医用高等数学题库
- 格式:docx
- 大小:335.87 KB
- 文档页数:38
一、选择题(第1~5小题有且仅有一个正确选项,请将该选项前的字母填在题后的括号内;每小题3分,共15分) 1. 设函数22),(yx y x f +=,则(,)f x y 在(0,0)点 ……… ( A )(A ) 连续, 但不可偏导. (B ) 可偏导,但不连续. (C ) 可微,且(0,0)d 0f=. (D ) (,)x f x y 和(,)y f x y 在(0,0)点连续.2.设(,)ln u x y =, (,)arctanx v x y y=, 则下列等式成立的是 ………( D ) (A )u v xy∂∂=∂∂. (B )u v xx∂∂=∂∂. (C )u v yx∂∂=∂∂. (D )u v yy∂∂=∂∂.3. 设二元函数33(,)32f x y x y xy =+-+, 则下列结论正确的是 ………( D )(A ) (0,0)f 为极大值. (B ) (1,1)f 为极大值. (C ) (0,0)f 为极小值. (D ) (1,1)f 为极小值.4. 设A 与B 为随机事件,且1)(0<<A P ,0)(>B P ,)|(1)|(A B P A B P -=则必有 ……( C )(A ) )|()|(B A P B A P =; (B ) )|()|(B A P B A P ≠; (C) )()()(B P A P AB P =; (D) )()()(B P A P AB P ≠。
5.下述函数中,可以作为某个随机变量的分布函数的是 ……………( C )(A ) 21()1F x x=+ (B)1()(1)2xF x e-=-(C )11()arctan 2F x x π=+(D )()()(()1)xF x f x dx f x dx +∞-∞-∞=⎰⎰=其中二、填空题(第6~10小题请将答案直接填在横线上;每小题3分,共15分)6. 设函数x y y x z ++=2)2(,则全微分d z =__________________________________.7. 3z xy =, 在区域:22{(,)|324}D x y x y =+≤上的最大值为: .8. 交换(,)ydy f x y dx ⎰⎰10的积分次序为_______________________________________.9.已知随机事件A 的概率P(A)=0.5随机事件B 的概率P(B)=0.6及条件概率 ()|0.8P B A =则()P A B =_______________________________.10.若随机变量),2(~2σN X ,且3.0)42(=<<X P 则)0(<x P =______________________. 三、计算题(每小题6分,共24分) 11.设函数),(xy x e ye x f z += 求,z zx y∂∂∂∂12.计算二重积分2Dx ydxdy +⎰⎰, 其中D 是由22,y x y x ==所围成的平面有界区域.13.计算二重积分dxdyy x D⎰⎰+22,D 为x y x 322≤+的第一象限部分四、解答题(每题8分,共16分)14.求函数3322f x y x y x y x=-++-的极值点.(,)33915.假设生产某种药品需要C,三种核心原料,该药品的产量u与三种原料的用量zBA,,yx,有如下关系:yz.0=,已知三种原料的价格分别为1元,2元,3元,现在用2400元u2005x购买原料。
一.填空题1.当0→x 时,αkx x ~cos 12-,则=k ;=α ,当1→x 时 α)1(~43ln 2-+x k x ,则 =k ;=α2121~(1)x k x α---,则 =k ;=α . ()221ln 21211x x e---=-()()2~1ln 2~2ln 21x x -- 2.22(ln x dx -=⎰ 2π-3. 2222ln(1)4ln17x x x d x t dt dx =+=-⎰() 4. 函数)(x f 在0x 点可导,则极限=--→h h x f x f h )2()(lim000()02f x ' , 4.极限x x x e e --→+-111111lim = 0 ;=+--→+x x x ee 111111lim+∞ ,从而()1lim x f x → 不存在 . 