有理数运算的几种特殊方法
- 格式:doc
- 大小:52.00 KB
- 文档页数:3
有理数的加减乘除法则有理数是指可以表示为分数形式的数,包括整数、分数和小数。
有理数的加减乘除法则是数学中非常重要的基本运算规则,它们在解决实际问题和简化数学运算中起着至关重要的作用。
本文将详细介绍有理数的加减乘除法则,帮助读者更好地理解和掌握这些基本运算规则。
一、有理数的加法规则有理数的加法规则是指对两个有理数进行加法运算时的规则。
对于同号的有理数,直接将它们的绝对值相加,并保持原来的符号;对于异号的有理数,可以先求它们的绝对值之差,然后取绝对值较大的数的符号作为和的符号。
例如,对于-3和5进行加法运算,先求它们的绝对值之差,即5-3=2,然后取绝对值较大的数5的符号为正号,所以-3+5=2。
二、有理数的减法规则有理数的减法规则是指对两个有理数进行减法运算时的规则。
减法可以看作加法的逆运算,即a-b=a+(-b),其中-a表示b的相反数。
因此,有理数的减法可以转化为加法运算,然后按照加法规则进行计算。
例如,对于6和-3进行减法运算,可以转化为6+(-3)=6-3=3。
三、有理数的乘法规则有理数的乘法规则是指对两个有理数进行乘法运算时的规则。
对于同号的有理数,它们的乘积为它们的绝对值相乘,并保持正号;对于异号的有理数,它们的乘积为它们的绝对值相乘,并取负号。
例如,对于-2和3进行乘法运算,-2*3=-6;对于-2和-3进行乘法运算,-2*(-3)=6。
四、有理数的除法规则有理数的除法规则是指对两个有理数进行除法运算时的规则。
有理数的除法可以转化为乘法运算,即a÷b=a*b的倒数。
其中,倒数是指一个数的倒数是它的倒数是1除以这个数。
因此,有理数的除法可以转化为乘法运算,然后按照乘法规则进行计算。
例如,对于-6和3进行除法运算,可以转化为-6*1/3=-2。
以上就是有理数的加减乘除法则的详细介绍。
有理数的加减乘除法则是数学中非常基本的运算规则,它们在解决实际问题和简化数学运算中起着至关重要的作用。
七年级数学上册有理数比较大小八种方法汇总 有理数大小的比较需要根据有理数的特征灵活地选择适当的方法,除了常规的比较大小的方法外,还有几种特殊的方法:作差法、作商法、找中间量法、倒数法、变形法、数轴法、特殊值法、分类讨论法等.利用作差法比较大小1.比较1731和5293的大小.利用作商法比较大小2.比较-172 016和-344 071的大小.利用找中间量法比较大小3.比较1 0072 016与1 0092 017的大小.利用倒数法比较大小4.比较1111 111和1 11111 111的大小.利用变形法比较大小5.比较-2 0142 015,-1415,-2 0152 016,-1516的大小.6.比较-623,-417,-311,-1247的大小.利用数轴法比较大小7.已知a >0,b <0,且|b|<a ,试比较a ,-a ,b ,-b 的大小.利用特殊值法比较大小8.已知a ,b 是有理数,且a ,b 异号,则|a +b|,|a -b|,|a|+|b|的大小关系为________________________________________________________________________.利用分类讨论法比较大小9.比较a 与a 3的大小.答 案1.解:因为5293-1731=5293-5193=193>0,所以5293>1731. 点拨:当比较的两个数的大小非常接近,无法直接比较大小时,作差比较是常采用的方法.2.解:因为172 016÷344 071=172 016×4 07134=1 3571 344>1,所以172 016>344 071.所以-172 016<-344 071. 点拨:作商比较法是比较两个数大小的常用方法,当比较的两个正分数作商易约分时,作商比较往往能起到事半功倍的效果;当这两个数是负数时,可先分别求出它们的绝对值,再作商比较它们绝对值的大小,最后根据绝对值大的反而小下结论.3.解:因为1 0072 016<12,1 0092 017>12,所以1 0072 016<1 0092 017. 点拨:对于类似的两数的大小比较,我们可以引入一个中间量,分别比较它们与中间量的大小,从而得出问题的答案.4.解:1111 111的倒数是101111,1 11111 111的倒数是1011 111. 因为101111>1011 111,所以1111 111<1 11111 111. 点拨:利用倒数法比较两个正数的大小时,需先求出其倒数,再根据倒数大的反而小,从而确定这两个数的大小.5.