光电化学电池(绝密资料)
- 格式:ppt
- 大小:1.72 MB
- 文档页数:14
光电化学电池的发展和未来发展趋势1508471008赵世南随着人类的工业文明得以迅猛发展,由此引发的能源危机和环境污染成为急待解决的严重问题,利用和转换太阳能是解决世界范围内的能源危机和环境问题的一条重要途径。
世界上第一个认识到光电化学转换太阳能为电能可能实现的是Becquere,他在1839年发现涂布了卤化银颗粒的金属电极在电解液中产生了光电流,以后Brattain、Garrett及Gerisher等人先后提出和建立了一系列有关光电化学能量转换的基本概念和理论,开辟了光电化学研究的新领域。
光电化学池即通过光阳板吸收太阳能并将光能转化为电能。
光阳板通常为光半导体材料,受光激发可以产生电子——空穴对,光阳极和对极(阴极)组成光电化学池,在电解质存在下光阳极吸光后在半导体带上产生的电子通过外电路流向对极,水中的质子从对极上接受电子产生氢气。
光电化学池中染料敏化纳米晶光电化学电池以其低成本和高效率而成为硅太阳能电池的有力竞争者。
染料敏化太阳电池主要由透明导电玻璃、TiO2多孔纳米膜、电解质溶液以及镀铂镜对电极构成的“三明治”式结构。
与p-n结固态太阳能电池不同的是,在染料敏化太阳电池中光的吸收和光生电荷的分离是分开的。
染料敏化太阳能电池(DSSC)是由二氧化钛多孔膜、光敏化剂(染料)、电解质(含氧化还原电对)、镀铂对电极及导电基板组成的夹层结构。
光电化学池中染料敏化纳米晶光电化学电池其基本工作原理是:在染料分子的激发态、TiO2导带、SnO2(导电玻璃)导带、Pt(对电极)功函之间存在着一个能级梯度差,当染料分子吸收太阳光其中基态的电子受光激发跃迁到染料激发态能级后,在能级差的驱动下,电子将会迅速转移到TiO2导带中,经纳米晶TiO2膜空间网格的输运进入到SnO2导带,后经外路到达对电极,并与氧化还原电对进行电子交换后,依靠氧化还原电对在氧化态染料和对电极间完成电子转移,从而实现整个光电循环。
染料敏化太阳能电池的核心部分是纳米多孔半导体氧化物薄膜电极。
1引言氢气因其对环境无污染被认为是最理想的清洁能源[1]。
在传统的制取氢气的方法当中,化石燃料的制取约占全球制氢数量的90%,这种方法主要是利用变压吸附以及蒸汽转化相结合的方法制取高纯度的氢[2]。
利用电能制取氢[3]也占有一定的比例。
但上述两种方式,制取高纯度的氢时能耗大,污染大。
在近些年来的研究中,利用免费而且无限量的太阳能通过光电催化分解水的方法制取氢被认为是最具有前景的制氢方法[4]。
太阳能光电化学电池大致可以分为以下三类:1.光生化学电池,是将太阳能转变为电能;2.半导体、电解质光电化学电池,是将太阳能转化为电能;3.光电化学电池分解水制氢,是将太阳能转化成化学能[5]。
半导体光解水制氢技术是比较成熟的,其主要是将二氧化钛、过渡金属氧化物、层状金属氧化物和能利用可见光的复合层状物作为光催化剂来光解水制氢[6]。
光电化学法制氢实际上是运用特殊的化学电池,这种电池的电极在光照下可以将光子能量转移并且产生电流从而将水离解得到氢气,研究人员对光电化学制氢的方法做了大量的理论和试验研究[7]。
光电化学分解水制氢是太阳能制氢研究的一个重要组成之一[8],典型的光电化学分解太阳能池和普通的电解池原理是相一致的,由光阳极和对极阴极所组成的典型的光电化学分解太阳能池,在有电解质存在下的光阳极在吸收光后通过半导体带上电子由外电路流向阴极,水中的氢离子会从阴极上接受电子从而产生氢气[9]。
