平衡。
从理论和实践上分析,也会引起线路损耗增大。
二、理论分析低压电网配电变压器面广量多,如果在运行中三相负荷不平衡,会在线路、配电变压器上增加损耗。
因此,在运行中要经常测量配电变压器出口侧和部分主干线路的三相负荷电流,做好三相负荷电流的平衡工作,是降低电能损耗的主要途经。
假设某条低压线路的三相不平衡电流为IU、IV、IW,中性线电流为IN,若中性线电阻为相线电阻的2倍,相线电阻为R,则这条线路的有功损耗为ΔP1=(I2UR+I2VR+I2WR+2I2NR)×10-3 (1)当三相负荷电流平衡时,每相电流为(IU+IV+IW)/3,中性线电流为零,这时线路的有功损耗为ΔP2=■2R×10-3 (2)三相不平衡负荷电流增加的损耗电量为ΔP=ΔP1-ΔP2=■(I2U+I2V+I2W-I2UI2V-I2VI2W+I2WI2U+3I2N)R×10-3(3)同样,三相负荷电流不平衡时变压器本身也增加损耗,可用平衡前后的负荷电流进行计算。
由此可见三相不平衡负荷电流愈大,损耗增加愈大。
3相380v功率计算公式
三相电功率的计算公式是:
1、三相有功功率:P=1.732*U*I*cosφ。
2、三相无功功率:P=1.732*U*I*sinφ。
3、视在功率:S=1.732UI。
三相电(380V)功率、电压、电流的计算公式:
功率=电流×(1.732×380电压×0.85功率因数×0.9效率)。
如7.5的电动机额定电流的计算方法:
7500÷(1.732×380×0.85×0.9)=14.896A。
三相电解析:
1、三相电都是火线,两根之间是380V,每根与零线间是220V,也就是我们日常使用的。
2、三相电可以接电机,三根同时进入电机,有星形接法和三角形接法。
3、随便两根的电压是380V而不是220V。
4、可以用其中一根与零线构成220V使用。
5、中性线一般是用来在三相负荷不平衡时,来导通不平衡电流的。
三相四线零线电流计算在我们家庭中,电能作为生活必需品被广泛使用,而电流则是电能传输中的一个重要参数。
三相四线零线电流计算是电力系统中一项重要的计算工作。
今天,我们将深入了解三相四线零线电流的计算方法,并为您提供有用的指导意见。
首先,三相四线系统包括三个相,每个相之间有一个电压差,以及一个零线。
在三相四线系统中,电流必须通过相之间的配合来平衡,以避免任何一个相过载。
因此,我们需要计算每个相的电流,以确保三个相之间平衡。
其次,计算三相四线零线电流时,需要考虑相电压、负载和电源的性质。
在计算电流之前,我们需要测量每个相的电压,并将其记录下来。
然后,我们需要确定负载或电器的功率,以便计算电流。
最后,我们需要考虑电源的性质,包括电源电压和电源的限制条件。
在计算每个相的电流之前,需要使用以下公式计算总功率:总功率= √3 × 相电压× 相电流× 功率因数其中,√3代表3的平方根,而功率因数是目前的功率与电压和电流乘积的比值。
一旦我们计算出总功率,我们现在可以使用以下公式来计算每个相的电流:每相电流P=总功率÷(√3×相电压)这个公式能够让我们计算每个相的电流,从而确保三相电流负载的均衡。
最后,我们需要注意电源的限制条件。
电源的限制条件包括线路容量、电缆长度、布线方式等。
如果电源的限制条件不清楚或无法处理,那么电脑可能会发生过载或故障。
总之,三相四线零线电流计算是电力系统中的重要组成部分。
通过测量每个相的电压、计算负载的功率和电源属性,以及考虑电源的限制条件,我们能够计算出三相电流的每个相并确保电流负载的均衡。
通过这些方法,我们可以保证电力系统的稳定性和安全性。
三相电流不平衡零线电流计算公式三相电流不平衡时的零线电流计算公式
在三相电系统中,当三相电流不平衡时,会产生零线电流。
为了计算这种情况下的零线电流,我们可以使用以下公式:
I0 = (Ia + Ib + Ic) / 3
其中,I0代表零线电流,Ia、Ib、Ic分别代表A相、B相和C相的电流。
该公式基于一个基本假设,即三相电流的相位和幅值不变。
在实际应用中,通常会进行电流测量来获取各相的电流值,然后将其代入公式中进行计算。
请特别注意,该公式仅适用于对称负载情况下,即各个相的电流相位差相同且电流幅值相等。
在非对称负载情况下,需要使用更复杂的公式计算零线电流。
总之,通过使用上述公式,我们可以计算得到三相电流不平衡时的零线电流。
这对于电力系统的分析和设计非常重要,因为了解和掌握电流分布的情况,有助于确保电力系统的稳定性和安全性。