解:每个分数都加1,分别得12 015,115,12 016,116. 因为12 016<12 015<116<115, 所以-2 0152 016<-2 0142 015<-1516<-1415. 点拨:本题直接比较很困难,但通过把这些数适当变形,再进行比较就简单多了.6.解:因为-623=-1246,-417=-1251,-311=-1244,-1244<-1246<-1247<-1251,所以-311<-623<-1247<-417. 点拨:此题如果通分,计算量太大,可以把分子变为相同的,再进行比较.7.解:把a ,-a ,b ,-b 在数轴上表示出来,如图所示,根据数轴可得-a <b <-b <a.(第7题)点拨:本题运用了数轴法比较有理数的大小,在数轴上找出这几个数对应的点的大致位置,即可作出判断.8.|a +b|<|a -b|=|a|+|b|点拨:已知a ,b 异号,不妨取a =2,b =-1或a =-1,b =2.当a =2,b =-1时,|a +b|=|2+(-1)|=1,|a -b|=|2-(-1)|=3,|a|+|b|=|2|+|-1|=3;当a =-1,b =2时,|a +b|=|-1+2|=1,|a -b|=|-1-2|=3,|a|+|b|=|-1|+|2|=3.所以|a +b|<|a -b|=|a|+|b|.方法总结:本题运用特殊值法解题,取特殊值时要注意所取的值既要符合题目条件,又要考虑可能出现的多种情况.以本题为例,可以分为a 正、b 负和a 负、b 正两种情况.9.解:分三种情况讨论:①当a >0时,a >a 3; ②当a =0时,a =a 3; ③当a <0时,|a|>⎪⎪⎪⎪a 3,则a <a 3.。
初一数学有理数混合运算解题方法与技巧板块一、有理数基本加、减混合运算有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.有理数加法的运算步骤:法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤:①确定和的符号;②求和的绝对值,即确定是两个加数的绝对值的和或差.有理数加法的运算律:①两个加数相加,交换加数的位置,和不变.示例:a+b=b+a(加法交换律)②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.示例:(a+b)+c=a+(b+c)(加法结合律)有理数加法的运算技巧:①分数与小数均有时,应先化为统一形式.②带分数可分为整数与分数两部分参与运算.③多个加数相加时,若有互为相反数的两个数,可先结合相加得零.④若有可以凑整的数,即相加得整数时,可先结合相加.⑤若有同分母的分数或易通分的分数,应先结合在一起.⑥符号相同的数可以先结合在一起.有理数减法法则:减去一个数,等于加这个数的相反数.示例:a-b=a+(-b)有理数减法的运算步骤:①把减号变为加号(改变运算符号)②把减数变为它的相反数(改变性质符号)③把减法转化为加法,按照加法运算的步骤进行运算.有理数加减混合运算的步骤:①把算式中的减法转化为加法;②省略加号与括号;③利用运算律及技巧简便计算,求出结果.注意:根据有理数减法法则,减去一个数等于加上它的相反数,因此加减混合运算可以依据上述法则转变为只有加法的运算,即为求几个正数,负数和0的和,这个和称为代数和.为了书写简便,可以把加号与每个加数外的括号均省略,写成省略加号和的形式.示例:(+3)+(-0.15)+(-9)+(+5)+(-11)=3-0.15-9+5-11,它的含义是求正3,负0.15,负9,正5,负11的和.板块二、有理数基本乘法、除法有理数乘、除法Ⅰ:有理数乘法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.有理数乘法运算律:①两个数相乘,交换因数的位置,积相等.示例:ab=ba (乘法交换律)②三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.示例:abc=a(bc)(乘法结合律)③一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.示例:a(b+c)=ab+ac(乘法分配律)有理数乘法法则的推广:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数.②几个数相乘,如果有一个因数为0,则积为0.