1x -→时,1x +→时,二 解答题1.求 ()020sin lim ln 1x x t tdxx x →+⎰7. 函数)(x y y =由方程01)1(=+--y e x y 确定,求该函数所对应的曲线在1=x 所对应点的切线与法线方程.()10y y y e x e y ''---= ()11yy e y x e '=-- ()111111yx x y y e y x e e===-'==-- 切线:()111,y x e+=- 法线: ()11,y e x +=-- ()()21()10y y y y y e y e y x e y x e y '''''''------=22212x d ydx e==5.)0(11arcsin )(>+-=x x x x x f ,求导数)(x f '以及)1(f '。
6.211sin dx x+⎰ 6. dx x x ⎰+)4ln(2()()221ln 112x d x =++⎰ ()()22111ln 1222x x xdx =-++-⎰ ()()222111ln 122x x x C =++-+ 5. dx xx ⎰+2cos 212sin221cos 12cos d x x =-+⎰()21ln 12cos 2x C =-++ 7.求定积分()1212ln 1x dx --⎰ 5. 求函数21cos 1sin lim 2x x x x ⎪⎭⎫ ⎝⎛+∞→6. 求)1(lim 330n n n n -+∞7求出函数⎪⎩⎪⎨⎧≤<->+=-010)1ln()(11x x x ex f x 间断点的左右极限,并说明间断点的类型. ()()00lim ln 10x f x --→=+=0x =是第一类跳跃间断点1x =是第二类无穷间断点8. 设)(x f 可导,.若⎪⎩⎪⎨⎧=≠=⎰00)()(F 220x A x x dt t tf x x 在0=x 连续, 试求)(x F 的导函数,并说明导函数的连续性. ()()()()()2020002220lim lim lim 202x x x x tf t dt xf x A F F x f x x →→→⋅=====⎰ 当0x ≠时, ()()()()22200242222x x tf t dt xf x x x tf t dt F x x x '⎛⎫⋅⋅- ⎪'== ⎪ ⎪⎝⎭⎰⎰ ()()2203422xx f x t f t d t x -=⎰ 连续当0x =时, ()()()()()202002000lim lim 0x x x tf t dt f F x F x F x x→→--'==-⎰ ()()()()22032002022240lim lim 3x x x tf t dt x f xf x xf x x →→-⋅-==⎰ ()()()02088lim 0323x f x f f x →-'== 因()0lim x F x →'=()()22030422lim x x x f x tf t dt x →-⎰()()()220824222222lim 3x xf x x f x xf x x →'+⋅-⋅⋅= ()()()088lim 20033x f x f F →'''=== ()(),F x '∴-∞+∞在内连续。
一、填空题(每空2分,共20分)得分评阅人答案请写此处:1. 2. 3. 4. 5.6. 7. 8. 9. 10.1、函数的定义域是。
2、。
(利用微分公式计算,保留小数点后3位)3、设可导,则______ ________。
4、若在处可导,则______ ________。
5、函数的n阶导数为。
6、。
7、函数的复合过程是。
8、设函数在点的某领域内可导,。
9、= 。
10、设,则______________。
二、是非题(“√”表示正确,“×”表示错误,每题2分,共20分)得分评阅人()1、0是无穷小量。
()2、分段函数一定有间断点。
()3、初等函数在其定义区间内必可导。
()4、初等函数在其定义域内都是连续的。
()5、若为函数的极值点,则。
()6、函数在点处可导,而函数在点处不可导,则在点处不可导。
()7、函数在处可微,则函数在处一定连续。
()8、设函数在有定义,在内连续,且,则方程在内必有根。
()9、为内单调增函数,若在内可导,则在区间处处有。
()10、。
