量子力学在现实世界的十大应用
- 格式:doc
- 大小:23.00 KB
- 文档页数:12
量子力学及其应用领域量子力学是物理学中一门基础性的学科,研究微观世界中的粒子和能量的行为。
它包括了描述物质的波粒二象性、粒子之间的相互作用以及测量所带来的不确定性等内容。
量子力学的发展促进了人类对于微观世界的理解,也被广泛应用于许多领域。
首先,量子力学在原子和分子物理学领域扮演着重要的角色。
在过去,人们对于原子和分子的理解主要建立在经典物理学的基础上,但是随着量子力学的发展,我们能够更加准确地描述原子和分子的内部结构、能级分布以及各种相互作用。
这对于理解化学反应、光谱学和材料科学等领域的研究具有重要意义。
量子力学的应用还延伸到凝聚态物理学中。
凝聚态物理学主要研究宏观物质的性质,例如固体、液体和凝胶等。
通过量子力学的方法,我们能够解释和预测凝聚态物质的电子结构、磁性和超导性等特性。
这些知识对于材料科学和电子器件的发展具有重要影响,例如半导体器件和量子计算机等。
此外,量子力学在粒子物理学中也扮演着关键的角色。
粒子物理学研究基本粒子的性质和相互作用规律,例如强子、轻子和基本力的传播等。
量子力学提供了描述粒子行为的数学框架,例如薛定谔方程和量子场论等。
通过这些理论,科学家们能够预测和解释粒子在高能环境下的行为,促进了我们对宇宙起源和粒子物理学的认识。
另一个应用领域是量子光学。
量子光学研究光与物质之间的相互作用,利用光的量子特性来实现新型光学器件和技术。
量子力学的波粒二象性理论为研究光子的应用提供了基础。
例如,量子光学的研究成果在信息传输、量子通信和量子计算等领域发挥着重要作用,为实现更加安全和高效的通信系统和计算机技术提供了新的思路。
最后,量子力学通过量子力学的概念和方法也在核物理学中得到了应用。
核物理学研究原子核中粒子的结构和相互作用,以及核反应的规律。
通过量子力学的框架,科学家们能够解释放射性衰变、核聚变和核裂变等过程,进一步认识到核能的性质和应用。
总结来说,量子力学是一门具有深远影响的学科,通过它的发展和应用推动了人类对于微观世界的认识。
十大功劳的学名十大功劳是指为人类社会做出最重要贡献的一组发现或创造。
这些功劳不仅在某个特定领域产生了深远的影响,而且对整个人类文明的进展和发展产生了极大的推动作用。
以下是十大功劳及其学名:1. 人类起源研究(Paleoanthropology):人类起源研究是人类学的一个重要分支,通过考古学、古生物学和分子生物学等多学科的综合研究,揭示了人类的起源、进化和扩散等方面的重要发现。
2. 适应辐射的基因突变(Radiation adaptive gene mutations):这项研究揭示了生物种群在适应环境压力时突变基因的重要作用。
这些基因突变使得生物能够适应不同的环境条件,并且促进了生物多样性的形成和进化。
3. 医学基因组学(Medical genomics):医学基因组学研究了基因与疾病之间的关系。
通过对人类基因组的研究,科学家发现了许多与疾病相关的基因变异,为疾病的预防、诊断和治疗提供了重要的帮助。
4. 量子力学(Quantum mechanics):量子力学是物理学的一个重要分支,描述了微观物体的运动和性质。
这一理论对现代科技的发展产生了深远的影响,如计算机、激光、半导体等都离不开量子力学的支持。
5. 农业革命(Agricultural revolution):农业革命是人类历史上的一个重要转折点,标志着人类从采集和狩猎的生活方式转变为农业文明。
农业革命为人类提供了稳定的食物来源,推动了人类社会的发展。
6. 工业革命(Industrial revolution):工业革命是从18世纪末到19世纪初发生在英国的一场革命。
通过机械生产代替传统手工业生产的方式,工业革命推动了生产力的大幅提升,对经济社会的发展产生了革命性的影响。