③在进行乘法运算时,若有带分数,应先化为假分数,便于约分;若有小数及分数,一般先将小数化为分数,或凑整计算;利用乘法分配律及其逆用,也可简化计算.Ⅱ:有理数除法有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.有理数除法的运算步骤:首先确定商的符号,然后再求出商的绝对值.板块三、有理数混合运算的顺序在进行有理数运算时,先算乘方,再算乘除,最后算加减,同级运算,按照从左到右的顺序进行,有括号的先算括号里的数.-----------------------------------------------------------------------------------------------------有理数运算所需的小学知识储备:整数、小数和分数的四则运算;约分和通分;常用的小数与分数的互化;基本的运算律和运算性质;在进行有理数运算之前,必须要掌握相反数、倒数和绝对值等相关概念:相反数:倒数:绝对值:要想学好有理数运算,必须要熟练掌握有理数运算法则:加法:减法:乘法:除法:乘方:有理数运算要点:有理数的运算顺序:先乘方和绝对值,再乘除,最后加减,有括号的先算括号里面的。
初中数学有理数的乘方运算的特殊情况有哪些
有理数的乘方运算的特殊情况包括零次幂、负次幂和分数指数。
下面我将详细介绍这些特殊情况。
1. 零次幂:
对于任何非零有理数a,a的零次幂定义为1。
这是因为任何数的零次幂都表示乘以1,而乘以1不改变原数的值。
例如,2的零次幂为1,(-3)的零次幂也为1。
2. 负次幂:
对于任何非零有理数a和整数n,a的负n次幂定义为a的n次幂的倒数。
即,a的负n次幂等于1除以a的n次幂。
例如,2的负3次幂等于1/(2的3次幂),即1/8;(-3)的负2次幂等于1/((-3)的2次幂),即1/9。
3. 分数指数:
有理数的指数可以是分数。
对于任意非零有理数a和正整数m、n,a的m/n次幂定义为a 的m次幂的n次根。
即,a的m/n次幂等于a的m次幂的n次根。
例如,2的1/2次幂等于2的平方根,即√2;(-3)的2/3次幂等于(-3)的立方根的平方,即∛(-3)的平方。
需要注意的是,对于负数的分数指数,其结果可能是无理数。
例如,(-1)的1/3次幂等于(-1)的立方根,即∛(-1),这个结果是一个无理数。
这些特殊情况在有理数的乘方运算中是非常重要的,学生需要理解并熟练运用它们。
通过这些特殊情况的学习,学生可以更好地理解和解决有理数的乘方运算问题,并且在实际应用中能够灵活运用。
数学巧记妙语有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。
[注]“大”减“小”是指绝对值的大小。
合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。
去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。
恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。
(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b - a)2n平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
“代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。
一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。
专训2 有理数的比较大小的八种方法名师点金:有理数大小的比较需要根据有理数的特征灵活地选择适当的方法,除了常规的比较大小的方法外,还有几种特殊的方法:作差法、作商法、找中间量法、倒数法、变形法、数轴法、特殊值法、分类讨论法等.利用作差法比较大小1.比较1731和5293的大小.利用作商法比较大小2.比较-172 016和-344 071的大小.利用找中间量法比较大小3.比较1 0072 016与1 0092 017的大小.利用倒数法比较大小4.比较1111 111和1 11111 111的大小.利用变形法比较大小5.比较-2 0142 015,-1415,-2 0152 016,-1516的大小.6.比较-623,-417,-311,-1247的大小.利用数轴法比较大小7.