第17讲不等式证明
- 格式:doc
- 大小:3.22 MB
- 文档页数:31
不等式的证明方法不等式是数学中一类重要的数学不等关系,它在各个领域中都有广泛的应用。
证明不等式的方法有很多,下面介绍几种常见的方法。
1.数学归纳法数学归纳法是一种常用的证明不等式的方法。
当不等式对于一些特定的n成立时,我们可以证明当n+1时,不等式也成立。
具体步骤如下:(1)首先验证当n=1时不等式成立;(2)假设当n=k时不等式成立,即不等式表达式为Pk(k),其中Pk(k)表示当n=k时不等式的表达式;(3)利用假设的条件,证明当n=k+1时不等式也成立,即证明Pk(k+1);(4)由(1)(2)步骤可知,不等式对于n=1成立,又由(3)步骤可知,当n=k+1时不等式也成立,综上可得,不等式对于所有的n成立。
2.数学推理数学推理是一种常用的证明不等式的方法,它主要是通过运用已知的数学定理、性质和等式进行逻辑推理,从而得出结论。
例如,可以利用已知的三角函数性质、代数运算等进行推理,通过一系列推导和等价变形得出需要证明的不等式。
3.代入法代入法是一种常用的证明不等式的方法,它主要是利用数值替换变量,通过对不等式成立条件的特殊取值进行代入,从而证明不等式成立。
例如,对于一个两个变量的不等式,可以分别取其中一个变量为0或1,然后对不等式进行推导和比较,得出结论。
4.反证法反证法是一种常用的证明不等式的方法,它通过假设所要证明的不等式不成立,然后从假设出发推导出与已知矛盾的结论,从而证明原不等式成立。
具体步骤如下:(1)假设不等式不成立,即存在一些条件使得不等式不成立,这个条件可以是一个数、一个式子等;(2)利用假设条件进行推导,推导出与已知矛盾的结论;(3)由于假设条件导致与已知矛盾,所以假设不成立,即原不等式成立。
5.AM-GM不等式(算术平均数-几何平均数不等式)AM-GM不等式是一种常用的证明不等式的方法。
它断言,若a1,a2,...,an是n个非负实数,则有(a1+a2+...+an)/n ≥√(a1*a2*...*an),等号成立的条件是a1=a2=...=an。
2021届江西省高考理科数学总复习 第17讲:利用导数证明不等式考点1 单变量不等式的证明 单变量不等式的证明方法(1)移项法:证明不等式f (x )>g (x )(f (x )<g (x ))的问题转化为证明f (x )-g (x )>0(f (x )-g (x )<0),进而构造辅助函数h (x )=f (x )-g (x );(2)构造“形似”函数:对原不等式同解变形,如移项、通分、取对数;把不等式转化为左右两边是相同结构的式子的结构,根据“相同结构”构造辅助函数;(3)最值法:欲证f (x )<g (x ),有时可以证明f (x )max <g (x )min .直接将不等式转化为函数的最值问题 已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论f (x )的单调性;(2)当a <0时,证明f (x )≤-34a -2.[解] (1)f (x )的定义域为(0,+∞),f ′(x )=1x +2ax +2a +1=(x +1)(2ax +1)x.当a ≥0,则当x ∈(0,+∞)时,f ′(x )>0,故f (x )在(0,+∞)上单调递增.当a <0,则当x ∈⎝ ⎛⎭⎪⎫0,-12a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫-12a ,+∞时,f ′(x )<0.故f (x )在⎝ ⎛⎭⎪⎫0,-12a 上单调递增,在⎝ ⎛⎭⎪⎫-12a ,+∞上单调递减.(2)证明:由(1)知,当a <0时,f (x )在x =-12a 取得最大值,最大值为f ⎝ ⎛⎭⎪⎫-12a =ln ⎝ ⎛⎭⎪⎫-12a -1-14a . 所以f (x )≤-34a -2等价于ln ⎝ ⎛⎭⎪⎫-12a -1-14a ≤-34a -2,即ln ⎝ ⎛⎭⎪⎫-12a +12a +1≤0.设g (x )=ln x -x +1,则g ′(x )=1x -1.