红外光学系统
- 格式:pdf
- 大小:920.87 KB
- 文档页数:22
试论红外偏振成像系统光学设计红外偏振成像系统是一种利用红外光源进行成像的技术,在军事、医疗、环保等领域有着广泛的应用。
红外偏振成像系统的光学设计是其核心,决定着其成像质量和性能。
本文将从光学设计的角度探讨红外偏振成像系统。
红外偏振成像系统的基本原理是利用红外光源的电磁波在介质中传播时的偏振特性,通过对偏振方向、偏振角度的测量以及融合可见光图像等多种手段,获取目标物体的红外信息。
光学设计是红外偏振成像系统的关键,其主要的设计问题包括光路结构的设计、透镜系统的设计和红外探测器等。
光路结构的设计是红外偏振成像系统光学设计的一个重要方面。
光路结构直接决定了系统光学性能和成像质量。
在红外成像系统设计中,牢记的基本原则是最大程度地提高光通量、最小环节数、合理放置成像单元,同时避免像差问题。
光路结构中主要包括激光器、偏振片、棱镜、透镜、探测器等要素。
其中透镜系统是光路结构设计的重点。
透镜是将红外光线聚焦到探测器上的重要元件,透镜的品质将直接影响成像质量。
透镜系统是红外偏振成像系统光学设计的重点。
透镜系统的设计涉及到透镜材料的选择、透镜球面形状的设计、透镜的厚度等问题。
在红外成像系统中,透镜的选择是非常重要的。
它需要考虑到对红外光的透过率、色散、像差和形态误差等因素。
透镜的球面形状的设计同样需要非常注意,正确的球面形状可以有效避免因成像时透镜表面的容差而产生的不良影响。
红外探测器是红外偏振成像系统中的核心元件之一。
探测器的响应速度、灵敏度、分辨率和噪声等因素决定了系统的成像质量和整体性能。
有机硅材料等是探测器中常见的材料。
红外探测器的性能的快速提高使得红外偏振成像系统的成像质量得到了大幅度的提高。
同时探测器变得更加灵敏和能够识别更多的物体。
因此,红外偏振成像系统光学设计需要全面考虑透镜系统、光路结构以及探测器等多个要素的因素,从而达到对红外光信号的高效捕捉和信息获取。
在此基础上,红外偏振成像系统进一步可以实现目标自动检测、识别和监测,通过这种系统,可实现对复杂环境下信息的迅速掌握,如地质勘察、军事侦查、环保等方面的实际需求。
现代红外光学系统设计的开题报告题目:现代红外光学系统设计一、问题的提出和研究意义随着科技的不断进步和人们对高精度、高分辨率、光学同步的需求的不断增加,在光学领域,现代红外光学系统日益受到关注。
而现代红外光学系统设计又是实现光电信息采集、测量和控制等应用的基础。
现代红外光学系统具有成像速度快、无源探测、非接触式探测等优点,可以广泛应用于无人机、车载/舰载、导弹识别、军事监视、成像仪器、医学、地质探测等领域。
设计一个性能优良的现代红外光学系统是满足这些应用场景的前提。
因此,本文旨在探讨现代红外光学系统的设计方法和实现技术,以及其在军事、医学、地质等领域的应用,为红外光学系统的研究和应用提供有益的参考。
二、研究内容和技术路线1.现代红外光学系统的基本原理和组成2.现代红外光学系统的设计方法3.现代红外光学系统的实现技术4.红外成像技术的应用案例5.现代红外光学系统在军事、医学、地质等领域的应用6.现代红外光学系统的未来发展方向研究方法主要采用文献资料法和实验研究法。
文献资料法主要是对现有的理论和技术文献进行梳理,了解现代红外光学系统设计和实现技术的最新进展;实验研究法主要是基于红外探测器和光学镜头构建实验平台,进行成像实验,分析实验结果并对其进行评估。
三、预期成果和应用1.掌握现代红外光学系统的基本原理和组成结构;2.深入分析现代红外光学系统的设计方法;3.研究现代红外光学系统的实现技术,并基于实验平台进行系统性能测试和分析;4.归纳总结现代红外光学系统在军事、医学、地质等领域的应用案例,分析其适用场景和实际效果;5.展望现代红外光学系统的未来发展方向。