三、单项选择题(每题2分,共10分)得分评阅人答案请写此处:1. 2. 3. 4. 5. 6. 7. 8. 1、下列哪组中的函数为相同的函数()。
A. B.C. D.2、函数是在点处连续,是函数在点处可导的什么条件()。
A.必要非充分B.充分非必要C.充分必要D.既非充分,也非必要3、若,则k=( ) 。
(A) (B) 3 (C) (D) 04、当时,是无穷大量吗?它有界吗?()。
A.是,有B.不是,没有C.是,没有D.不是,有5、在处( ) 。
(A) 不连续; (B) 连续但不可导;(C) 可导,但导数在该点不连续; (D) 导函数在该点连续四、计算题(每题5分,共30分)得分评阅人1、 2、3、 4、5、 6、五、解答题(第1、2每题6分,第3题8分,共20分)得分评阅人1、证明:2、试确定的值,使在点处可导。
3、描绘函数的图像。
参考答案一、填空题1、 2、 3、 4、 5、6、 7、 8、 9、0 10、二、是非题1、√2、×3、×4、√5、×6、√7、√8、×9、× 10、×三、单项选择题1、D2、A3、C4、B5、B四、计算题五、解答题3、的定义域为:。
医学高数期末考试试题### 医学高数期末考试试题#### 一、选择题(每题2分,共20分)1. 以下哪项不是微积分的基本定理?A. 牛顿-莱布尼茨公式B. 泰勒级数展开C. 定积分的性质D. 不定积分的计算2. 函数 \( f(x) = x^2 + 3x - 2 \) 在区间 \( [1, 3] \) 上的最大值是:A. 2B. 4C. 6D. 83. 以下哪个选项是 \( e^x \) 的泰勒级数展开式?A. \( 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots \)B. \( 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \ldots \)C. \( 1 + x - \frac{x^2}{2!} + \frac{x^3}{3!} - \ldots \)D. \( 1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots \)4. 已知 \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),求\( \lim_{x \to 0} \frac{\sin 2x}{x} \) 的值是:A. 0B. 1C. 2D. 45. 方程 \( y'' - 2y' + y = 0 \) 的通解是:A. \( y = e^{t} \)B. \( y = e^{t} + e^{2t} \)C. \( y = e^{t} + e^{-t} \)D. \( y = e^{t} + e^{2t} + e^{-t} \)#### 二、填空题(每题2分,共20分)6. 若 \( f(x) = \ln(x) \),则 \( f'(x) = ________ \)。
7. 函数 \( g(x) = x^3 - 6x^2 + 11x - 6 \) 的导数 \( g'(x) \) 是 ________。
医学高数复习题一、单元运算与三角函数1. 计算:sin(π/2) + cos(0) = ?2. 计算:tan(π/4) - cot(π/3) = ?3. 计算:sin²(π/6) + cos²(π/6) = ?4. 计算:sec²(π/4) - csc²(π/3) = ?二、极限与连续性1. 计算:lim(x→0) (3x² - 4x) / (2x² + 3x) = ?2. 计算:lim(x→∞) (2x - 3) / (5x + 2) = ?3. 计算:lim(x→1) (x³ - 2x² + x) / (x² - x) = ?4. 计算:lim(x→1) ((x - 1) / √(x + 2)) = ?三、导数与微分1. 求函数f(x) = 2x³ - 3x² + 5x -1的导数f'(x)。
2. 求函数f(x) = sin(x) + cos(x)的导数f'(x)。
3. 求函数f(x) = ln(x² + 1)的导数f'(x)。
4. 求函数f(x) = e^(2x)的导数f'(x)。
四、函数与其图像1. 根据方程y = 3x² - 4x + 1,画出函数y的图像。
2. 根据方程y = e^x - 2,画出函数y的图像。