7. 线性代数(Linear algebra):线性代数是数学的一个重要分支,研究了向量空间和线性变换等概念。
线性代数在物理学、工程学、计算机科学等领域具有广泛的应用,为这些学科的发展做出了重要贡献。
量子力学在现代科技中的应用量子力学是物理学中最具有前沿性和影响力的分支之一,它探索了微观世界的奇妙规律,为我们揭示了一系列令人惊叹的现象和概念。
近年来,随着技术的快速发展,量子力学的应用领域不断扩展,已经渗透到了众多现代科技的发展中。
本文将探讨量子力学在现代科技中的应用,并介绍一些代表性的应用案例。
1. 量子计算机量子计算机是量子力学的重要应用之一,它利用了量子叠加和量子纠缠的特性,将计算速度大幅提升。
相比传统计算机使用的比特(bit),量子计算机使用的是量子比特(qubit),它允许在同一时间内处理多个计算任务。
这使得在特定领域,如密码学、优化问题和大规模数据处理中,量子计算机具有巨大的优势。
目前,全球各大科研机构和科技公司都在积极开展量子计算机的研究和开发,相信在不久的将来,量子计算机将成为重要的科技工具。
2. 量子通信量子通信是一种基于量子力学原理的加密通信方式,它具有极高的安全性。
因为根据量子力学的测量原理,任何对量子信息的窃取或监听都会导致信息的破坏。
这种特性使得量子通信成为安全通信的前沿技术。
目前,量子通信已经在实验室中取得了重要的突破,例如量子密钥分发和量子隐形传态等。
随着技术的进一步发展,量子通信有望在未来的通信领域中发挥重要作用。
3. 量子传感器量子传感器是利用量子力学的特性来实现超高灵敏度和精确度的传感器。
传统传感器往往受到量子的不确定性原理的限制,而量子传感器则能够克服这一问题。
例如,利用量子纠缠特性,量子测量仪器可以实现更准确的测量,可以在微小尺度上实时监测地震、地磁、重力等物理量。
此外,量子传感器还可以应用于医学领域,实现更准确的生物测量和医学成像等。
4. 量子雷达量子雷达是一种利用量子纠缠和量子测量原理来实现隐形探测的技术。
传统雷达受到经典物理中的散射原理的限制,而量子雷达则能够通过量子纠缠的特性,实现对目标的高分辨探测。
这使得量子雷达在军事、安全和情报等领域具有潜在的应用价值。
量子力学十大应用量子力学是物理学中的重要分支,它描述了微观粒子行为的规律。
在过去的几十年中,量子力学已经广泛应用于各个领域,带来了许多重大的突破和创新。
本文将介绍量子力学的十大应用,以生动、全面、有指导意义的方式。
一、量子计算机量子计算机利用量子力学的特性进行运算,能够在某些问题上实现超强的计算能力。
相对于经典计算机,量子计算机能够并行处理更多的计算任务,解决复杂的问题,如密码学、化学反应和模拟量子系统等。
二、量子通信量子通信利用量子力学的量子纠缠和量子隐形传态原理,实现了无法被破解的通信加密方式。
这种加密方式能够保护通信的安全性,广泛应用于银行、军事和政府等领域。
三、量子加速器量子加速器利用量子力学中的束缚态和散射态,加速带电粒子。
这种加速器相对于传统的加速器更加高效和紧凑,可以广泛应用于核物理研究、医学影像和材料科学等领域。
四、量子传感器量子传感器利用量子力学的相干性和干涉现象,实现了超高灵敏度的测量。
这种传感器可以应用于精密测量、地震监测、生物传感和环境监测等领域。
五、量子成像量子成像利用量子力学的纠缠和干涉原理,实现了超高分辨率的成像。
这种成像技术可以应用于医学影像、天文学观测和材料表征等领域,提高图像的清晰度和信息获取能力。
六、量子仿真量子仿真利用量子力学的量子叠加态和量子纠缠,模拟具有复杂动力学过程的量子系统。
这种仿真技术可以应用于材料设计、催化剂开发和药物研发等领域,加速科学研究和工程创新。
七、量子传输量子传输利用量子力学的量子隐形传态和量子纠缠原理,实现了超远距离的信息传输。
这种传输方式可以用于建立全球量子网络,实现安全的通信和分发量子数据。
八、量子光学量子光学利用量子力学的光子波粒二象性和光子纠缠,研究光的量子特性。