已知a >0,b <0,且|b|<a ,试比较a ,-a ,b ,-b 的大小.【导学号:11972021】利用特殊值法比较大小8.已知a ,b 是有理数,且a ,b 异号,则|a +b|,|a -b|,|a|+|b|的大小关系为________________________________________________________________________.利用分类讨论法比较大小9.比较a 与a 3的大小.答案1.解:因为5293-1731=5293-5193=193>0,所以5293>1731. 点拨:当比较的两个数的大小非常接近,无法直接比较大小时,作差比较是常采用的方法.2.解:因为172 016÷344 071=172 016×4 07134=1 3571 344>1,所以172 016>344 071.所以-172 016<-344 071. 点拨:作商比较法是比较两个数大小的常用方法,当比较的两个正分数作商易约分时,作商比较往往能起到事半功倍的效果;当这两个数是负数时,可先分别求出它们的绝对值,再作商比较它们绝对值的大小,最后根据绝对值大的反而小下结论.3.解:因为1 0072 016<12,1 0092 017>12,所以1 0072 016<1 0092 017. 点拨:对于类似的两数的大小比较,我们可以引入一个中间量,分别比较它们与中间量的大小,从而得出问题的答案.4.解:1111 111的倒数是101111,1 11111 111的倒数是1011 111. 因为101111>1011 111,所以1111 111<1 11111 111. 点拨:利用倒数法比较两个正数的大小时,需先求出其倒数,再根据倒数大的反而小,从而确定这两个数的大小.5.解:每个分数都加1,分别得12 015,115,12 016,116. 因为12 016<12 015<116<115, 所以-2 0152 016<-2 0142 015<-1516<-1415. 点拨:本题直接比较很困难,但通过把这些数适当变形,再进行比较就简单多了.6.解:因为-623=-1246,-417=-1251,-311=-1244,-1244<-1246<-1247<-1251,所以-311<-623<-1247<-417. 点拨:此题如果通分,计算量太大,可以把分子变为相同的,再进行比较.7.解:把a ,-a ,b ,-b 在数轴上表示出来,如图所示,根据数轴可得-a <b <-b <a.(第7题)点拨:本题运用了数轴法比较有理数的大小,在数轴上找出这几个数对应的点的大致位置,即可作出判断.8.|a +b|<|a -b|=|a|+|b|点拨:已知a ,b 异号,不妨取a =2,b =-1或a =-1,b =2.当a =2,b =-1时,|a +b|=|2+(-1)|=1,|a -b|=|2-(-1)|=3,|a|+|b|=|2|+|-1|=3;当a =-1,b =2时,|a +b|=|-1+2|=1,|a -b|=|-1-2|=3,|a|+|b|=|-1|+|2|=3.所以|a +b|<|a -b|=|a|+|b|.方法总结:本题运用特殊值法解题,取特殊值时要注意所取的值既要符合题目条件,又要考虑可能出现的多种情况.以本题为例,可以分为a 正、b 负和a 负、b 正两种情况.9.解:分三种情况讨论:①当a >0时,a >a 3; ②当a =0时,a =a 3; ③当a <0时,|a|>⎪⎪⎪⎪a 3,则a <a 3.初中数学试卷灿若寒星 制作。
有理数的计算方法与技巧
1. 嘿,你知道吗,有理数计算有个超棒的方法叫凑整法!就好像搭积木一样,把能凑成整数的数字放在一块儿。
比如算 37+63,这不是很明显能凑成 100 嘛!这样计算起来多轻松呀,是不是很妙啊?
2. 还有哦,转化法也很厉害呀!把分数呀小数呀转化成容易计算的形式。
比如说不就等于四分之一嘛,这样一转换,计算就简单多啦。
就像给数字变个魔法一样,多有趣呀!
3. 哇塞,裂项相消法也绝对不能错过!当遇到那种一连串可以拆分的式子,就像拆礼物一样把它拆开。
比如算 1/2+1/6+1/12,把它们拆成
1/(12)+1/(23)+1/(34),然后一消,结果就出来啦,神奇吧!
4. 特殊值法也超好用的呀!有时候不用费劲去算复杂的式子,找个特殊值代入试试。
比如说要研究一个式子的规律,随便找个方便的数带进去,不就大概能知道啦,多快捷呀!
5. 整体代入法也非常酷哦!当式子中有相同的部分,就像发现宝藏一样把它拎出来整体代入。
比如前面算出一个值后面又用到,直接代入,多省力呀!