当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g ′(x )<0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减.故当x =1时,g (x )取得最大值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时,ln ⎝ ⎛⎭⎪⎫-12a +12a +1≤0,即f (x )≤-34a -2.将不等式转化为函数最值来证明不等式,其主要思想是依据函数在固定区间的单调性,直接求得函数的最值,然后由f (x )≤f (x )max 或f (x )≥f (x )min 直接证得不等式.转化为两个函数的最值进行比较 已知f (x )=x ln x .(1)求函数f (x )在[t ,t +2](t >0)上的最小值; (2)证明:对一切x ∈(0,+∞),都有ln x >1e x -2e x 成立. [解] (1)由f (x )=x ln x ,x >0,得f ′(x )=ln x +1, 令f ′(x )=0,得x =1e .当x ∈⎝ ⎛⎭⎪⎫0,1e 时,f ′(x )<0,f (x )单调递减;当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f ′(x )>0,f (x )单调递增.①当0<t <1e <t +2,即0<t <1e 时,f (x )min =f ⎝ ⎛⎭⎪⎫1e =-1e ;②当1e ≤t <t +2,即t ≥1e 时,f (x )在[t ,t +2]上单调递增,f (x )min =f (t )=t ln t .所以f (x )min =⎩⎪⎨⎪⎧-1e ,0<t <1e ,t ln t ,t ≥1e .(2)证明:问题等价于证明x ln x >x e x -2e (x ∈(0,+∞)). 由(1)可知f (x )=x ln x (x ∈(0,+∞))的最小值是-1e , 当且仅当x =1e 时取到.设m (x )=x e x -2e (x ∈(0,+∞)), 则m ′(x )=1-x e x ,由m ′(x )<0得x >1时,m (x )为减函数, 由m ′(x )>0得0<x <1时,m (x )为增函数, 易知m (x )max =m (1)=-1e ,当且仅当x =1时取到.从而对一切x ∈(0,+∞),x ln x ≥-1e ≥x e x -2e ,两个等号不同时取到,即证对一切x ∈(0,+∞)都有ln x >1e x -2e x 成立.在证明的不等式中,若对不等式的变形无法转化为一个函数的最值问题,可以借助两个函数的最值进行证明.构造函数证明不等式已知函数f (x )=e x -3x +3a (e 为自然对数的底数,a ∈R ). (1)求f (x )的单调区间与极值;(2)求证:当a >ln 3e ,且x >0时,e x x >32x +1x -3a .[解] (1)由f (x )=e x -3x +3a ,x ∈R ,知f ′(x )=e x -3,x ∈R . 令f ′(x )=0,得x =ln 3,于是当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,ln 3)ln 3 (ln 3,+∞)f ′(x )-+。
高数不等式证明一、不等式的定义和性质1.1 不等式的定义不等式是代数中的一种关系,表示两个数或者表达式之间的大小关系。
通常使用符号”<“,”>“等来表示。
例如,2 < 3表示2小于3。
1.2 不等式的性质•若a > b,则a + c > b + c,其中c为任意实数•若a > b且c > 0,则ac > bc•若a > b且c < 0,则ac < bc•若a > b且c > d,则a + c > b + d二、不等式证明的基本思路不等式证明是高等数学中的重要内容,也是数学推理的一种形式。
不等式的证明可以通过直接证明、间接证明、反证法等方法进行。
一般来说,不等式证明的基本思路有以下几种:2.1 直接证明法直接证明法是通过对不等式进行等价变形和推理,从而证明不等式的正确性。
常用的等价变形方法有加减变形、乘除变形、换元变形等。