这种光学技术可以应用于量子计算、量子通信和量子成像等领域,推动光学科学的发展。
九、量子传感量子传感利用量子力学的精确测量和相干性,实现了超高灵敏度的测量。
这种传感技术可以应用于加速度计、陀螺仪和磁力计等领域,提高测量的准确性和敏感度。
10个神奇的物理现象1. 量子隧穿量子隧穿是指量子粒子通过不可能越过的势垒的现象。
在经典物理学中,粒子必须拥有足够的能量才能通过势垒,但在量子力学中,粒子可以利用隧穿效应,以非常小的概率通过势垒。
这一现象被广泛应用于半导体器件和扫描隧道显微镜等领域。
2. 原子核聚变原子核聚变是指将两个轻核聚合成更重的核的过程。
在太阳和恒星中,核聚变是产生能量的主要机制。
在地球上,核聚变被用于制造氢弹和未来的核聚变反应堆。
3. 平衡态热力学平衡态热力学是研究热力学系统的稳态行为的分支学科。
它涉及热力学系统的热力学性质,如温度、压力和熵等。
平衡态热力学是物理学和化学工程学的基础。
4. 洛伦兹收缩洛伦兹收缩是指物体在运动中的长度会缩短。
这一现象是相对论的结果,由物体的速度引起。
当物体的速度接近光速时,洛伦兹收缩效应变得更加显著。
5. 量子纠缠量子纠缠是指两个或多个量子粒子之间的关联,其中一个粒子的状态会影响另一个粒子的状态,即使它们被分开了。
这一现象被广泛应用于量子通信和量子计算等领域。
6. 磁悬浮列车磁悬浮列车是一种利用磁力悬浮和电磁推进的高速列车。
与传统的轮轨列车相比,磁悬浮列车具有更高的速度和更低的摩擦阻力。
7. 光电效应光电效应是指当光线照射在金属表面时,金属会释放出电子的现象。
这一现象是量子力学的结果,由光子和电子之间的相互作用引起。
光电效应是现代光电技术的基础。
8. 万有引力万有引力是牛顿引力定律的结果,描述了质点之间的引力相互作用。
它是由质量和距离决定的,是宇宙中最基本的力量之一。
9. 热力学第二定律热力学第二定律是指热量不会自己从低温物体转移到高温物体的现象,除非进行外部工作。
这一定律是热力学的基本原则之一,被广泛应用于热力学系统的研究中。
10. 量子计算量子计算是一种基于量子力学的计算方法,利用量子比特的纠缠和叠加效应进行计算。
与传统的计算机相比,量子计算机具有更高的速度和更强的计算能力,被认为是未来计算机科学的发展方向。
量子论在社会生活中的应用
量子论是描述微观世界中物质和能量相互作用的理论,它在社会生活中有许多应用。
以下是一些例子:
1. 量子计算:量子计算是一种基于量子力学原理的计算技术,它可以比传统计算机更快地解决某些问题。
量子计算机可以用于解决复杂的数学问题、优化问题和密码学等领域。
2. 量子通信:量子通信是一种基于量子力学原理的通信技术,它可以实现安全的通信。
量子通信利用量子态的特殊性质来保证通信的安全性,它可以防止窃听和破解。
3. 量子传感器:量子传感器是一种基于量子力学原理的传感器,它可以比传统传感器更精确地测量物理量。
量子传感器可以用于测量磁场、温度、压力和重力等物理量。
4. 量子成像:量子成像是一种基于量子力学原理的成像技术,它可以实现高分辨率的成像。
量子成像利用量子态的特殊性质来实现成像,可以用于生物医学成像、材料科学和地质学等领域。
5. 量子密码学:量子密码学是一种基于量子力学原理的密码学技术,它可以实现安全的密码传输。
量子密码学利用量子态的特殊性质来保证密码的安全性,可以防止窃听和破解。
总之,量子论在社会生活中有许多应用,它可以为我们提供更快速、更安全和更精确的技术。
随着量子技术的不断发展,相信它将会在更多的领域得到应用。
量子信息在生活中的10大应用量子信息技术是近年来发展最快的领域之一,它利用量子力学中的特殊性质,实现了在信息处理和通信等方面的突破。
下面我们将介绍10个量子信息在生活中的应用。
1. 量子密码学量子密码学是利用量子态的不可复制性来保护信息的安全。
它可以防止黑客攻击和窃取信息。