本文的研究成果和技术路线可以为现代红外光学系统的研究和应用提供有益的参考,同时也可以为相关领域的科研工作者提供新思路和灵感。
红外热像仪的组成及原理红外热像仪(Infrared Thermal Imagers),是一种能够侦测和显示红外辐射热图像的设备。
它采用红外探测器,通过检测目标物体所发出的红外辐射,将其转化成电信号,并经过处理后在屏幕上显示出热图像。
红外热像仪的组成主要包括光学系统、红外探测器、信号处理系统和显示系统等。
1. 光学系统红外热像仪的光学系统主要包括透镜、孔径、滤波器等组件。
透镜用于收集目标物体发出的红外辐射,并将其聚焦在红外探测器上;孔径用于控制光线的进入角度和量,以提高红外辐射的清晰度和准确性;滤波器则用于屏蔽掉可见光和大部分的可见光带来的干扰,使只有红外辐射能够通过。
2. 红外探测器红外探测器是红外热像仪的核心部件,主要用于将目标物体发出的红外辐射转化为电信号。
根据不同的工作原理,红外探测器可分为热电偶型(Thermoelectric detector)、热电效应型(Pyroelectric detectors)、半导体型(Semiconductor detectors)和焦平面型(Focal plane array detector)等。
热电偶型红外探测器是最早应用于红外热像仪的一种探测器,它通过将红外辐射能量转化为温度变化,并进一步转化成电压信号。
热电偶型探测器具有较高的灵敏度和稳定性,但响应速度较慢,适用于静态热像图像的获取。
热电效应型红外探测器则基于热电功效,它通过检测目标物体在光照辐射下产生的温度变化,将红外辐射转化为电荷信号。
热电效应型探测器具有较快的响应速度和较低的噪声水平,适用于动态或高速热像图像的获取。
半导体型红外探测器是一种基于半导体材料特性的探测器,如铜锗(CuGe)和硬脂酸铟(InSb)等。
它利用材料的半导体能带结构和载流子浓度的变化来接收红外辐射,并将其转化成电信号。
半导体型探测器具有高灵敏度、快速响应以及较宽的波段范围。
焦平面型红外探测器(Focal Plane Array Detector)是当前红外热像仪中最常见的探测器。
红外探测工作原理红外探测是利用物体辐射的红外波段进行探测的技术。
红外波段是电磁波的一个频段,其波长范围在0.75微米到1000微米之间。
红外探测器一般由光学系统、探测器和信号处理电路三部分组成。
红外光学系统主要包括滤光片和透镜,用于选择特定波长范围内的红外辐射并聚焦到探测器上。
探测器则是将红外辐射转化为电信号的元件。
红外探测器的工作原理可以分为热探测和光电探测两种。
1. 热探测原理:热探测器利用物体辐射的热能来检测红外波段的辐射。
常见的热探测器有热电偶和热释电探测器。
热电偶是利用材料的温度变化产生电势差的原理工作。
当红外辐射通过热电偶材料时,材料吸收红外能量导致温度升高,进而产生电势差。
这个电势差可以通过电路放大并测量,从而得到红外信号。
热释电探测器利用材料在吸收红外辐射时会产生温度变化的原理工作。
热释电探测器中通常使用的材料是氧化物,如锂钽酸盐和锰钒酸盐。
当红外辐射通过热释电探测器时,材料中的电荷会发生变化,进而产生电势差。
这个电势差可以被测量并转化为红外信号。
2. 光电探测原理:光电探测器利用物体在红外波段吸收辐射后电子能级的跃迁来产生电信号。
常见的光电探测器有光电二极管和光敏电阻。
光电二极管是利用半导体材料的能带结构和PN结的特性工作的。
当红外辐射照射到PN结上时,光子会激发电子跃迁到导带,产生电流。
这个电流可以被测量并转化为红外信号。
光敏电阻是利用材料在吸收红外辐射后导电性发生变化的原理工作。
当红外辐射照射到光敏电阻上时,材料的电阻值会发生变化,进而产生电压信号。
这个电压信号可以被测量并转化为红外信号。
综上所述,红外探测器的工作原理基于物体辐射的红外波段特性,利用热能或光电转换的原理将红外辐射转换为电信号,进而实现红外探测。