其中,光阳极通常是光半导体材料,其收到激发后可以产生电子空穴对,光阳极半导体[10]是影响制取氢气最关键的影响因素,半导体材料应尽可能多的吸收可见光减少。
本实验选用纳米二氧化钛[11]作为光阳极材料,二氧化钛是一种新型节能环保材料,价格便宜、无毒且原料易得,具有抗光腐蚀性和优良的光催化性能,在光催化、太阳能电池、高效光敏催化剂等领域有着广泛的使用[12],但二氧化钛的禁带宽度较宽,只能吸收紫外线和近紫外线,而太阳光的利用率并不是很高,这就限制了二氧化钛在太阳能制氢中的实际应用[13],人们对提高二氧化钛的光催化反应活性方面做了大量的研究工作,如对二氧化钛进行晶格掺杂、表面贵金属(Pt、Pd、Ru、Au)沉积、光敏化等。
引言:光电化学电池是一种能将光能直接转化为化学能的装置。
随着对可再生能源的需求日益增长,光电化学电池作为一种新兴的能源转换技术受到了广泛的关注。
本文将就光电化学电池的原理、分类、应用、优势和挑战等方面进行详细阐述。
概述:光电化学电池是基于光电化学效应的装置,它通过将光能转化为电能来实现能源的转换。
在光电化学电池中,光吸收剂吸收光能,利用光生载流子产生电流,并将光能转化为化学能,从而实现能源的转换。
光电化学电池具有高效能转换、环保可持续的特点,因此在可再生能源领域具有广阔的应用前景。
1. 原理光电化学电池的工作原理是基于光电化学效应。
当光照射到光电化学电池中的光吸收剂时,光能被吸收,激发光吸收剂中的电子跃迁到较高能级。
这些激发态的电子被称为光生载流子,可以通过电子传递过程形成电流。
光生载流子可以在电解质中或沉积在电极上参与化学反应,从而将光能转化为化学能。
2. 分类光电化学电池可以根据其光吸收剂的不同来进行分类。
目前常见的光电化学电池有染料敏化太阳能电池、钙钛矿太阳能电池、有机太阳能电池等。
这些不同类型的光电化学电池在光吸收剂的选择和电子传导机制上有所差异,但都利用光生载流子来转化光能为电能。
3. 应用光电化学电池在能源领域具有广泛的应用前景。
太阳能光电化学电池被广泛应用于太阳能发电领域,通过将光能转化为电能来解决传统能源的短缺问题。
此外,光电化学电池还可以在光催化、电解水制氢、二氧化碳还原等领域发挥重要作用。
光电化学电池的应用不仅仅局限在能源领域,还有望在环境治理和光催化反应等方面发挥重要作用。
4. 优势光电化学电池与传统的能源转换技术相比具有许多优势。
首先,光电化学电池是一种可再生能源技术,能够实现光能到电能的高效转换,具有零排放和环境友好的特点。
其次,光电化学电池具有反应速度快、自我修复能力强等优势,有望在工业生产中发挥重要作用。
此外,光电化学电池还具有材料多样性、结构设计灵活等优势,可以满足不同应用场景的需求。
染料敏华光电合成电池-概述说明以及解释1.引言1.1 概述染料敏化太阳能电池是一种新兴的可再生能源技术,以其高效能量转化和低成本的特点备受关注。
该类电池利用染料敏化剂吸收阳光中的光能,将其转化为电能。
相比于传统的硅基太阳能电池,染料敏化太阳能电池具有更高的光电转换效率、更低的制造成本和更大的灵活性。
染料敏化太阳能电池的工作原理基于光物理和光化学的原理,其关键组件是染料分子。
这些染料分子能够吸收宽波段的光线,包括可见光和近红外光。
当光线照射到染料分子上时,染料分子的电子会被激发到高能态,然后通过导电介质传导电子。
最终,电子流经过外部电路产生电流,并为外部设备供电。
染料敏化太阳能电池相较于其他太阳能电池技术,有着显著的优势。
首先,染料敏化太阳能电池的制造成本较低,因为其制备过程不需要高温高压条件,且使用的材料相对较少。
