第五章_统计力学基本原理
- 格式:ppt
- 大小:4.02 MB
- 文档页数:124
热⼒学与统计物理第五章知识总结§5.1 热⼒学量的统计表达式我们根据Bolzman分布推导热⼒学量的统计表达式⼀、配分函数粒⼦的总数为令(1)名为配分函数,则系统的总粒⼦数为(2)⼆、热⼒学量1、内能(是系统中粒⼦⽆规则运动的总能量的统计平均值)由(1)(2)得(3)此即内能的统计表达式2、⼴义⼒,⼴义功由理论⼒学知取⼴义坐标为y时,外界施于处于能级上的⼀个粒⼦的⼒为则外界对整个系统的⼴义作⽤⼒y为(4)此式即⼴义作⽤⼒的统计表达式。
⼀个特例是(5)在⽆穷⼩的准静态过程中,当外参量有dy的改变时,外界对系统所做的功为(6)对内能求全微分,可得(7)(7)式表明,内能的改变分为两项:第⼀项是粒⼦的分布不变时,由于能级的改变⽽引起的内能变化;地⼆项是粒⼦能级不变时,由于粒⼦分布发⽣变化⽽引起的内能变化。
在热⼒学中我们讲过,在⽆穷⼩过程中,系统在过程前后内能的变化dU等于在过程中外界对系统所作的功及系统从外界吸收的热量之和:(8)与(6)(7)式相⽐可知,第⼀项代表在准静态过程中外界对系统所作的功,第⼆项代表在准静态过程中系统从外界吸收的热量。
这就是说,在准静态过程中,系统从外界吸收的热量等于粒⼦在其能级上重新分布所增加的内能。
热量是在热现象中所特有的宏观量,它与内能U和⼴义⼒Y不同。
3、熵1)熵的统计表达式由熵的定义和热⼒学第⼆定律可知(9)由和可得⽤乘上式,得由于引进的配分函数是,的函数。
是y的函数,所以Z是,y的函数。
LnZ的全微分为:因此得(10)从上式可看出:也是的积分因⼦,既然与都是的积分因⼦,我们可令(11)根据微分⽅程关于积分因⼦的理论,当微分式有⼀个积分因⼦时,它就有⽆穷多个积分因⼦,任意两个积分因⼦之⽐是S的函数(dS是⽤积分因⼦乘微分式后所得的全微分)⽐较(9)、(10)式我们有积分后得(12)我们把积分常数选为零,此即熵的统计表达式。
2)熵函数的统计意义由配分函数的定义及得由玻⽿兹曼分布得所以(13)此式称为Boltzman关系,表明某宏观状态的熵等于玻⽿兹曼k乘以相应的微观状态数的对数。
统计物理学的基本原理统计物理学是研究大量粒子的宏观性质与微观行为之间关系的学科。
它的发展使得我们能够理解和描述物质的性质,特别是在处于热平衡状态下的系统。
本文将探讨统计物理学的基本原理,包括其基本概念、定律及其在物理学和其他领域中的应用。
统计物理学的基本概念统计物理学的核心在于利用概率和统计方法研究微观状态与宏观状态之间的联系。
宏观态是指系统的大规模特性,如温度、压力和体积等,而微观态则是指系统中所有粒子具体的位置和动量。
为了连接这两者,统计物理使用了几种重要的概念。
熵熵是统计物理中一个关键的概念,它可以被视为系统微观状态的不确定性度量。
一个系统的熵越高,代表可用的微观状态越多,系统越混乱。
例如,在热力学第二定律中,孤立系统的熵总是趋向增加,这意味着熵是不可逆的,反映了自然向更高无序状态发展的趋势。
微观状态与宏观状态在统计物理中,一个宏观状态对应着多个可能的微观状态。
例如,一个气体在一定温度和压力下可以通过不同方式实现这些参数。
这些微观状态通过概率分布函数来描述,进一步建立了宏观性质与微观行为之间的联系。
概率分布当涉及到多个粒子时,统计物理依赖于概率分布来描述系统。
最常见的是麦克斯韦-玻尔兹曼(Maxwell-Boltzmann)分布,它描述了气体中分子的速度分布。
此外,还有费米-狄拉克(Fermi-Dirac)分布和玻色-爱因斯坦(Bose-Einstein)分布,用于描述具有不同统计特性的粒子。
统计力学定律统计物理学有几个基础定律,它们帮助我们理解如何从微观行为推导出宏观性质。
这些定律如同热力学定律,提供了一种科学的方法来研究和解释复杂现象。
热力学第一定律热力学第一定律,即能量守恒定律,它说明了能量既不能被创造也不能被摧毁,只能从一种形式转变为另一种形式。
在统计物理中,该定律与系统内粒子的动能和势能有关,强调了内能的变化如何影响系统的行为。
热力学第二定律热力学第二定律引入了熵增加原则,指出在任何孤立系统中,熵总是趋向增加。
统计力学的基本原理
统计力学是研究宏观系统的微观粒子行为和性质的物理学分支。
它利用概率论和统计学的方法,描述了大量微观粒子的集体行为,
从而揭示了宏观系统的性质和规律。
统计力学的基本原理包括以下
几点:
1. 微观粒子的统计描述,统计力学假设宏观系统是由大量微观
粒子组成的,这些微观粒子之间相互作用,并遵循统计分布的规律。
通过对微观粒子的统计描述,可以得到宏观系统的性质和行为。
2. 统计分布,统计力学使用统计分布描述微观粒子的状态和性质。
其中,玻尔兹曼分布和费米-狄拉克分布描述了不同类型的微观