红外镜头的工作原理红外镜头是一种专门用于捕捉红外辐射的光学镜头。
它利用红外辐射和红外光学原理来实现红外图像的采集和传输。
下面将详细介绍红外镜头的工作原理。
首先,我们需要了解红外辐射的产生。
一般来说,物体的温度会决定其辐射出的电磁波的频率和强度。
根据普朗克公式,物体的辐射强度与物体温度的四次方成正比。
当物体温度很高时,它会辐射出比可见光更长波长的红外辐射。
因此,红外辐射可以被用来检测物体的温度。
红外镜头的工作原理基于红外辐射的特性。
当人眼无法感知的红外辐射通过了红外镜头,它就会进入镜头中的光学系统。
光学系统由透镜、光学滤波器、红外探测器等组成。
首先,红外辐射通过透镜聚焦到红外探测器上。
透镜的设计和物镜特性会决定聚焦程度和像质。
红外探测器们应为红外辐射是无法直接被感知或测量的,所以探测器的作用是将红外光转换成电信号。
红外探测器是红外镜头最核心的部分。
常见的红外探测器有热电偶探测器、硅基探测器、铟铊化合物探测器等,它们各自适用于不同的波段范围。
每种红外探测器都有一个共同点,那就是它们能感受到红外辐射并将其转换为电信号。
不同的红外探测器有不同的工作原理。
例如,热电偶探测器利用热辐射和温度差来产生一个电势差,从而测量红外辐射的强度。
硅基探测器和铟铊化合物探测器则是通过吸收红外辐射而产生电流。
这样,我们就可以从红外探测器中获得关于红外辐射的信息。
然后,红外图像信号会经过信号处理器进行处理和放大。
信号处理器的任务是将红外辐射的强度和分布转化为电信号,并根据需要进行滤波、调整和校正。
这样可以增强图像质量,并使图像更容易被人眼识别。
最后,处理后的红外图像信号会传输到显示器上,以供观察和分析。
显示器可以是普通的LCD屏幕,也可以是专门用于红外图像显示的工具,如红外成像仪。
通过观察红外图像,我们可以获得目标物体的温度和热分布信息。
综上所述,红外镜头的工作原理主要基于红外辐射的特性和红外探测器的转换原理。
通过聚焦、转换、处理和显示等步骤,红外镜头能够捕捉到人眼无法感知的红外辐射,并将其转化为电信号和图像。
红外成像系统的原理
红外成像系统的原理基于红外辐射的特性。
红外辐射是指电磁波的一种,其波长范围在0.75至1000微米之间,即处于可见光和微波之间。
红外成像系统主要包含红外相机和红外探测器。
红外探测器是系统的核心部件,可以将红外辐射转化为电信号。
其基本原理可分为两种类型:
1. 热辐射探测原理:根据物体的温度差异发出的红外辐射信号来实现成像。
探测器采用热电偶、热敏电阻等物理元件,当红外辐射通过探测器时,探测器的温度会发生变化,进而产生电压或电阻变化,最终转化为电信号。
2. 光学探测原理:利用特定的红外感光材料对红外辐射进行感应和转换。
当红外辐射通过探测器时,探测器材料内的电子会受到激发,从基态跃迁到激发态,形成电荷粒子的分布差异,进而产生电流或电压变化,最终转化为电信号。
红外成像系统通过获取物体在红外波段的辐射信息,经过信号处理和图像处理后,能够显示出物体的显热分布和温度分布,从而实现红外图像的成像。
这种成像技术在安防监控、医学诊断、夜视设备、火灾监测等领域具有广泛的应用。
红外镜头的组成:一、光学系统1、光学补偿变焦系统:指在变焦距物镜中用几组透镜作变倍和补偿时,各透镜组的移动按同向等速进行,因此只需用简单机械结构把各透镜组连在一起做线性运动即可。
光学补偿变焦系统由于不能完全补偿像面位移,移动组必须移动到某几个特殊的位置,才能得到稳定清晰的像面,其焦距难以实现连续改变,而是几个离散值,因而使用受到限制。
但其简化了机械结构,有利于控制光轴精度;而且仅用一组机电控制系统实现变倍与调焦,进而减小了系统的成本和重量,但设计难度相对要大。
2、机械补偿变焦系统:是指各运动组元按不同的运动规律作相对复杂的对应移动,最终达到防止像面移动的目的。
机械补偿法变焦镜头:一组透镜做线性移动(通称变倍组)以改变焦距,另一组透镜(通称补偿组)作少量非线性移动以补偿像面位移,来达到光学系统既变倍而像面位置又稳定的要求。