目前,已经有一些商业化的量子密码学应用出现,例如,银行系统、政府机构等领域都开始采用量子密码学。
2. 量子随机数生成随机数在密码学、模拟等领域中具有重要作用。
传统的随机数生成方法很容易被攻击,而量子随机数生成则具有不可预测性和不可猜测性,极大地提高了随机数的安全性。
3. 量子模拟量子模拟是利用量子计算机模拟量子系统的行为。
在材料科学、化学、生物学等领域中,量子模拟可以帮助科学家预测分子结构和反应过程,从而加速新材料和新药物的研发。
4. 量子通信量子通信是一种基于量子力学的通信方式。
它具有高速度、高安全性和高可靠性的特点,可以用于银行、政府、交通等领域的保密通信。
5. 量子雷达量子雷达利用量子纠缠态的特殊性质,可以实现更高精度的目标定位。
它可以用于军事、航空航天等领域,提高目标定位的精度和可靠性。
6. 量子计算量子计算机的计算能力远超传统计算机。
它可以用于解决一些传统计算机无法处理的问题,例如分解质因数、模拟量子系统等。
在未来,量子计算机有望成为人工智能、机器学习等领域的重要工具。
7. 量子传感器量子传感器利用量子效应来测量物理量,例如温度、压力、磁场等。
与传统传感器相比,量子传感器具有更高的灵敏度和更快的响应速度,可以用于医疗、环境监测等领域。
8. 量子图像处理量子图像处理是将量子计算机的优势应用到图像处理领域。
它可以实现更快的图像处理速度和更高的图像处理精度,可以用于医疗、安防等领域。
9. 量子定位量子定位是一种利用量子力学的方法,可以实现更高精度的目标定位。
它可以用于军事、航空航天等领域,提高目标定位的精度和可靠性。
10. 量子生物学量子生物学是将量子力学的理论和技术应用到生物学领域。
量子力学是一门研究微观世界物质和能量的科学理论,其应用非常广泛。
下面是量子力学的几个常见应用:
1.原子能科学:量子力学可以用来解释原子内部的结构和性质,例如原子的光谱、化
学反应以及分子结构等。
2.分子化学:量子力学可以用来解释分子内部的电子结构和相互作用,例如分子的光
谱、反应机理以及化学反应等。
3.半导体物理:量子力学可以用来解释半导体材料的电子结构和性质,例如半导体的
电子能带结构、电子输运性质以及半导体器件的工作原理等。
4.原子核物理:量子力学可以用来解释原子核内部的结构和性质,例如原子核的稳定
性、裂变、聚变以及核反应等。
5.量子信息:量子力学可以用来研究量子信息学中的基本概念和方法,例如量子密钥
分发、量子计算机以及量子通信。
6.量子光学:量子力学可以用来解释光的量子性质,例如光子的存在、光的干涉、振
幅和相位关系以及光的行为模拟等。
7.量子场论:量子场论是建立在量子力学基础之上的一种理论,可以用来研究费米子、
强子、重子和其他粒子的量子性质,以及它们之间的相互作用。
8.量子气体理论:量子气体理论是建立在量子力学基础之上的一种理论,可以用来研
究低温下的气体的量子性质,例如低温气体的热力学性质、统计物理性质和相变等。
最美的十大物理实验第一,心电动力学:这是一种关于心脏的动力学研究,它帮助科学家更好地理解心脏的动力机制。
它通过测量心脏在自发节律和外源刺激下的生理参数来研究心脏运动的动力学过程。
这项实验有助于探索心脏组织的运动特性,提供对缺血性心脏病病人治疗更好的方案。
第二,电磁学:这是一种描述电磁场、电磁能量以及电磁现象和这些现象如何影响物体的研究。
它使用电磁实验,利用电动力法、磁场法和磁现象来试验、演示或示范,让电磁理论不仅在理论上可靠,在实践上也是有效的。
第三,光学:这是研究光的物理学,是物体与光的交互作用及其研究的学科。
光学技术广泛应用于几乎所有的科学、工程、医学领域,并常用来解决实际问题。
实验可以测量光谱、检测光强度以及观察折射现象等,能够探究光的七大属性。
第四,量子力学:这是一门讨论粒子以及它们之间的相互作用的物理学,研究特定条件下原子碰撞,核反应,电子输运能量转变等,揭示了费米子、当代量子力学模型,表明了诸多现象的精确的作用机制。