3. 根据方程y = ln(x + 1),画出函数y的图像。
4. 根据方程y = sin(2x),画出函数y的图像。
五、定积分与不定积分1. 求定积分∫(0→π) sin(x) dx的值。
2. 求定积分∫(1→2) x² dx的值。
3. 求不定积分∫(2x + 3) dx的原函数。
4. 求不定积分∫(e^x + 1) dx的原函数。
六、微分方程1. 求解微分方程dy/dx = x² - 4x + 4,并给出其通解。
第一章测试1.已知 ,则的值为().A:-3B:6C:D:-6答案:A2.设函数 ,若在处连续,则的值等于().A:2B:C:1D:答案:C3.下列叙述不正确的是()A:无穷大量与无穷大量的乘积是无穷大量B:无穷大量的倒数是无穷小量C:无穷小量与有界函数的乘积是无穷小量D:无穷小量的倒数是无穷大量答案:D4.的值为().A:1B:0C:D:不存在但不是无穷大答案:B5.下列极限存在的是().A:B:C:D:答案:B6.设,则是的().A:连续点B:跳跃间断点C:第二类间断点D:可去间断点答案:B7.已知 ,则常数a等于().A:6B:5C:1答案:A8.()A:对B:错答案:A9.()A:错B:对答案:B10.函数是内的连续函数.()A:错B:对答案:A第二章测试1.设,则()。
A:B:C:D:答案:C2.若函数在内满足且,则在此区间()。
A:单调减少,凸函数B:单调增加,凹函数C:单调减少,凹函数D:单调增加,凸函数答案:C3.若可导, 且 , 则()。
A:B:C:D:答案:C4.设,则()。
A:B:C:D:答案:D5.设由方程所确定的隐函数为,则 =()。
A:C:D:答案:D6.设由方程所确定的函数为,则在处的导数为()。
A:B:C:0D:答案:B7.设曲线在点M处的切线斜率为3,则点M的坐标为()。
A:(0,1)B:(1,1)C:(1, 0)D:( 0,0)答案:C8.设函数,则在处()。
A:可导,且导数也连续B:不连续C:可导,但不连续D:连续,但不可导答案:D9.已知,则 = ()。
A:B:C:D:答案:C10.下列凑微分正确的是()。
A:B:C:D:答案:AC第三章测试1.()A: .B: ;C: ;D: ;答案:CA: ;B: ( ) ;C: .D: ( ) ;答案:D3.若(),则()A: .B:2 ;C: ;D: ;答案:B4.设,则()A: ;B: ;C: .D: ;答案:B5.,则()A:B:C:D:答案:C6.,则()A:B:C:D:答案:B7.()A:B:C:D:答案:C8.因为,所以()A:错B:对答案:BA:错B:对答案:B10.()A:对B:错答案:B第四章测试1.。
高等数学第1-3章一、求下列各极限1、 求极限 1)1(3tan lim 21--→x x x 、2、 求极限)ln 11(lim 1x x x x --→。
3、 求极限22)2(sin ln limx x x -→ππ4、 求极限)1ln(102)(cos lim x x x +→ 5、 当0→x 时,)()1ln(2bx ax x +-+就是2x 得高阶无穷小,求a ,b 得值 6、 求极限3sin 1tan 1limx xx x +-+→7、 求极限xx xx )1cos 2(sin lim ++∞→ 8、 求极限 x e e x x x 20sin 2lim -+-→ 二、求下列各函数得导数或微分1、求函数x x y tan ln cos ⋅=得导数;2、设.42arcsin2x x x y -+= ,求1=x dxdy3、求)()(2(2tan u f f y x=可导)得导数;4、设 xe x y xarccos )1(ln-= , 求)0(y ' 5、 设 )ln(2222222a x x a a x x y -+--= ,求y '。
6、设方程0=+-yxe e xy 确定了y 就是x 得隐函数,求0=''x y 。
7、 设xx e y x sin )1ln(++=,求dy 。
8、设)0(,22)()2(lim20≠+=∆-∆+→∆x xx x x f x x f x ,求)2(x df 。
三、应用题1、讨论函数2332x x y -=得(1)单调性与极值(2)凹凸区间与拐点 2、 求函数x x x f cos sin )(+=在]2,0[π上得极值。