变倍组一般是负透镜组,补偿组有取正透镜组,也有取负透镜组的。
补偿透镜组的移动与变倍透镜组的移动方向不同且不等速,但它们的相对运动却有严格的对应关系,各透镜组通过一个复杂的凸轮机构实现相对运动。
这类变焦距镜头的焦距在一定范围内连续改变。
二、光学结构光学结构。
机械补偿变焦距镜头,其光学结构由前固定组,变倍组,补偿组,后固定组组成。
1、前固定组:其作用是给系统提供固定的像;2、变倍组:担负着系统的变倍作用,做线性移动以改变焦距;3、补偿组:按一定的曲线轨迹作非线性运动,以补偿变倍组在变倍过程中所产生的像面移动;4、后固定组:用于将补偿组的像转化为系统的最后实像,并调整系统的合成焦距值、设备孔径光阑,保证在变焦运动中系统的相对孔径不变。
三、变倍组导向机构1、一根光杠导轨和滚珠丝杠组合机构。
这种结构精度较高,由于变倍和补偿同时移动的轨迹不同,需要两套导向驱动机构,占用较大空间,控制系统设计也有难度。
2、两根圆柱导轨滑动机构。
由于滑动部件为两根圆柱导轨,这种结构变倍精度高,承载的负荷也比第一种大。
红外光学系统设计
第一步:需求分析
在设计前,首先需要明确系统的需求,包括红外辐射波段、探测距离、目标分辨率等。
这些需求将直接影响到光学元件的选择和设计。
第二步:光学镜头设计
根据红外光学系统的需求,进行光学镜头的设计。
光学镜头的设计包
括光学元件的选择、光学系统的布局、光学表面的形状和位置等。
通过光
学镜头的设计,能够满足红外光学系统对于光束质量、传输距离和分辨率
等方面的要求。
第三步:材料选择
在红外光学系统中,材料的选择对于系统的性能和成本都有重要影响。
根据光学系统的设计要求,选择合适的材料,以保证光学元件的透过率、
折射率、承受辐射的能力等。
第四步:探测器的选择和集成
第五步:光学系统的验证和优化
设计完红外光学系统后,需要进行系统的验证和优化。
通过实验和测试,评估系统的性能。
根据评估结果,对系统进行优化,以获得更好的性
能和效果。
总之,红外光学系统设计是一门知识广泛、涵盖面广的学科。
通过合
理的需求分析、光学镜头设计、材料选择、探测器选择和集成,以及系统
的验证和优化,可以设计出满足不同需求的红外光学系统,为各个领域的
应用提供强大的支持。
红外光学材料红外光学材料红外光学系统与可见光光学系统的主要区别在于只有有限的材料可有效应⽤于中波红外和长波红外波段,能同时应⽤于这两个波段的材料就更少。
表2-1列出了⼏种⽐较常⽤的红外光学材料及其重要特性。
2.2.1红外光学材料的特点红外光学系统中所使⽤的材料⼀般具有以下特点[i,ii,iii]:(1)红外材料不仅种类有限,⽽且价格昂贵(⼀般在⼏千到⼏万元⼀公⽄)。
(2)某些材料的折射率温度系数(dn/dt )较⼤,导致焦距随温度的漂移较⼤。
如果⼯作温度范围较宽,则必须适当的选择红外光学材料或采取必要措施进⾏补偿。
(3)某些光学材料易碎,且化学稳定性差,使得加⼯以及安装困难,成品率不⾼。
(4)许多光学材料不透明,根据材料和波段的不同⽽表现出不同的颜⾊。
(5)红外光学材料受热时都会发⽣⾃辐射,导致杂散光形成。
表2-1 常⽤红外光学材料的特性材料折射率(4µm )折射率(10µm )dn/dt/℃锗 4.0243 4.0032 0.000396 硅3.4255 3.4179 0.00015 硫化锌(CVD ) 2.252 2.2005 0.0000433 硒化锌(CVD )2.4331 2.4065 0.00006 AMTIR I 2.5141 2.4976 0.000072 氟化镁 1.3526 + 0.00002 蓝宝⽯ 1.6753 + 0.00001 三硫化砷 2.4112 2.3816 × 氟化钙 1.4097 + 0.000011 氟化钡1.458 * -0.000016 601228Se As Ge +2.6038 0.000091 651520Se As Ge2.60582.58580.000058“+”不透过;“×”得不到;“*”透射,但折射率剧烈下降图2.1 红外材料的光谱透过率图2.1为较常⽤红外材料包括表⾯损失的透过率。