其次,该类电池具有良好的光吸收和电子传输性能,因此能够实现高效率的光电转换。
此外,染料敏化太阳能电池也具有较好的适应性,可以制备成各种形状和尺寸的器件,从而在不同应用场景下具备更大的灵活性。
染料敏化太阳能电池的应用领域广泛,涵盖了光伏发电、太阳能充电设备、建筑智能化等多个领域。
在光伏发电领域,染料敏化太阳能电池可用于大规模的太阳能发电站和户用光伏发电系统,为用户提供绿色、清洁的电力供应。
在太阳能充电设备方面,染料敏化太阳能电池可用于手机、电子设备等便携式设备的充电,实现随时随地的能源补充。
此外,染料敏化太阳能电池还可以集成到建筑物表面,将太阳能转化为电能供应给建筑物内部的电器设备,实现建筑智能化。
综上所述,染料敏化太阳能电池作为一种高效能源转换技术,在可再生能源领域具有广阔的应用前景。
随着材料科学和光电技术的不断发展,染料敏化太阳能电池有望取得更大的突破和进展,为人类提供更多清洁、可持续的能源解决方案。
1.2文章结构文章结构部分的内容可以包括以下内容:本文按照以下结构进行论述:1. 引言1.1 概述:简要介绍染料敏华光电合成电池的背景和意义。
光电化学电池底物光电化学电池是一种能够将光能转化为电能的装置。
在光电化学电池中,底物起着至关重要的作用。
底物是指在光电化学反应中被光激发的物质,通过光激发后,底物发生氧化还原反应,产生电流或电势差。
光电化学电池的底物可以是各种化学物质,常见的有有机物、无机物和半导体材料等。
不同的底物具有不同的光电化学性质,因此在光电化学电池中起到不同的作用。
有机物是光电化学电池中常见的底物之一。
有机物分子中的π电子可以被光激发,形成激发态分子。
这些激发态分子具有较长的寿命,可以在光电化学反应中发生氧化还原反应,从而产生电流。
有机物作为底物的光电化学电池广泛应用于光催化、光电化学合成等领域。
无机物也是光电化学电池的重要底物之一。
无机物底物可以是金属离子、氧化物、硫化物等。
这些无机物在光激发后,可以发生氧化还原反应,产生电流。
无机物底物的光电化学电池具有高稳定性和较高的效能,因此在太阳能电池、光催化水分解等领域得到广泛应用。
半导体材料是光电化学电池中常见的底物之一。
半导体材料底物的光电化学反应主要是通过光激发产生电子-空穴对,然后发生氧化还原反应。
半导体材料底物的光电化学电池具有高效能和长寿命的特点,因此在太阳能电池、光催化等领域具有广泛的应用前景。
除了以上常见的底物,还有其他一些特殊的底物在光电化学电池中得到应用。
例如,染料分子可以作为底物,通过光激发后发生氧化还原反应,产生电流。
染料敏化太阳能电池是一种利用染料分子作为底物的光电化学电池,具有高效能和低成本的特点。
光电化学电池的底物起着至关重要的作用。
底物的选择和特性直接影响光电化学电池的效能和稳定性。
不同类型的底物在光电化学电池中发挥着不同的作用,为实现可持续能源的开发和利用提供了一种新的途径。
随着科学技术的不断发展,光电化学电池底物的研究和应用将会得到更广泛的关注和深入的探索。
发光电化学电池发光电化学电池是一种新型的电化学能源转换器件,它能够将化学能转化为电能,并通过发光的方式将能量释放出来。
这种电池具有许多独特的特点和应用前景,因此备受关注。
发光电化学电池的工作原理是基于电化学发光现象。
当电池中的化学反应发生时,产生的电子和离子会在电极表面发生氧化还原反应,从而激发发光材料中的激发态,使其发出可见光。
这种发光现象可以用来制造发光二极管(LED),具有高效能转换和长寿命的特点。
发光电化学电池的应用非常广泛。
首先,它可以用作绿色能源的一种形式。