3、 求函数 )0(ln 1)(2>-+=x xx x f 得极值4、 在某化学反应中,反应速度)(x v 与反应物得浓度x 得关系为)()(0x x kx x v -=,其中0x 就是反应开始时反应物得浓度,k 就是反应速率常数,问反应物得浓度x 为何值时,反应速度)(x v 达到最大值?四、选择题1.设,)(x x f =则=-∆+)2()2(f x f ( )A .x ∆2B . 2C .0D .x ∆ 2.设)(x f y =得定义域为]1,1[-,则)()(a x f a x f y -++=(10≤≤a )得定义域就是( )A .]1,1[+-a aB .]1,1[+---a aC .]1,1[--a aD .]1,1[a a --3.若函数)(x f 在某点0x 极限存在,则( ) A .)(x f 在0x 得函数值必存在且等于极限值 B .)(x f 在0x 得函数值必存在,但不一定等于极限值 C .)(x f 在0x 得函数值可以不存在 D .如果)(0x f 存在得话必等于极限值 4.若0)(lim 0=→x f x x ,则( )A .当)(x g 为任意函数时,有0)()(lim 0=→x g x f x xB .仅当0)(lim 0=→x g x x 时,才有0)()(lim 0=→x g x f x xC .当)(x g 为有界函数时,有0)()(lim 0=→x g x f x xD .仅当)(x g 为常数时,才能使0)()(lim 0=→x g x f x x 成立5. 设)(x f y =且,0)0(=f 则=')0(f ( B ) A .0 B .xx f x )(lim→ C .常数C D . 不存在 6.设函数11)(--=x x x f ,则=→)(lim 1x f x ( )A 、 0B 、 1-C 、 1D 、 不存在7.无穷小量就是( )A .比零稍大一点得一个数B .一个很小很小得数C .以零为极限得一个变量D .数零 8.当0→x 时,与无穷小量12-xe等价得无穷小量就是( )A 、 xB 、 x 2C 、 x 4D 、 2x 9. 若函数)(x f y =满足21)(0='x f ,则当0→∆x 时,0d x x y =就是( ) A .与x ∆等价得无穷小 B .与x ∆同阶得无穷小 C .比x ∆低阶得无穷小 D .比x ∆高价得无穷小10.=→x xx sin 3sin lim 0( )A .1B .3C .0D .不存在11.如果322sin 3lim0=→x mx x ,则m 等于( )A .1B .2C .94 D .4912.若函数⎪⎩⎪⎨⎧=≠-=00)21()(1x k x x x f x 在0=x 处连续,则=k ( )A .2e B . 2-e C .21-eD .21e13.设 212lim2=-+∞→x xax x ,则a =( ) A .1 B .2 C .0 D .314.设⎪⎩⎪⎨⎧=≠=003sin1)(x ax x x x f ,若使)(x f 在),(∞+-∞上就是连续函数,则=a ( )A .0B .1C .31D .3 15.若函数⎪⎩⎪⎨⎧=≠--=12111)(2x x x x x f 在1=x 处( ) A .极限存在 B .右连续但不连续 C .左连续但不连续 D .连续16. 设⎪⎩⎪⎨⎧=≠-+=00011)(x x xx x f ,则0=x 就是)(x f 得( )A .连续点B .跳跃间断点C .可去间断点D .无穷间断点 17.设)(x f 在0x 处可导,则=--→hx f h x f h )()(lim000( )A .)(0x f '-B .)(0x f -'C .)(0x f 'D .)(20x f ' 18.设x e f x2)(=则=')(x f ( )A .2B .x2C .x eD .x e 2 19.设)(u f y =,xe u =则=22d d xy( )A .)(2u f ex'' B .)()(2u f u u f u '+'' C .)(u f e x '' D .)()(u uf u f u +''20.设)1ln()(2x x f +=,则=-'')1(f ( )A .1-B .1C .0D .2 21.已知22ln arctan y x xy +=,则=x yd d ( )A .y x y x +- B .y x y x -+ C .y x +1D .yx -1 22.