实际应⽤过程中涂镀⾼效抗反射膜可以达到相当⾼的透过率(95%-98%),图中未包含硫系玻璃(601228Se As Ge 、651520Se As Ge )的透过率曲线。
近红外成像光学系统设计1 近红外成像光学系统近红外成像是一种非常先进的成像技术,它可以在大气湿度,灰尘和烟雾等恶劣环境中得到清晰的图像。
它可以显示夜间环境中隐藏的物体,还可以通过精细调节来提供多种模式以满足特定应用需求。
近红外成像光学系统是一种实现此功能的系统,具有多种功能。
1.1 近红外成像光学系统的组成近红外成像光学系统由近红外摄像机、近红外发射器和光学组件组成。
近红外摄像机由一个红外探测器和一个控制模块组成,可以探测目标的热量发射,产生清晰的图像。
该近红外发射器可以将红外辐射发射到目标表面,以便远程检测和计算目标特征。
此外,还需要安装一些光学组件,例如镜头、滤镜和投影仪,以提高图像质量。
1.2 近红外成像光学系统的性能可实现近红外成像光学系统的性能很高,它可以提供清晰的图像和有效的定位能力。
传感器的精确度高,可以测量准确的热量分布特征,有效识别物品的温度变化。
此外,系统可以节能环保,它只需要极少的电量运行,且检测距离远。
同时,它的灵活性也很强,可以在各种场景中工作,适用于多种应用场景,可根据客户的需求进行大量调整。
2 近红外成像光学系统的应用近红外成像光学系统可以用于多种应用,例如智能安防领域,它可以实现温度场检测,监测报警,还能够检测出可疑的人员动态;另外还可以用于医疗领域,它可以实现心脏检测,监测婴儿的温度等;与此同时,近红外成像光学系统还可以用于温度测量、工业过程控制和无人机远程监控等领域,以解决精确测量和图像识别问题。
3 近红外成像光学系统的研究近红外成像光学系统研究仍在不断发展,研究者们正在不断改进系统的精度和性能,以满足更多应用需求。
在传感器方面,正在开发新型探测器,以提高探测精度;在发射器方面,正在开发可实现远距离红外照射的新型照明系统;在光学组件方面,正在开发设计新型光学系统,以提升图像质量。
4 结论近红外成像光学系统是一种前沿的成像技术,可以用于多种应用。
它具有高精度、灵活性强、支持夜视等优点,可以满足多种特定需求。
红外激光双模导引头光学系统设计研究一、本文概述随着现代科技的不断进步,红外激光双模导引头在军事、航空航天、精密制造等领域的应用日益广泛。
作为一种先进的制导技术,红外激光双模导引头通过集成红外和激光两种制导模式,有效提高了制导精度和抗干扰能力。
因此,对红外激光双模导引头光学系统的设计研究具有非常重要的理论意义和实际应用价值。
本文旨在深入研究红外激光双模导引头光学系统的设计方法,探讨其关键技术和实现途径。
我们将对红外激光双模导引头的基本原理和组成进行介绍,明确其工作原理和性能要求。
然后,我们将重点分析光学系统的设计要素,包括光学元件的选择、光路设计、像质优化等方面。
在此基础上,我们将探讨红外激光双模导引头光学系统的关键技术,如光学元件的精密加工、光学系统的热设计和环境适应性等。
我们将结合实例,对红外激光双模导引头光学系统的设计进行具体分析和优化,为其在实际应用中的性能提升提供理论支持和实践指导。
通过本文的研究,我们期望能够为红外激光双模导引头光学系统的设计提供一套完整、系统的理论框架和技术支持,推动该领域的技术进步和应用发展。
我们也希望能够为相关领域的研究人员提供有益的参考和启示,共同推动红外激光双模导引头技术的不断创新和发展。
二、红外激光双模导引头光学系统基本原理红外激光双模导引头光学系统是一种先进的制导技术,结合了红外和激光两种制导模式的优点,从而提高了制导精度和抗干扰能力。