由于发光电化学电池能够将化学能转化为电能,并且在能量释放过程中产生发光效应,因此可以作为一种新型的可再生能源。
与传统的化石燃料相比,发光电化学电池具有更低的碳排放和更高的能量转换效率,对环境更加友好。
发光电化学电池还可以应用于生物医学领域。
由于发光电化学电池具有发光效应,可以用于生物标记和生物成像。
通过将发光材料与生物分子结合,可以实现对生物体内部结构和功能的高分辨率成像,为生物医学研究和临床诊断提供了新的工具和方法。
发光电化学电池还可以应用于光电子器件和显示技术。
由于发光电化学电池具有高效能转换和可调控发光特性的优点,可以用于制造高亮度、高对比度和低功耗的显示器件。
与传统的液晶显示器相比,发光电化学电池显示器具有更高的色彩饱和度和更快的响应速度,可以提供更好的视觉体验。
发光电化学电池作为一种新型的电化学能源转换器件,具有广阔的应用前景。
它不仅可以作为绿色能源的一种形式,还可以应用于生物医学领域和光电子器件领域。
随着科学技术的不断发展,相信发光电化学电池将会在未来的能源和科技领域发挥重要作用,为人类社会的可持续发展做出贡献。
燃料电池、高能电池、海洋电池和锂电池的相关知识流水斯夫整理一、化学电源和燃料电池的概念1.化学电源:又称化学电池,是一种能将化学能直接转变成电能的装置。
这种装置通过化学反应,消耗某种物质,输出电能。
2.燃料电池:燃料电池是直接将燃烧反应的化学能转化为电能的装置。
因为原料都是燃料和氧气,燃料和氧气发生化学反应的产物与相应的燃料燃烧的产物相同,即化学方程式相同,所以称为燃料电池。
3.高能电池:具有高“比能量”和高“比功率”的电池称为高能电池。
所谓“比能量”和“比功率”是指电池的单位质量或单位体积计算电池所能提供的电能和功率。
因为电池的体积小,产品形状象纽扣,也称为“纽扣”电池。
4.海洋电池:以铝-空气-海水为能源的新型电池,称之为海洋电池。
1991年,由我国首创。
5.锂电池:锂电池(Lithium battery)是指电化学体系中含有锂(包括金属锂、锂合金和锂离子、锂聚合物等)的电池。
二、化学电源的分类和燃料电池的分类1.化学电源的种类:(1)按照其使用性质可分为四类:干电池、蓄电池、燃料电池、锂电池。
(2)按电池中电解质性质分为:碱性电池、酸性电池、中性电池。
2.燃料电池的分类:(1)按电解质种类,燃料电池(Fuel Cell, FC)分为碱性燃料电池(AFC)、磷酸型燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、固体氧化物燃料电池(SOFC)及质子交换膜燃料电池(PEMFC)等。
其中属于碱性燃料电池的只有AFC一种,而其余的燃料电池属于酸性燃料电池或中性燃料电池。
(2)按燃料类型,燃料电池(Fuel Cell, FC)分为氢气、甲醇、甲烷、乙烷、甲苯、丁烯、丁烷等。
(3)按工作温度,燃料电池(Fuel Cell, FC)分为低温型(温度低于200℃)、中温型(温度为200~750℃)、高温型(温度高于750℃)。
(4)按结构类型,燃料电池(Fuel Cell, FC)分为管状燃料电池、平板型燃料电池和单片型。
化学电池的种类化学电池是将化学能直接转变为电能的装置。
主要部分是电解质溶液、浸在溶液中的正、负电极和连接电极的导线。
依据能否充电复原,分为原电池和蓄电池两种。
化学电池按工作性质可分为:一次电池(原电池);二次电池(可充电电池);铅酸蓄电池;燃料电池。
其中:一次电池可分为:糊式锌锰电池、纸板锌锰电池、碱性锌锰电池、扣式锌银电池、扣式锂锰电池、扣式锌锰电池、锌空气电池、一次锂锰电池等。