若x x y ln =,则=y d ( )A .x dB .x x d lnC .x x d ]1)[(ln +D .x x x d ln 23.已知x x y ln =,则()=10y ( )A .91x -B .9-x C .x 8!8 D .9!8x 24.设函数n n n n a x a x a x a x f ++⋅⋅⋅++=--1110)(,则:='])0([f ( )A .n aB .!0n aC .0aD .0 25.)(x f 在0x 处可导,则)(x f 在0x 处( )A .必可导B .连续但不一定可导C .一点不可导D .不连续26.设)(x f 在],[b a 上连续,在),(b a 上可导,则至少有一点),(b a ∈ξ,满足( ) A .))(()()(a b f a f b f -ξ'=- B .))(()()(b a f a f b f -ξ'=- C .0)(=ξ'f D .0)(=ξ''f27.已知曲线5+=xe y 上点M 处得切线斜率为2e ,则点M 得坐标为( )A .)52(2+,eB .)2(2,e C .)52(2+--,e D .)2(2,e -28.函数5224+-=x x y 在区间[-2,2]上得最大值与最小值分别为( ) A .4,5 B .5,13 C .4,13 D .1,13- 29.下列命题正确得就是( )A .函数)(x f 在),(b a 内连续,则)(x f 在),(b a 内一定存在最值B .函数)(x f 在),(b a 内得极大值必大于极小值C .函数)(x f 在[]b a ,上连续,且)()(b f a f =则一定有),(b a ∈ε,使0)(='εfD .函数得极值点未必就是驻点30.点)1,0(就是曲线c bx ax y ++=23得拐点,则有:( )A .1=a ,3-=b ,1=cB .a 为非零任意值,0=b ,1=cC .1=a ,0=b ,c 就是任意值D .a ,b 就是任意值,1=c31.函数)(x f 在点0x x =得某领域有定义,已知0)(0='x f ,且0)(0=''x f ,则在点0x x =处,)(x f ( )A .必有极值B .必有拐点C .可能有极值,也可能没有极值D .可能有拐点,但必有极值 32.若函数x x a x f 3sin 31sin )(+=在3π=x 处取得极值,则=a ( )A .0B .1C .2D .4 33.曲线1123+-=x x y 在区间)2,0(内( )A .单调增加且为凹函数B .单调增加且为凸函数C .单调减少且为凹函数D .单调减少且为凸函数1. D 2.D 3. C 4. C 5、 B6. D 7.C 8. B 9. B 10. C 11.C 12.B 13.C 14. C 15. B 16.C 17.A 18.B 19. B 20. C 21.B 22.C 23.D 24. D 25. B 26.A 27.A 28. C 29. D 30. B 31.C 32. C 33. C。
医用高等数学试题1. 建模与微分方程某医院整理了一组病人的实验数据,发现他们在被注射某种药物后,体内药物浓度的变化可以用以下微分方程描述:\[ \frac{{dC}}{{dt}} = -kC \]其中,\( C \) 表示病人体内的药物浓度,\( t \) 表示时间,\( k \) 为常数。
请回答以下问题:a) 请解释该微分方程中各个参数的物理含义,并说明其单位。
b) 利用该微分方程及已知条件,求解出药物浓度 \( C \) 与时间 \( t \) 的关系式。
c) 若某位病人的初始药物浓度为 100 mg/L,且经过 2 小时后浓度下降至 50 mg/L,请计算该药物的半衰期。
2. 曲线拟合与概率某药物在人体内的分布情况可以用以下方程描述:\[ C(t) = \frac{{A \cdot e^{-k_1 \cdot t}}}{{1 + k_2 \cdot t}} \]其中,\( C(t) \) 为药物浓度,\( t \) 为时间,而 \( A \),\( k_1 \),\( k_2 \) 均为常数。
某研究小组通过实验得到了一组药物浓度的数据,并希望通过曲线拟合来估计未知的参数值。
请回答以下问题:a) 解释方程中各个参数的物理含义,并说明其单位。
b) 利用已有的实验数据,通过最小二乘法拟合曲线,求解未知参数的数值,并给出拟合的曲线方程。