粒子的分布规律,而正则分布和巨正则分布则描述了粒子数和能量
的分布规律。
3. 统计热力学,统计力学建立了与热力学相对应的统计热力学。
它通过统计分布和微观粒子的性质,揭示了热力学系统的热力学性质,如热容、熵和自由能等。
4. 统计力学的应用,统计力学在各种领域有着广泛的应用,包
括物态方程、相变理论、热传导等。
它为材料科学、凝聚态物理、生物物理等领域提供了重要的理论基础。
总之,统计力学的基本原理为我们理解宏观系统的性质和规律提供了重要的理论框架,同时也为我们解决实际问题提供了有力的工具和方法。
通过对微观粒子的统计描述和统计分布的应用,统计力学揭示了物质世界的微观本质,为我们认识和探索自然界提供了新的视角和方法。
关于统计力学的基本原理郑伟谋作者:郑伟谋 (中国科学院理论物理研究所)宏观系统有为数不多的几个可直接观测量,如气体的压强p、体积V和温度T。
热力学描述这些量之间的关系,唯象刻画系统的整体行为。
统计力学的目的是研究宏观物体的行为和性质所遵循的特殊一类规律性,它的一个重要任务是解释作为唯象理论的热力学。
统计力学可由分子微观性质计算热力学量。
统计力学有双重意义:由微观力学(如分子能级、谱学测量)知识计算热力学量,由测量宏观热力学性质反推微观性质(如分子间相互作用)。
统计力学可以突破热力学的局限,将研究延伸至热力学不再成立的领域。
非平衡态体系一般没有简单的热力学宏观量描述,但分布函数描述仍是明确的。
统计力学处理服从哈密顿动力学的微观系统,但原则上微观对象也可以是经济学量、社会学量等,它们并不满足哈密顿动力学。
1 统计规律性考虑体积为V的空间里有遵从经典哈密顿动力学的N个粒子,这个体系的状态由这些粒子的坐标和动量(r1,r2,⋯,r N;p1,p2,⋯,p N) ≡ (r N,p N)给定,这种状态也叫微观构象态或构象态。
构象态对应于由r N和p N 所张成的6N 维相空间中的一点。
设体系哈密顿量为H(r N,p N) = K(p N) +U(r N) ,则运动方程为体系构象态随时间的演化,在相空间中描画出一条“相轨道”或分子轨道。
这样的体系虽然遵从经典力学,不难写下运动微分方程,但其自由度巨大,不可能对给定的初条件积分方程求解。
巨大的自由度数目,导致体系全新的规律性。
作为热力学研究对象的宏观体系总是存在于某种环境之中。
内在的(混沌系统动力学不可预测性)和外在的(环境扰动噪声)原因,使得分子轨道之间不断混合。
原先的分子轨道图像不复存在,精确求解动力学也不再必要。
体系出现新的规律性即统计规律性,例如,体积V 内任一足够大的体元中的粒子数相当恒定。
这导致热力学中的观测结果:大系统表现出十分简单有序的行为,可仅用少数几个变量表征。
统计力学的基础概念统计力学是一门探究宏观热力学性质的物理学分支。
它通过对微观粒子的统计分析,将热力学和量子力学结合起来,从而能够解释诸如热传导、热膨胀、相变等现象。
在统计力学中,定义了一些重要的基础概念,这些概念为我们理解热力学性质提供了重要的基础。
1. 熵熵是一种描述物体混乱程度的概念。
在热力学中,熵是表示物质热力学状态的基本参量之一。
在统计力学中,熵的统计定义则是熵等于系统的自由能和温度的乘积减去系统的内能。
它为我们提供了从微观角度理解热力学第二定律的手段。
2. 统计系综统计力学中的一个重要概念是统计系综。
它是描述热力学体系的一组样本在某一时刻的总体。
在统计系综中,每个样本代表一个可能的微观态,而系统的宏观态则是由这些微观态组合而成的。
统计系综在研究概率的物理过程时具有重要意义。
3. 泊松分布泊松分布是统计物理学中的一个重要模型。
它描述了一个随机事件在一定时间或空间内发生的概率。
在热力学中,泊松分布通常用于描述分子自由运动和碰撞的情况。
泊松分布的具体形式为P(n) = e^-μ * μ^n / n!,其中P(n)表示事件发生n次的概率,μ表示平均发生率。
4. 固定能量系综固定能量系综是指在一定能量下的所有可能的微观态组成的集合。
在固定能量系综中,系统与外界不进行热量交换,因此系统的内能是固定的。
在实际的固定能量系综中,能量的取值是连续分布的,因此需要使用能量密度函数来描述系统的状态。
5. 统计物理学和量子场论统计物理学与量子场论的结合被视为是现代物理学的重要发展方向之一。
量子场论描述了所有粒子的物理属性,其中包括它们的质量、自旋等,而统计物理学研究的是宏观物体的状态。
因此,将两者结合起来可以提供对宏观物体行为的更深入理解,如超导电性和超流性。
6. 统计力学和化学动力学统计力学与化学动力学的结合也是一个重要的领域。
化学反应涉及到分子之间的相互作用,而统计力学可以提供分子运动和相互作用的信息。
因此,使用统计力学的方法可以更好地确定化学动力学模型的参数和动力学方程。