其基本原理主要基于红外成像和激光测距技术。
红外成像技术利用物体发射或反射的红外辐射来形成图像。
在红外导引头中,红外探测器接收目标物体发出的红外辐射,通过信号处理将辐射转换为电信号,进而生成目标的红外图像。
这种图像不仅能在可见光受限的环境下(如夜间或雾霾天气)提供目标的可见性,还能通过不同物体的红外辐射特性来区分目标和背景。
激光测距技术则通过测量激光脉冲从导引头发射到目标并返回的时间来计算目标与导引头之间的距离。
激光测距具有高精度和高速度的特点,能够实时提供目标的距离信息。
红外光学系统的特点1.突破了可见光谱范围的限制:红外光学系统的工作波段一般在0.75μm至1000μm之间,可扩展到远红外波段,远超过人眼可见的波段范围。
这使得红外光学系统能够观测到热辐射、红外相机图像等不可见的信息。
2.高灵敏度和高分辨率:红外光学系统能够测量低至微瓦级的辐射功率,具有优异的低噪声特性。
同时,红外光学系统具有较高的空间分辨率,能够精确测量目标物体的形态和温度变化。
3.热量检测和热成像能力:红外光学系统可以通过测量目标物体辐射的热量来获取目标物体的温度信息,这对于热量分布分析、温度变化观测和红外图像捕捉具有重要意义。
红外热像仪是红外光学系统的重要应用之一,可以实时显示目标物体的热量分布,用于建筑检测、安防监控等领域。
4.强大的穿透能力:红外光在大气中的传播和折射特性使得红外光学系统具有强大的穿透能力。
与可见光不同,红外光能够穿透一些普通材料如玻璃、塑料,以及霾、雾气等大气中的颗粒物质。
这使得红外光学系统在复杂的环境下,如夜间目标探测、大气遥感等方面具有很高的应用价值。
5.能源发现和测量:红外光学系统可以检测目标物体的辐射功率,从而实现能源的发现和测量。
通过红外光学系统测量的热辐射能量可以用于太阳能、热水能、地热能等能源的测量和利用。
6.用途广泛:红外光学系统具有广泛的应用领域。
在军事领域,红外光学系统可以用于夜视设备、导弹制导、战术侦查等;在工业领域,红外光学系统可用于红外成像、温度测量、检测无损等;在医学领域,红外光学系统可以用于医学成像、诊断和治疗等。
综上所述,红外光学系统具有突破可见光谱限制、高灵敏度、热量检测和热成像能力、穿透能力强、能源发现和测量、用途广泛等特点。
这使得红外光学系统在科学研究、工业生产、医疗诊断等领域都有着广泛的应用前景。
红外光学跟踪定位系统技术一、参考品牌NDI,参考型号:Polaris Vicra
设备详细性能参数规格如下:
1.性能:
1.1 精度: 0.25mmRMS
95% 置信区间棱锥范围:0.5mmRMS
AAK:0.35mmRMS
1.2 最大采样频率:20Hz
1.3 系统操作温度:10~30摄氏度
1.4 测量范围: 1336 mm
2.数据通信方式
2.1 数据接口USB1.1和2.0兼容
RS-232或RS-422
2.2 最大数据传输率:1.2M/s
3.工具:
3.1 工具类型:可同时追踪被动及无线主动工具 3.2 工具最大数量:最多6个无线工具(最多
包含1个主动无线工具)。
3.3 每个工具最多标识点数:
单面工具最多6个
多面工具最多20个
3.4 测量过程中工具转换:
由软件控制
4.电源要求:
100 - 250 V AC,~50/60 Hz,1A
5.软件配置:软件应终身免费升级。
5.1 软件功能包括:
系统控制,系统自检
温度感应,碰撞感应及报警
可自定义特殊功能
5.2 应用程序接口(API)
5.3 工具制作软件
5.4 工具开发包
二、投标要求:
1、投标商应为所投产品生产厂家或其合法授权代理商;
2、所投产品享有同厂家的售后服务保障承诺及在国内的完善售后
服务保障。
3、投标价格应包含设备的送货上门、安装调试及培训等一切费用,
招标方不再支付任何费用。
4、其它服务责任条款,投标方应遵从中央政府采购的相关约定。