c) 对于拟合得到的曲线方程,若药物浓度 \( C(t) \) 达到峰值后开始下降,在什么条件下浓度可以收敛到接近零的稳定值?3. 概率与统计某医院对一种特定疾病的诊断准确率进行了研究。
根据数据统计,一个人真正患有该疾病的概率为 0.05,而经过医院的诊断,诊断结果显示该人患有该疾病的概率为 0.98。
进一步,研究还发现该医院通过这种诊断方法错误地将一些没有该疾病的人诊断为患有该疾病,错误率为 0.03。
请回答以下问题:a) 若一个人在该医院被诊断患有该疾病,那么他真正患有该疾病的概率是多少?b) 若一个人在该医院被诊断不患有该疾病,那么他实际上可能患有该疾病的概率是多少?c) 利用统计学相关知识,你认为在这种情况下,该医院的诊断方法的可靠性如何评价?有何改进的建议?4. 误差分析与可行性研究某医疗设备用于测量患者体内某种物质的浓度,设备测得的浓度值与实际浓度存在误差。
医学类高等数学期末复习题一、选择题:1.⎪⎩⎪⎨⎧=-为偶数当为奇数当n n n x n ,10,17,则 。
(A );0lim =∞→n n x (B );10lim 7-∞→=n n x (C );,10,,0lim 7⎩⎨⎧=-∞→为偶数为奇数n n x n n (D) 不存在n n x ∞→lim 。
2. 下列数列n x 中,收敛的是 。
(A )n n x nn 1)1(--=; (B )1+=n n x n ;(C )2sin πn x n =;(D )n n n x )1(--=。
3. 1→x 时与无穷小x -1等价的是 。
(A)()3121x -; (B) ()x -121 ; (C) ()2121x - ; (D) x -1。
4.下列极限中,值为1的是 。
(A) xxx sin 2lim π∞→; (B) xxx sin 2limπ→; (C) xxx sin 2lim 2ππ→; (D) xxx sin 2limππ→。
5. 连续的在是00)()()(limx x x f x f x f x x ==→ 。
(A )必要条件而非充分条件; (B) 充分条件而非必要条件; (C) 充分必要条件; (D) 无关条件。
6. xx x f x 1sin sin )(0⋅==是的 。
(A) 可去间断点; (B) 跳跃间断点; (C) 振荡间断点; (D) 无穷间断点。
7. ⎪⎩⎪⎨⎧≥<--=1 ,21 ,11)(2x x x x x x f ,的是则)(1x f x = 。
(A) 连续点; (B) 可去间断点; (C) 跳跃间断点; (D) 无穷间断点。
8.的是则)(0 ,0 ,1cos ,0 ,0,0 ,sin )(x f x x x x x x x xx x f =⎪⎪⎩⎪⎪⎨⎧>=<+= 。
(A) 连续点; (B) 可去间断点; (C) 跳跃间断点; (D) 振荡间断点。
医用高数精选习题(含答案)高等数学第1-3章一、求下列各极限1.求极限$\lim\limits_{2x\to1}\tan\dfrac{3(x-1)}{x}$;2.求极限$\lim\limits_{x\to-1}\dfrac{x+1}{x^2-1}$;3.求极限$\lim\limits_{x\to\frac{\pi}{2}}\ln\sin x$;4.求极限$\lim\limits_{2x\to(\pi-2x)}\dfrac{\cosx}{\ln(1+x^2)}$;5.当$x\to0$时,$\ln(1+x)-(ax^2+bx)$是$x^2$的高阶无穷小,求$a$,$b$的值;6.求极限$\lim\limits_{x\to0}\dfrac{1+\tan x-\sqrt{\cos2x}}{x^3}$;7.求极限$\lim\limits_{x\to0}(\sin x+\cos x)$;8.求极限$\lim\limits_{x\to+\infty}\dfrac{\sin x}{x}$。