例如,要证明不等式a + b > a,可以通过加减变形得到b > 0,再通过等价推理得到该不等式成立。
2.2 间接证明法间接证明法是通过假设不等式不成立,并导出矛盾的结论,从而证明不等式的正确性。
常用的方法有反证法、条件证明法等。
例如,要证明不等式a + b > 0,可以假设a + b ≤ 0,然后导出矛盾的结论,说明原假设不成立,从而得到不等式成立。
2.3 数学归纳法数学归纳法一般用于证明一类特殊的不等式,或者证明不等式的某种性质。
它的基本思路是通过归纳假设和归纳步骤,逐步推理得到不等式的正确性。
三、具体例子:证明柯西不等式柯西不等式是高等数学中常用的一个重要不等式,用于描述两个向量的内积与其模长的关系。
其数学表达式为:对于任意实数ai和bi,i = 1, 2, …, n,有:(a1b1 + a2b2 + … + anbn)^2 ≤ (a1^2 + a2^2 + … + an2)(b12 + b2^2 + … + bn^2)3.1 证明思路我们可以通过直接证明的方法,首先进行等价变形,借助乘法公式展开和合并同类项,得到待证不等式左右两边的表达式。
不等式的证明方法第一篇:不等式的证明方法几个简单的证明方法一、比较法:a>b等价于a-b>0;而a>b>0等价于ab>1.即a与b的比较转化为与0或1的比较.使用比较发时,关键是要作适当的变形,如因式分解、拆项、加减项、通分等,这是第一章中许多代数不等式的证明及其他各章初等不等式的证明所常用的证明技巧.二、综合法与分析法:综合法是由因导果,即是由已知条件和已知的不等式出发,推导出所要证明的不等式;分析法是执果索因,即是要逐步找出使结论成立的充分条件或者充要条件,最后归结为已知的不等式或已知条件.对于条件简单而结论复杂的不等式,往往要通过分析法或分析法与综合法交替使用来寻找证明的途径.还要注意:第一,要熟悉掌握第一章的基本不等式和后面各章中著名的各种不等式;第二,要善于利用题中的隐含条件;第三,不等式的各种变性技巧.三、反证法:正难则反.设所要证的不等式不成立,从原不等式的结论的反面出发,通过合理的逻辑推理导出矛盾,从而断定所要证的不等式成立.要注意对所有可能的反面结果都要逐一进行讨论.四、放缩法:要证a<b,又已知(或易证)a<c,则只要证c<b,这是利用不等式的传递性,将原不等式里的某些项适当的放大或缩小,或舍去若干项等以达证题目的.放缩法的方法有:①添加或舍去一些项,如:a2+1>a;n(n+1)>n;②将分子或分母放大(或缩小);③利用基本不等式,如:log3⋅lg5<(n(n+1)<lg3+lg522)2=lg<lg=lg4; n+(n+1);④利用常用结论:k+1-k=1k+1+=11-k1k<12k1k;1k(k+1)1k+11k1k+11k<1k(k-1)1k;>=-(程度大)1k<-1=(k-1)(k+1)=2k-1(-);(程度小)五、换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元.如:已知x2+y2=a2,可设x=acosθ,y=asinθ;已知x2+y2≤1,可设x=rcosθ,y=rsinθ(0≤r≤1);已知xaxa2+ybyb=1,可设x=acosθ,y=bsinθ;-=1,可设x=asecθ,y=btanθ;六、数学归纳法法:与自然数n有关的许多不等式,可考虑用数学归纳法证明,数学归纳法法证明不等式在数学归纳法中有专门的研究.但运用数学归纳法时要注意:第一,数学归纳法有多种形式.李大元就证明了下述七种等价的形式:设P(n)是与n有关的命题,则(1)、设P(n0)成立,且对于任意的k>n0,从P(k)成立可推出P(k+1)成立,则P(n)对所有大于n0的n都成立.(2)、设m是任给的自然数,若P(1)成立,且从P(k)(1≤k<m)成立可推出P(k+1)成立,则P(n)对所有不超过m的n都成立.(3)、(反向归纳法)设有无穷多个自然数n(例如n=2m),使得P(n)成立,且从P(k+1)成立可推出P(k)成立,则P(n)对所有n成立.(4)、若P(且P(n)对所有满足1≤n≤k的n成立可推出P(k+1)成立,1)成立,则P(n)对所有n成立.