6. 倒推法有时候也能派上大用场呢!从结果反推回去找答案。
就好像走迷宫从出口往入口找路一样,是不是很特别啊!
7. 分类讨论法也很关键呢!根据不同情况分别去算。
好比走不同的路去寻找答案,每一条路都可能有惊喜呢!
总之,有理数的计算方法和技巧那可真是丰富多彩呀,掌握了这些,计算起来就像玩游戏一样有趣又轻松!。
有理数的总结第1篇有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
两个数相乘,交换因数的位置,积相等。
ab=ba三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
(ab)c=a(bc)一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
a(b+c)=ab+ac数字与字母相乘的书写规范:⑴数字与字母相乘,乘号要省略,或用⑵数字与字母相乘,当系数是1或—1时,1要省略不写。
⑶带分数与字母相乘,带分数应当化成假分数。
用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x 是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。
一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即ax+bx=(a+b)x上式中x是字母因数,a与b分别是ax与bx这两项的系数。
去括号法则:括号前是+,把括号和括号前的。
+去掉,括号里各项都不改变符号。
括号前是—,把括号和括号前的—去掉,括号里各项都改变符号。
括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。
有理数的总结第2篇(1)凡能写成形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;(2)有理数的分类:①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的'数分成四个区域,这四个区域的数也有自己的特性;(4)自然数0和正整数;a>0a是正数;a<0a是负数;a≥0a是正数或0a是非负数;a≤0a是负数或0a是xxx数.有理数的总结第3篇正数与负数在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
初中数学有理数的加法和减法运算的特殊情况有哪些有理数的加法和减法运算涉及到很多特殊情况。
下面我将详细解释一些常见的特殊情况。
1. 相同符号的有理数相加:当两个有理数的符号相同时(即都为正数或都为负数),它们的绝对值相加,并保持相同的符号。
例如,2 + 3 = 5,(-4) + (-7) = -11。
2. 不同符号的有理数相加:当两个有理数的符号不同时(一个为正数,一个为负数),我们需要取它们的绝对值的差,并按照绝对值较大的数的符号来确定结果的符号。
例如,5 + (-3) = 2,(-8) + 6 = -2。
3. 零的加法和减法:任何有理数加零仍等于原有理数,即a + 0 = a,其中a为任意有理数。
同样,任何有理数减去零仍等于原有理数,即a - 0 = a。
4. 零的相反数:零的相反数是零本身,即-0 = 0。
这是因为加法的逆元素是相反数,而零在加法中的相反数仍然是零。
5. 互为相反数的有理数相加:互为相反数的两个有理数相加的结果为零。
例如,3 + (-3) = 0,(-5) + 5 = 0。
6. 零减去有理数:零减去任何有理数仍等于该有理数的相反数。
例如,0 - 4 = -4,0 - (-2) = 2。
7. 有理数的减法:有理数的减法可以转化为加法运算。
例如,a - b 可以写为a + (-b)。
因此,有理数的减法运算可以归结为加法运算。
这些是有理数的加法和减法运算中的一些特殊情况。
了解这些特殊情况可以帮助我们更好地理解和应用有理数的运算规则。
希望本文能够帮助你更好地理解有理数的加法和减法运算的特殊情况。
如果你还有其他关于有理数运算的问题,欢迎继续探索和学习。
祝你在数学学习中取得更多的成就!。