它的实验主要是定性的,包括测量量子多种态、检验量子“猫”现象以及探测偶然性等。
第五,热学:这是一门研究热力与温度之间关系的物理学,探讨物质温度、热量、熵等物理量的变化,以及室温下物质各种变化的物理原理,它可以帮助我们更好地了解物质的能量转移机制。
它的实验主要包括测量物质改变温度过程中的热量,检测物质各种变化状态的能量等等。
第六,凝聚态物理学:是一门研究凝聚态物质的性质的物理学。
它涉及物质增减、内聚力释放、外部控制介质传播这一系列研究,尤其是以半导体以及量子点研究为主,通过实验可以揭示凝聚态物质的静态及动态属性。
第七,电磁感应实验:是以磁场作用原理为主,借助特殊装置可以测量电流、感应电动势及磁感应强度等,该实验揭示了电磁学技术的实际应用,研究了各种类型的物质的磁性现象,在实际工程中有着重要的应用价值。
第八,电路实验:它是以研究、掌握电路的知识为主,借助电子测量仪器对电路的工作情况进行监测,并利用试验数据分析推断出电路的特性和行为特性,这一实验使电子技术有力地支持电路设计。
量子力学在现实世界的十大应用数千年来,人类一直依靠天生的直觉来认识自然界运行的原理。
虽然这种方式让我们在很多方面误入歧途,譬如,曾一度坚信地球是平的。
但从总体上来说,我们所得到的真理和知识,远远大过谬误。
正是在这种虽缓慢、成效却十分积极的积累过程中,人们逐渐摸索总结出了运动定律、热力学原理等知识,自身所处的世界才变得不再那么神秘。
于是,直觉的价值,更加得到肯定。
但这一切,截止到量子力学的出现。
这是被爱因斯坦和玻尔用“上帝跟宇宙玩掷骰子”来形容的学科,也是研究“极度微观领域物质”的物理学分支,它带来了许许多多令人震惊不已的结论——科学家们发现,电子的行为同时带有波和粒子的双重特征(波粒二象性),但仅仅是加入了人类的观察活动,就足以立刻改变它们的特性;此外还有相隔千里的粒子可以瞬间联系(量子纠缠):不确定的光子可以同时去向两个方向(海森堡测不准原理);更别提那只理论假设的猫既死了又活着(薛定谔的猫)……诸如以上,这些研究结果往往是颠覆性的,因为它们基本与人们习惯的逻辑思维相违背。
以至于爱因斯坦不得不感叹道:“量子力学越是取得成功,它自身就越显得荒诞。
”到现在,与一个世纪之前人类刚刚涉足量子领域的时候相比,爱因斯坦的观点似乎得到了更为广泛的共鸣。
量子力学越是在数理上不断得到完美评分,就越显得我们的本能直觉竟如此粗陋不堪。
人们不得不承认,虽然它依然看起来奇异而陌生,但量子力学在过去的一百年里,已经为人类带来了太多革命性的发明创造。
正像詹姆斯·卡卡廖斯在《量子力学的奇妙故事》一书的引言中所述:“量子力学在哪?你不正沉浸于其中吗。
”陌生的量子,不陌生的晶体管美国《探索》杂志在线版给出的真实世界中量子力学的一大应用,就是人们早已不陌生的晶体管。
1945年的秋天,美国军方成功制造出世界上第一台真空管计算机ENIAC。
据当时的记载,这台庞然大物总重量超过30吨,占地面积接近一个小型住宅,总花费高达100万美元。
如此巨额的投入,注定了真空管这种能源和空间消耗大户,在计算机的发展史中只能是一个过客。
因为彼时,贝尔实验室的科学家们已在加紧研制足以替代真空管的新发明——晶体管。
晶体管的优势在于它能够同时扮演电子信号放大器和转换器的角色。
这几乎是所有现代电子设备最基本的功能需求。
但晶体管的出现,首先必须要感谢的就是量子力学。
正是在量子力学基础研究领域获得的突破,斯坦福大学的研究者尤金·瓦格纳及其学生弗里德里希·塞茨得以在1930年发现半导体的性质——同时作为导体和绝缘体而存在。
在晶体管上加电压能实现门的功能,控制管中电流的导通或者截止,利用这个原理便能实现信息编码,以至于编写一种1和0的语言来操作它们。
此后的10年中,贝尔实验室的科学家制作和改良了世界首枚晶体管。