(5)、(最小数原理)自然数集的非空子集中必有一个最小数.(6)、若P)且若P(k),P(k+1)成立可推出P(k+2)成立,则P(n)1(,P(2)成立,对所有n成立.(7)、(无穷递降法)若P(n)对某个n成立可推出存在n1<n,使得P(n1)成立,则P(n)对所有n成立.此外,还有螺旋归纳法(又叫翘翘板归纳法):设有两个命题P(n),Q(n),若P(1)成立,又从P(k)成立可推出Q(k)成立,并且从Q(k)成立可推出P(k+1)成立,其中k为任给自然数,则P(n),Q(n)对所有n都成立,它可以推广到两个以上的命题.这些形式虽然等价,但在不同情形中使用各有方便之处.在使用它们时,若能注意运用变形和放缩等技巧,往往可收到化难为易的奇效.对于有些不等式与两个独立的自然数m,n有关,可考虑用二重数学归纳法,即若要证命题P(m,n)对所有m,n成立,可分两步:①先证P(1,n),P(m,1)对所有m,n成立;②设P(m+1,n),P(m,n+1)成立,证明P(m+1,n+1)也成立.第二,数学归纳法与其它方法的综合运用,例如,证明n∑k=11ksinkx>0,(0<x<π)就要综合运用数学归纳法,反证法与极值法;有时可将n换成连续量x,用微分法或积分法.第三,并不是所有含n的不等式都能用数学归纳法证明的.七、构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.笔者将在第三章中详细地介绍构造法.八、利用基本不等式:善于利用已知不等式,特别是基本不等式去发现和证明新的不等式,是广泛应用的基本技巧.这种方法往往要与其它方法结合一起运用.22例1 已知a,b∈R,且a+b=1.求证:(a+2)+(b+2)≥252.证法一:(比较法)Θa,b∈R,a+b=1∴b=1-a∴(a+2)+(b+2)-252=a+b+4(a+b)-12=2(a-12)≥0=a+(1-a)+4-=2a-2a+即(a+2)2+(b+2)2≥证法二:(分析法)252(当且仅当a=b=时,取等号).(a+2)2+(B+2)≥252⇐a+b+4(a+b)+8≥252⎧b=1-a⎪⇐⎨225122⇐(a-)≥0⎪a+(1-a)+4+8≥22⎩显然成立,所以原不等式成立.点评:分析法是基本的数学方法,使用时,要保证“后一步”是“前一步”的充分条件.证法三:(综合法)由上分析法逆推获证(略).证法四:(反证法)假设(a+2)2+(b+2)2<252,则 a2+b2+4(a+b)+8<252252.由a+b=1,得b=1-a,于是有a2+(1-a)2+12<1⎫⎛所以(a-)<0,这与 a-⎪≥0矛盾.22⎭⎝.所以(a+2)+(b+2)≥252.证法五:(放缩法)∵a+b=1∴左边=(a+2)+(b+2)⎡(a+2)+(b+2)⎤2125≥2⎢=a+b+4=⎡⎤()⎥⎣⎦222⎣⎦=右边.点评:根据不等式左边是平方和及a+b=1这个特点,选用基本不等式⎛a+b⎫a+b≥2 ⎪.⎝2⎭证法六:(均值换元法)∵a+b=1,所以可设a=12+t,b=-t,1∴左边=(a+2)+(b+2)=(+t+2)2+(-t+2)25⎫5⎫2525⎛⎛2=右边.=t+⎪+t-⎪=2t+≥2⎭2⎭22⎝⎝当且仅当t=0时,等号成立.点评:形如a+b=1结构式的条件,一般可以采用均值换元.证法七:(利用一元二次方程根的判别式法) 设y=(a+2)+(b+2),由a+b=1,有y=(a+2)2+(3-a)2=2a2-2a+13,所以2a2-2a+13-y=0,因为a∈R,所以∆=4-4⋅2⋅(13-y)≥0,即y≥故(a+2)+(b+2)≥252.252.下面,笔者将运用数学归纳法证明第一章中的AG不等式.在证明之前,笔者先来证明一个引理.引理:设A≥0,B≥0,则(A+B)n≥An+nA(n-1)B,其中n∈N+.证明:由二项式定理可知n(A+B)=∑An-iBi≥An+nA(n-1)Bni=0∴(A+B)≥A+nAnn(n-1)B第二篇:证明不等式方法不等式的证明是高中数学的一个难点,题型广泛,涉及面广,证法灵活,错法多种多样,本节通这一些实例,归纳整理证明不等式时常用的方法和技巧。
证明不等式的基本方法证明不等式是数学中一个相当有趣又有点小挑战的事儿呢。