有理数加减法规则
有理数加减法是数学中的基本运算规则,适用于正数、负数和零。
以下是有理数加减法的规则:
1. 同号两数相加,取相同的符号,并把绝对值相加。
例如:+2/+3 = +(2+3) = +5
-2/-3 = -(2+3) = -5
2. 异号两数相加,取绝对值较大的数的符号,并把绝对值相减。
例如:+2/-3 = -(+2-3) = -(-1) = +1
-2/+3 = +(3-2) = +1
3. 一个数同零相加,不变号。
例如:+2+0 = +2
-2+0 = -2
4. 异号两数相减,取绝对值较大的数的符号,并把绝对值相加。
例如:+2-(-3) = +(2+3) = +5
-2-(+3) = -(2+3) = -5
5. 多个数相加,先确定结果的符号,再计算绝对值的和。
例如:+2/+3/-1 = +(2+3-1) = +4
-2/-3/+1 = -(2+3-1) = -4
有理数加减法的关键是确定结果的符号和绝对值的计算。
在计算时,需要注意括号和特殊规则的使用,以确保计算的准确性和正确性。
有理数的加法与减法运算一、有理数加法运算:1.定义:有理数的加法是将两个有理数相加得到一个新的有理数。
2.加法法则:a)同号相加,保留同号,并把绝对值相加。
b)异号相加,保留绝对值较大的符号,并把绝对值相减。
3.加法运算顺序:先算同号相加,再算异号相加。
4.加法运算中的特殊现象:a)两数相加等于其中一数。
b)两数相加等于0。
二、有理数减法运算:1.定义:有理数的减法是已知两个有理数,求其中一个有理数比另一个有理数少多少。
2.减法法则:a)将减法转换为加法,即减去一个数等于加上这个数的相反数。
b)按照加法法则进行计算。
3.减法运算顺序:先算同号相减,再算异号相减。
4.减法运算中的特殊现象:a)两数相减等于其中一数。
b)两数相减等于0。
三、有理数加减混合运算:1.定义:有理数的加减混合运算是有理数加法和减法的组合。
2.运算顺序:先算加法,再算减法。
3.运算中的特殊现象:a)加减混合运算中出现0。
b)加减混合运算中出现负数。
四、有理数加减法运算的计算法则:1.先算绝对值,再确定符号。
2.异号相加,保留绝对值较大的符号。
3.同号相加,保留同号,并把绝对值相加。
4.减法转换为加法,即减去一个数等于加上这个数的相反数。
五、有理数加减法运算的应用:1.解决实际问题:例如,计算购物后的总价,计算距离等。
2.简化表达式:例如,化简代数式,求解方程等。
3.数学证明:例如,证明恒等式,证明不等式等。
以上是对有理数的加法与减法运算的详细归纳,希望对您的学习有所帮助。
习题及方法:1.习题:计算2 + 3。
解题思路:根据加法法则,同号相加,保留同号,并把绝对值相加。
2.习题:计算-2 + 3。
解题思路:根据加法法则,异号相加,保留绝对值较大的符号,并把绝对值相减。
3.习题:计算5 - 2。
解题思路:根据减法法则,将减法转换为加法,即减去一个数等于加上这个数的相反数,然后按照加法法则进行计算。
4.习题:计算-5 + 3。
解题思路:根据减法法则,将减法转换为加法,即减去一个数等于加上这个数的相反数,然后按照加法法则进行计算。
有理数的运算&整式的加减 (一)有理数的运算 一、有理数加法 法则:1、同号两数相加,取相同的正负号,并把绝对值相加;2、绝对值不等的异号两数想加,取绝对值较大的加数的正负号,并用较大的绝对值减去较小的绝对值;3、互为相反数的两个数相加得零;4、一个数与零相加,仍得这个数。
(有理数的加法仍满足加法交换律和结合律)例1:1.)2.0(3.1)9.0()7.0()8.1(-++-+++- 2.)326()434()313(41-+++-+二、有理数减法法则:减去一个数,等于加上这个数的相反数。
例2: 1.)5()]7()4[(--+-- 2.]12)3[(3---三、有理数加减混合运算 例3: 1.2111)43(412--+--- 2.)61(41)31()412(213+---+--练一练1:计算。
1、[1.8-(-1.2+2.1)-0.2]-(-1.5)2、-︱-32-(-23)︱-︱(-51)+(-52)︱四、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零。