1954年,美国军方成功制造出世界首台晶体管计算机TRIDAC。
与之前动辄楼房般臃肿的不靠谱的真空管计算机前辈们相比,TRIDAC只有3立方英尺大,功率不过100瓦。
今天,英特尔和AMD的尖端芯片上,已经能够摆放数十亿个微处理器。
而这一切都必须归功于量子力学。
量子干涉“搞定”能量回收无论怎样心怀尊敬,对于我们来说,都不太容易能把量子力学代表的理论和它带来的成果联系在一起,因为他们听起来就是完全不相干的两件事。
而“能量回收”就是个例子。
每次驾车出行,人们都会不可避免地做一件负面的事情——浪费能量。
因为在发动机点燃燃料以产生推动车身前进的驱动力同时,相当一部分能量以热量的形式散失,或者直白地说,浪费在空气当中。
对于这种情况,美国亚利桑那大学的研究人员试图借助量子力学中的量子干涉原理来解决这一问题。
量子干涉描述了同一个量子系统若干个不同态叠加成一个纯态的情况,这听起来让人完全不知所谓,但研究人员利用它研制了一种分子温差电材料,能够有效地将热量转化为电能。
更重要的是,这种材料的厚度仅仅只有百万分之一英尺,在其发挥功效时,不需要再额外安装其他外部运动部件,也不会产生任何污染。
研究团队表示,如果用这种材料将汽车的排气系统包裹起来的话,车辆因此将获得足以点亮200只100瓦灯泡的电能——尽管理论让人茫然,但这数字可是清晰可见的。
该团队因此对新型材料的前途充满信心,确定在其他存在热量损失的领域,该材料同样能够发挥作用,将热能转变为电能,比如光伏太阳能板。
而我们只需知道,这都是量子干涉“搞定”的。
不确定的量子,极其确定的时钟作为普通人,一般是不会介意自己的手表快了半分钟,还是慢了十几秒。
但是,如果是像美国海军气象天文台那样为一个国家的时间负责,那么这半分半秒的误差都是不被允许的。
好在这些重要的组织单位都能够依靠原子钟来保持时间的精准无误。
这些原子钟比之前所有存在过的钟表都要精确。
其中最强悍的是一台铯原子钟,能够在2000万年之后,依然保持误差不超过1秒。
看到这种精确的能让人紊乱的钟表后,你也许会疑惑难道真的有什么人或者什么场合会用到它们?答案是肯定的,确实有人需要。
比如航天工程师在计算宇宙飞船的飞行轨迹时,必须清楚地了解目的地的位置。
不管是恒星还是小行星,它们都时刻处在运动当中。
同时距离也是必须考虑的因素。
一旦将来我们飞出了所在星系的范围,留给误差的边际范围将会越来越小。
那么,量子力学又与这些有什么关系呢?对于这些极度精准的原子钟来说,导致误差产生的最大敌人,是量子噪声。
它们能够消减原子钟测量原子振动的能力。
现在,来自德国大学的两位研究人员已经开发出,通过调整铯原子的能量层级来抑制量子噪声程度的方法。
它们目前正在试图将这一方法应用到所有原子钟上去。
毕竟科技越发达,对准时的要求就越高。
量子密码之战无不胜斯巴达人一向以战斗中的勇敢与凶猛闻名于世,但是人们并不能因此而轻视他们在谋略方面的才干。
为了防止敌人事先得知自己的军事行动,斯巴达人使用一种被称作密码棒的东西来为机密信息加密和解密。
他们先将一张羊皮纸裹在一根柱状物上,然后在上面书写信息,最后再将羊皮纸取下。
借助这种方式,斯巴达的军官能够发出一条敌人看起来语无伦次的命令。
而己方人员只需再次将羊皮纸裹在同等尺寸的柱状物上,就能够阅读真正的命令。
斯巴达人朴素的技巧,仅仅是密码学漫长历史的开端。
如今,依靠微观物质一些奇异特性的量子密码学,已经公开宣称自己无解。
它是一种利用量子纠缠效应、基于单光子偏振态的全新信息传输方式。
其安全之处在于,每当有人闯入传输网络,光子束就会出现紊乱,每个结点的探测器就会指出错误等级的增加,从而发出受袭警报;发送与接收双方也会随机选取键值的子集进行比较,全部匹配才认为没有人窃听。
换句话说,黑客无法闯入一个量子系统同时不留下干扰痕迹,因为仅仅尝试解码这一举动,就会导致量子密码系统改变自己的状态。
相应的,即便有黑客成功拦截获得了一组密码信息的解码钥匙,那他在完成这一举动的同一时刻,也导致了密钥的变化。