比较法是很常用的一种。
差值比较法呢,就是把要证明的不等式两边相减,然后判断差的正负性。
比如说要证明a > b,那就计算a - b,如果结果大于0,那可不就证明出来了嘛。
这就好比两个人比身高,直接站一块儿量一下差值就知道谁高谁低啦。
在这个过程中呢,计算差值的时候要特别细心哦,可别在计算上出岔子,那可就像爬山爬到一半摔一跤,太可惜啦。
它的安全性就在于只要计算正确,结果就很可靠,稳定性呢,就是不管这个不等式看起来多复杂,只要能算出差值就有希望判断。
它的应用场景可广啦,像一些简单的代数式大小比较就特别好用。
例如比较x²+ 1和2x的大小,计算(x²+ 1 - 2x)=(x - 1)²,因为任何数的平方都大于等于0,所以很容易就证明出x²+ 1≥2x啦,多棒呀!综合法也很厉害。
它是从已知条件出发,利用一些定理、性质等,逐步推导出要证明的不等式。
这就像是盖房子,一块砖一块砖地往上垒。
不过这就要求我们对那些定理、性质得特别熟悉才行呀,要是不知道有哪些“建筑材料”,那房子可就盖不起来喽。
它的安全性取决于我们对基础知识的掌握程度,如果基础知识很扎实,那推导出来的结果就很靠谱。
稳定性呢,只要每一步推导都是正确的,就不会出问题。
比如说已知a > 0,b > 0,要证明(a + b)/2≥√ab。
我们可以根据完全平方公式(a - b)²≥0展开得到a²- 2ab + b²≥0,移项得到a²+ 2ab + b²≥4ab,也就是(a + b)²≥4ab,再两边同时开方除以2就得到(a + b)/2≥√ab啦。
多神奇呀!这种方法在解决一些和几何、函数相关的不等式证明中特别有用,因为在这些领域有很多已知的定理可以用来推导。
分析法呢,和综合法有点相反。
绝对值的三角不等式;不等式证明的基本方法一、教学目的1、掌握绝对值的三角不等式;2、掌握不等式证明的基本方法二、知识分析定理1 若a,b为实数,则,当且仅当ab≥0时,等号成立;几何说明:1当ab>0时,它们落在原点的同一边,此时a与-b的距离等于它们到原点距离之和;2如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释;|a-b|表示a-b与原点的距离,也表示a到b之间的距离;定理2 设a,b,c为实数,则,等号成立,即b落在a,c之间;推论1推论2不等式证明的基本方法1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的;比较法有差值、比值两种形式,但比值法必须考虑正负;比较法证不等式有作差商、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述;如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证;2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用;所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述;综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用;3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法;4、放缩法:欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量,使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法;典型例题例1、已知函数,设a、b∈R,且a≠b,求证:思路:本题证法较多,下面用分析法和放缩法给出两个证明:证明:证法一:①当ab≤-1时,式①显然成立;当ab>-1时,式①②∵a≠b,∴式②成立;故原不等式成立;证法二:当a=-b时,原不等式显然成立;当a≠-b时,∴原不等式成立;点评:此题还可以用三角代换法,复数代换法、数形结合等证明,留给读者去思考;例2、设m等于|a|、|b|和1中最大的一个,当|x|>m时,求证:;思路:本题的关键是对题设条件的