注:1、几个不等于零的数相乘,积的正负号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
2、几个数相乘,有一个因数为零,积就为零。
例4:1.53)8()92()4()52(8⨯-+-⨯---⨯ 2.)8(12)11(9-⨯-+⨯-五、有理数除法法则:两数相除,同号得正,异号得负,并把绝对值相除。
零除以任何一个不等于零的数,都得零。
例5: 2411)25.0(6⨯-÷- )21(31)32(-÷÷-六、有理数的乘方(一)概念:求几个相同因数的积的运算叫作乘方,乘方的结果叫作幂。
在23=8中,底数是2,指数是3。
正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。
(二)同底数幂同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。
有理数的除法运算和技巧
有理数的除法运算是指两个有理数相除的运算。
有理数除法的技巧主要有以下几种:
1. 转化为分数形式:将除数和被除数都转化为分数形式,然后进行分数的除法运算。
这种方法适用于较复杂的有理数除法运算。
2. 直接计算:对于简单的有理数除法运算,可以直接进行计算。
例如,计算0.6÷0.2可以直接将小数点右移一位,得到3÷1=3。
3. 除法的倒数:将除法转化为乘法,即将除数倒数乘以被除数。
这种方法适用于有理数除法中除数较大的情况。
例如,计算
4÷0.5可以将除式改写为4×(1/0.5)=4×2=8。
4. 数字提取:对于有理数除法中的一些特殊情况,可以通过数字提取的方法进行简化。
例如,计算600÷12可以观察到600
和12都可以整除以6,因此可以进行简化为
(100×6)÷(2×6)=100÷2=50。
5. 除法的凑整:对于有理数除法中的不整除的情况,可以通过凑整的方法进行简化。
例如,计算8÷7可以发现7不能整除8,但可以凑到56÷7=8,因此可以得出8÷7=1余1。
以上是一些常用的有理数除法计算技巧,通过灵活运用这些技巧可以简化有理数除法的计算过程。
•有理数乘除法基础•乘除法运算规则•乘除混合运算实例•乘除混合运算的应用•乘除混合运算的练习与巩固目录01有理数乘法定义乘法运算的数学符号乘法运算的顺序有理数乘法定义1有理数除法定义23除法运算是一种特殊的减法运算,即当两个有理数相除时,等于将它们对应的数相除,并取商的符号。
有理数除法定义除法运算通常用符号“÷”表示,有时也用符号“/”表示。
除法运算的数学符号当被除数为0时,商无定义;当除数为0且被除数不为0时,商也无定义。
除法运算的特殊情况乘法与加法的结合律乘法的交换律除法的可交换性乘除法的可结合性乘除法的基本性质01乘法运算规则除法运算规则$a \div b = \frac{a}{b}$,其中$b \neq 0$除法的定义商的定义除法的性质除法的运算律$\frac{a}{b}$表示$a$可以被$b$整除的次数当$a \div b = c$时,则$a = b \times c$$(a \div b) \div c = a \div (b\times c)$,$a \div (b \div c) = a \div b \times c$乘除法的简化约分通分消去分母分数的通分和约分01乘除混合运算规则030201乘除混合运算实例解析03利用分配律乘除混合运算的技巧01利用交换律和结合律02分拆法01商业计算物理科学在实际问题中的应用代数方程三角函数在数学问题中的应用计算机科学在计算机科学中,有理数的乘除混合运算被广泛用于数据加密、密码破解、数据压缩和图像处理等领域。
例如,在数据压缩中,可以使用有理数乘除混合运算来减少数据的大小,以便更有效地存储和传输数据。
统计学在统计学中,有理数的乘除混合运算被用于计算平均值、中位数、标准差等统计指标。
例如,在计算平均值时,可以使用有理数乘除混合运算来对数据进行加权平均。
在科学计算中的应用01乘除混合运算的练习方法乘除混合运算的练习题目基础题目例如,(2+3)×4÷(1+5),10÷(3-2)×4,(4+5)×3÷(2+1)等。