二次电池可分为:镉镍电池、氢镍电池、锂离子电池、二次碱性锌锰电池等。
铅酸蓄电池可分为:开口式铅酸蓄电池、全密闭铅酸蓄电池。
1.锌锰电池锌二氧化锰电池(简称锌锰电池)又称勒兰社(Leclanche)电池,是法国科学家勒兰社(Leclanche,1839-1882)于1868年发明的由锌(Zn)作负极,炭棒为正极,电解质溶液采用二氧化锰(Mn O2),中性氯化铵(NH4Cl)、氯化锌(Zn Cl2)的水溶液,面淀粉或浆层纸作隔离层制成的电池称锌锰电池,由于其电解质溶液通常制成凝胶状或被吸附在其它载体上而呈现不流动状态,故又称锌锰干电池。
按使用隔离层区分为糊式和板式电池两种,板式又按电解质液不同分铵型和锌型电池纸板电池两种。
干电池用锌制筒形外壳作负极,位于中央的顶盖上有铜帽的石墨棒作正极,在石墨棒的周围由内向外依次是A:二氧化锰粉末(黑色)------用于吸收在正极上生成的氢气(以防止产生极化现象);B:用饱和了氯化铵和氯化锌的淀粉糊作为电解质溶液。
电极反应式为:负极(锌筒):Zn - 2e- = Zn2+正极(石墨):2NH4+ +2e- = 2NH3↑+ H2↑H2O + 2Mn O2 + 2e- = 2MnOOH+ 2OH−总反应:Zn + 2NH4Cl + 2Mn O2 = Zn(NH3)2Cl2↓+2MnOOH干电池的电压大约为1.5V,不能充电再生。
2.碱性锌锰电池20世纪中期在锌锰电池基础上发展起来的,是锌锰电池的改进型。
全石英光电化学池
全石英光电化学池:一种具有高效、低成本和高可靠性的太阳能储能技术。
全石英光电化学池是一种新型的可再生能源技术,它是使用一种可以将太阳光转换成电能的太阳能设备。
它能够将太阳能可靠地储存和使用,也可以提供长期稳定的供电,而且可以节约能源和减少垃圾排放,有效的保护环境。
一、结构特点
全石英光电化学池由外框、电子控制系统、晶体管以及一些其他组件组成,外框是全石英光电池的最重要组成部分。
全石英光电池外框由船体、总箱、上等几大部分组成,总箱中由许多大框保持着全石英太阳能板、光伏组件等多部件,使得全石英光电池有极高的效率,利用太阳光能源迅速转换成电能。
二、优点
1、高稳定性:全石英光电池在环境温度变化2/ 3.X%的范围内,电路
的工作效率和功率损失非常稳定。
2、高效率:全石英光电池具有较高的能量收集率,具有超高的太阳转换率。
它的最大太阳转换率可以达到25%,比普通太阳能电池要高出2%。
3、长寿命:全石英光电池在正常情况下可以使用25年,远远比普通
太阳能电池要长寿。
三、应用
由于全石英光电池具有许多优点,所以已被广泛应用于航空航天、船舶、电厂、遥测站、军用和民用设施等。
例如,它可以用来供电使用,可以作为照明用途,也可以用来发电照明,并提供风能、水力、地热
能等能源。
同时,全石英光电池还可用于太阳能制冷、太阳能白水制
备项目等。
总之,全石英光电池具有良好的结构、稳定性和效率,是一种重要的
可再生能源技术。
它可以节省能源,为我们提供持久而可靠的电力,
是实现可持续发展的关键技术。
光电池的工作原理光电池,也称为太阳能电池或光伏电池,是一种将光能直接转化为电能的器件。
它是通过光电效应来实现的,光电效应是指当光线照射到某些材料表面时,会引起电子的跃迁,从而产生电流。
光电池的主要组成部分是半导体材料,其中最常用的是硅(Si)。
硅材料具有特殊的电子结构,它的原子有四个价电子,形成晶格结构。
在晶格中,硅原子通过共价键连接在一起,形成一个稳定的晶体。
当光线照射到光电池的表面时,光子(光的粒子)会与硅材料中的原子发生相互作用。