因而当合法的信息接收者检查钥匙时,就会轻易发现端倪,进而更换新的密钥。
量子密码的出现一直被视为“绝对安全”的回归,不过,天下没有不透风的墙。
拥有1000多年前那部维京时代海盗史的挪威人,已经打破了量子密码无解的神话。
借助误导读取密码信息的设备,他们在不尝试解码的条件下,就获得了信息。
但他们承认,这只是利用了现存技术上的一个漏洞,在量子密码术完善后即可趋避。
随机数发生器:上帝的“量子骰子”所谓的随机数发生器,并不是老派肥皂剧中那些奇幻神秘的玩意。
它们借助量子力学,能够召唤出真正的随机数。
不过,科学家们为什么要不辞劳苦地深入量子世界来寻找随机数,而不是简单轻松地抛下硬币、掷个骰子?答案在于:真正的随机性只存在于量子层级。
实际上只要科学家们收集到关于掷骰子的足够信息,那么他们便能够提前对结果做出预测。
这对于轮盘赌博、彩票甚至计算机得出的开奖结果等等,统统有效。
然而,在量子世界,所有的一切都是绝对无法预测的。
马克斯·普朗克大学光学物理研究所的研究人员正是借助这一不可预知性,制作出了“量子骰子”。
他们先是通过在真空中制造波动来产生出量子噪声,然后测量噪声所产生的随机层级,借此获得可以用于信息加密、天气预演等工作的真正随机数字。
值得一提的是,这种骰子被安装在固态芯片上,能够胜任多种不同的使用需求。
我们与激光险些失之交臂与量子力学的经历相似,激光在早期曾经也被认为是“理论上的巨人,实际应用上的侏儒”。
但今天,无论是家用CD播放器,还是“导弹防御系统”,激光已经在当代人类的社会生活中,占据了核心地位。
不过,如果不是量子力学,我们与激光的故事,很可能是以“擦身而过”而收场。
激光器的原理,是先冲击围绕原子旋转的电子,令其在重回低能量级别时迸发出光子。
这些光子随后又会引发周围的原子发生同样的变化,即发射出光子。
最终,在激光器的引导下,这些光子形成稳定的集中束流,即我们所看到的激光。
当然,人们能够知晓这些,离不开理论物理学家马克斯·普朗克及其发现的量子力学原理。
普朗克指出,原子的能量级别不是连续的,而是分散、不连贯的。
当原子发射出能量时,是以在离散值上被称作量子的最小基本单位进行的。
激光器工作的原理,实际上就是激发一个特定量子散发能量。
专门挑战极端的超精密温度计如果用普通的医用温度计,去测量比绝对零度低百分之一的温度,这支温度计的下场可想而知。
那么如何去对付这样的极端温度呢?耶鲁大学的研究人员发明了一支可以对付这些情况的神奇温度计。
它不仅能在极端环境中保持坚挺,更能够提供无比精确的数值。
为制作这种温度计,研究团队必须重新梳理温度计的设计思路。
比如获得精确数值的方式。
幸运的是,在追寻精确的过程中,科学家们借助量子隧道得到了自己想要的答案。
就像钻入山体内部而不是在其表面爬上爬下,粒子在穿越势垒的过程中,产生出了量子噪声。
使用研究团队的量子温度计去测量这些噪声,便能够精确地得出实验物体的温度。
虽然这种温度计对于普通人的日常生活并没有太大的意义,但是在科学实验室,尤其是那些需要极低温度环境的材料实验室它就可以大展身手了。
现在,研究者们还在努力通过各种手段提高该温度计的精确性,并期望随着它应用范围的拓展,更极端的科研环境都可以从中受益。
人人都爱量子计算机在1965年发表的一篇论文中,英特尔公司的联合创始人戈登·摩尔对计算机技术的未来发展,做了一些粗陋但却意义深远的预测。
其中最重要的一条便是日后著名的摩尔定律:每平方英尺集成电路上晶体管的数量,每18个月便会翻两倍。
这一定律对计算机技术的发展产生了深远影响,但是现在,摩尔定律似乎走到了尽头,因为到2020年,硅芯片将会达到自身的物理极限,而随着晶体管体积的不断缩小,它们将开始遵循量子世界的各种规律。
和量子世界的规律“抱有敌意”相比,顺应量子时代或许才是人们最好的选择。
今天,那些从事量子计算机研究的科学家做的正是这件事情。