初中数学有理数的乘法和除法运算的特殊情况有哪些有理数的乘法和除法运算中存在一些特殊情况,需要特别注意。
下面将详细介绍这些情况:1. 乘法中的零元素:任何数与0相乘的结果都是0。
例如,5乘以0等于0,-3乘以0等于0。
这是因为乘法中的零元素具有吸收性质,即任何数乘以0都会得到0。
2. 乘法中的倒数:除了0以外的任何有理数,都有一个倒数。
一个数的倒数是指与其乘积等于1的数。
例如,2的倒数是1/2,-5的倒数是-1/5。
倒数的概念在除法运算中非常有用,因为除法可以转化为乘法。
例如,除法运算5除以2可以写为5乘以1/2。
3. 除法中的除数为0:在除法运算中,除数不能为0。
这是因为0不能作为除数,除以0是没有定义的。
例如,5除以0是没有意义的。
4. 除法中的分数除法:在除法运算中,分数的除法可以转化为乘法。
例如,1/4除以1/2可以写为1/4乘以2/1,结果为1/2。
这是因为除法可以转化为乘法,将除法的除数乘以其倒数。
5. 除法中的负数除法:负数的除法可以通过倒数和乘法进行计算。
例如,-6除以-3可以写为-6乘以-1/3,结果为2。
6. 除法中的小数除法:小数的除法可以通过移动小数点和乘法进行计算。
例如,0.6除以0.2可以写为6除以2,结果为3。
教师在教学中可以通过具体的例子和实际问题,引导学生理解和应用这些特殊情况。
同时,提供练习题,让学生巩固和应用有理数的乘法和除法运算的特殊情况。
通过实际操作和实际问题的应用,学生可以更好地理解和掌握有理数的乘法和除法运算的特殊情况,并提高解决问题的能力。
有理数运算的几种特殊方法
王尧兴
有理数运算是中学数学中一切运算的基础,它要求同学们在理解有理数的有关概念、法则的基础上,能根据法则、公式等正确、迅速地进行运算,不仅如此,还要善于根据题目条件,将推理与计算相结合,灵活巧妙地选择合理的简捷的算法解决问题,从而提高运算能力,发展思维的敏捷性与灵活性。
一、倒序相加法
例1 计算1+3+5+7+……+1997+1999的值。
分析:观察发现:算式中从第二项开始,后项减前项的差都等于2;其次算式中首末两项之和与距首末两项等距离的两项之和都等于2000,于是可用如下解法。
解:用字母S表示所求算式,即
S=1+3+5+……+1997+1999。
①
再将S各项倒过来写为
S=1999+1997+1995+……+3+1。
②
\
将①,②两式左右分别相加,得
从而有
说明:该题之所以想到倒序相加,是因为这一组数字前面的数字与后面对应位置的数字之和相等,倒过来相加正好凑成一组相同的数字。
另该式后一项减去前一项的差都相等,这样的一列数称为等差数列,第一项叫首项,通常用表示;最后一项叫末项,通常用表示,相等的差叫公差,通常用d表示,项数
用n表示(),则该题也可以用等差数列的求和()公式:
来计算。
二、错位相减法
例2 计算的值。
分析:观察发现,上式从第二项起,每一项都是它前面一项的5倍,如果将和式各项都乘以5,所得新和式中除个别项外,其余与原和式中的项相同,于是两式相减将使差易于计算。
解:设,①
所以②
【
②-①,得,所以。
说明:如果一列数,从第二项起每一项与前一项之比都相等(本例中是都等于5),那么这列数的求和问题,均可用上述“错位相减”法来解决。
三、裂项相减法
例3 计算
分析:一般情况下,分数计算是先通分,但本题通分计算很繁。
由1+2+……+100想到等差数列求和公式:,所以,又有想到,从而把每一项拆成两项之差,然后再计算,这种方法叫做拆项法。
解:原式
说明:本例使用拆项法的目的是使总和中出现一些可以相抵消的相反数的项,这种方法在有理数巧算中很常用。
…
四、换元法
在有理数运算及其他代数式的运算中,我们常常把式中出现的相同部分用字母表示,从而使问题简化。
例4 计算:
分析:四个括号中均包含一个共同部分:,我们用一个字母表示它以简化计算。
解:设,则
原式
说明:对于式子中结构相同的部分我们通常可以用字母来表示,从而起到简化运算的作用。
五、数形结合法
?
例5 计算当n无限大时,的值。
分析:此题可以构造如下图的几何模型来解。
解:如图,设大正方形的面积为1,则有,故原式=2。
说明:在代数计算中,有时借助几何模型,能起到意想不到的作用。
这就是数形结合的好处。