光子的能量会被传递给硅材料中的电子,使其获得足够的能量,从价带跃迁到导带。
这个过程中,电子会离开原子,形成一个自由电子,同时在原子中留下一个空位,称为空穴。
在光电池中,硅材料通常被掺杂成P型和N型两种类型。
P型硅中掺杂有少量的三价元素,如硼(B),它会引入少量的空穴。
N型硅中掺杂有少量的五价元素,如磷(P),它会引入少量的自由电子。
当P型和N型硅材料相接触时,形成PN 结。
PN结的形成使得光电池具有了特殊的电学性质。
当光子照射到PN结的界面上时,会引起电子和空穴的扩散运动。
由于P区和N区的不同掺杂类型,电子会从N区向P区扩散,而空穴会从P区向N区扩散。
这种扩散运动会导致PN结两侧产生电势差,形成一个电场。
在PN结两侧形成的电场会阻碍电子和空穴的继续扩散运动,使它们在界面处积累。
当光子的能量大于光电池材料的带隙能量时,光子的能量会被电子吸收,使得电子从价带跃迁到导带。
这样,在PN结的界面处就会形成一个光生电势。
光生电势的存在会导致电子和空穴在PN结两侧产生电场力的作用,使得电子向N区移动,而空穴向P区移动。
这样,就形成了一个电流,即光电流。
光电流可以通过连接在光电池两端的电路中进行外部工作。
为了提高光电池的效率,常常会在PN结的界面上涂覆一层导电的金属网格,用于收集电子和空穴。
这样可以减小电子和空穴的复合损失,提高光电池的光电转换效率。
总结一下,光电池的工作原理基于光电效应,通过光子的能量将硅材料中的电子从价带跃迁到导带,形成光生电势,进而产生光电流。
电池通过正负极之间的反应,将化学能转化为电能的装置,即储存化学电能的装置。
自从电池发明至今,已有数百种不同材料、原理、结构的电池。
被广泛应用的充电电池,从材料及原理上分为 3 大类: 1 、铅酸电池, 2 、镍氢电池, 3 、锂电池。
镍铬电池因有记忆,且又不环保已基本被淘汰。
优质电池能达到国家电池标准的主要参数,如电压平台稳定,容量足,使用寿命等电池产品,均为优质电池。
优质电池源自高品质、高纯度的电池材料,最佳电池内部结构设计和先进科学的生产工艺。
优质电池是电池厂追求的目标。
本文所指的电池均为优质电池。
再好的充电方式、使用方式和维护方式均不能将劣质电池变为优质电池。
劣质电池采用二手铅、镍、锂等含杂质很高的低品质金属原料为电池极板,及内部结构、生产工艺均达不到国家电池标准的电池。
劣质电池的特点是:1 、电池电压平台不稳定。
2 、电池容量不足。
3 、电池寿命短。
典型的伪劣电池电池中最高的成本为极板材料铅、镍、锂等金属,这些极板金属的含量实际上决定着电池的容量。
极少数电池厂会通过减少极板金属含量,减薄极板厚度,增加极板反应面积,提高电解液酸度等手法,来增加电池的初始容量,电池寿命通常不会超过 10 个循环次,欺骗用户。
一次电池指无法进行充电,仅能放电的电池。
一次电池容量通常大于同等规格的充电电池。
如锌锰、碱性干电池、锂扣电池等。
一次电池因用电负载不确定,而无法标明实际容量。
如, 8 节一组的一次电池组,仅能为手电钻提供 20 分钟供电,取下的电池却又能为挂钟供电半年以上。
充电电池指可反复充电再循环的电池,电池学称二次电池。
如:铅酸、镍氢、锂离子、锂聚合物等。
电池容量电池充满电后,空载状态下放电至截止电压是所释放的电能量,为电池容量。
一般用符号 mAh 或 Ah 表示。
额定电压电池正负极的材料因化学反应而造成的电位差,而由此产生的电压差,为额定电压。
电池的额定电压分为:过充电压和过放电压。
过充电压充电电池充电至最高的额定电压为过充电压。