理解和运用,|a|、|b|和1这三个数中哪一个最大如果两两比较大小,将十分复杂,但我们可以得到一个重要的信息:m≥|a|、m≥|b|、m≥1;证明:故原不等式成立;点评:将题设条件中的文字语言“m等于|a|、|b|、1中最大的一个”转化为符号的语言“m≥|a|、m≥|b|、m≥1”是证明本题的关键;例3、函数的定义域为0,1且;当∈0,1,时都有,求证:;证明:不妨设,以下分两种情形讨论;若则,若则综上所述点评:对于绝对值符号内的式子,采用加减某个式子后,重新组合,运用绝对值不等式的性质变形,是证明绝对值不等式的典型方法;例4、已知a>0,b>0,求证:;思路:如果用差值比较法,下一步将是变形,显然需要通分,是统一通分,还是局部通分从题目结构特点看,应采取局部通分的方法;证明:①②∴原不等式成立;点评:在上面得到①式后,其分子的符号可由题设条件作出判断,但它没有②明显,所以,变形越彻底,越有利于最后的判断,本题还可以用比值比较法证明,留给读者去完成;例5、设x>0,y>0,且x≠y,求证:思路:注意到x、y的对称性,可能会想到重要不等式,但后续思路不好展开,故我们可采用分析法,从消去分数指数幂入手;证明:∵x>0,y>0,且x≠y,点评:在不便运用比较法或综合法时,应考虑用分析法;应注意分析法表述方法,其中寻求充分条件的语句常用符号“”表述;本题应用了分析法,既找到了解题思路,又使问题完满地得到了解决,可谓一举两得;例6、已知a、b、c∈R+,求证:;思路:因不等式的左边的两个因式都可以进行因式分解;结合a、b、c∈R+的条件,运用重要不等式,采用综合法进行证明;解析:即点评:用重要不等式证明不等式,一要注意重要不等式适用的条件,二要为运用重要不等式创造条件;另外,同向不等式相加或相乘,在综合法中常用到;例7、证明:对于任意实数x、y,有思路:采取分析法和比较法二者并用的方法来处理;证明:用分析法不等式②显然成立,下面证明不等式①同号,即点评:上述证明中,前半部分用的是分析法,后半部分用的是比较法,两种方法结合使用,使问题较容易解决,这一点应加以注意;例8、1用反证法证明以下不等式:已知,求证p+q≤2;2试证:n≥2;思路:运用放缩法进行证明;证明:1设p+q>2,则p>2-q,这与=2矛盾,2,又;将上述各式两边分别相加得点评:用放缩法证明不等式过程中,往往采用添项或减项的“添舍”放缩,拆项对比的分项放缩,函数的单调性放缩,重要不等式放缩等;放缩时要注意适度,否则不能同向传递;模拟试题1、设a、b是满足ab<0的实数,那么A、B、C、D、2、设ab>0,下面四个不等式①|a+b|>|a|;②|a+b|<|b|;③|a+b|<|a-b|;④|a+b|>|a|-|b|中,正确的是A、①和②B、①和③C、①和④D、②和④3、下面四个式子①;②;③;④中,成立的有A、1个B、2个C、3个D、4个4、若a、b、c∈R,且,则下列不等式成立的是A、B、C、D、5、设a、b、c∈R,且a、b、c不全相等,则不等式成立的一个充要条件是A、a、b、c全为正数B、a、b、c全为非负实数C、D、6、已知a<0,-1<b<0则A、B、C、D、7、设实数x、y满足,若对满足条件的x、y,x+y+c≥0恒成立,c 的取值范围是A、B、C、D、8、对于任意的实数x,不等式恒成立,则实数a的取值范围是_________;9、若a>c>b>0,则的值的符号为__________;10、设a、b、c∈R+,若,则__________;11、已知x,y∈R,且,则z的取值范围是__________;12、设,求证:;13、已知a、b是不等正数,且,求证:;14、已知,求证:中至少有一个不小于;15、设a、b为正数,求证:不等式①成立的充要条件是:对于任意实数x>1,有②试题答案1、B2、C3、C4、B5、C6、D7、A8、-∞,39、负10、911、12、证明:13、证明:a、b是不等正数,且而一定成立,故成立;14、证明:用反证法;假设都小于,则,而,相互矛盾,中至少有一个不小于;15、证明:设,那么不等式②对恒成立的充要条件是函数的最小值大于b;当且仅当,时,上式等号成立;故的最小值是;因此,不等式②对x>1恒成立的充要条件是>b;。