二、求下列各函数的导数或微分1、求函数$y=\cos x\cdot\ln\tan x$的导数;2、设$y=x\arcsin\dfrac{1}{\tan^2x}$,求$\dfrac{\mathrm{d}y}{\mathrm{d}x}$;3、求$y=f(2(1-x)e^x)$的导数,其中$f(u)$可导;4、设$y=\ln\dfrac{\sqrt{a^2+2x}-a}{2x-a-\ln(x+x^2-a^2)}$,求$\dfrac{\mathrm{d}y}{\mathrm{d}x}$;5、设$y=\dfrac{2}{x^2+2}$,求$\mathrm{d}y$;6、设方程$xy-e^x+e=0$确定了$y$是$x$的隐函数,求$y''$;7、设$y=\ln(1+e^x)+\dfrac{x}{\sin x}$,求$\mathrm{d}y$;8、设$\lim\limits_{\Delta x\to0}\dfrac{f(x+2\Delta x)-f(x)}{\Delta x^2}=\dfrac{1}{2}$,$(x\neq0)$,求$\mathrm{d}f(2x)$。
一、填空题(每题2分,共16分)答案请写此处: 1. 2. 3. 4. 5. 6. 7. 8. 1、函数)0)((log 22>-=a y x z a 的定义域是________________。
2、椭球面632222=++z y x 在点)1,1,1(处的切平面方程是_____________。
3、极限=-+→→xyxy y x 11lim0___________。
4、函数)2si n(),(y x xy y x f ++=在点)0,0(处沿)2,1(=的方向导数=∂∂)0,0(lf______________。
5、⎰=+Lds y x )(22 ,其中222:a y x L =+。
6、设⎰⎰=202),(x xdy y x f dx I ,交换积分次序后,=I 。
7、方程03=+'y y 的通解为________________。
8、方程x x y y cos tan =+'的通解为______________。
答案请写此处:1. ( ) 2. ( ) 3. ( ) 4. ( ) 5. ( ) 6.( ) 7.( ) 8. ( ) 1、下列论述正确的是( )A .),(y x f 的极值点必是),(y x f 的驻点B .),(y x f 的驻点必是),(y x f 的极值点C .可微函数),(y x f 的极值点必是),(y x f 的驻点D .可微函数),(y x f 的驻点必是),(y x f 的极值点 2、设),(b a f x '存在,则xb x a f b a x f x ),(),(lim--+→=( )A .),(b a f x 'B .0C .2),(b a f x 'D .21),(b a f x ' 3、设函数),(y x f z =有222=∂∂y f,且1)0,(=x f ,x x f y =')0,(,则),(y x f =( ) A .21y xy +- B .21y xy ++ C .221y y x +- D .221y y x ++4、设函数⎪⎩⎪⎨⎧=+≠++=0,00,),(2222422y x y x yx xyy x f ,则在点(0,0)处( )A .连续且偏导数存在B .连续但偏导数不存在C .不连续但偏导数存在D .不连续且偏导数不存在 5、设平面区域D :1)1()2(22≤-+-y x ,若⎰⎰+=Dd y x I σ21)(,⎰⎰+=Dd y x I σ32)(,则有( ) A .21I I < B .21I I = C .21I I > D .不能比较 6、若积分域D 是由曲线2x y =及22x y -=所围成,则⎰⎰Dd y x f σ),(=( )A .⎰⎰--22211),(x x dy y x f dx B .⎰⎰--22211),(x x dy y x f dx C .⎰⎰-y ydx y x f dy 21),( D .⎰⎰--112),(22dx y x f dy x x7、积分σd eI y x y x ⎰⎰≤++=42222的值为( )A .)1(24-e πB .)1(24-e πC .)1(4-e πD .4e π8、微分方程0)(112='-+''y yy 的通解为( ) A .21c e c y x+= B .21c ey xc += C .x c e c y x 21+= D .112+=x c e c y1、求函数)l n(22z y x u ++=在点)1,0,1(A 沿A 指向点)2,2,3(-B 的方向的方向导数。
医用高等数学计算题1、求曲线y =cux 上与直线x +y =1垂直的切线方程。
剖析:求曲线的切线议程关键有垂点,一是求切点,二是求切线斜线。
解:设切点为(x 0y 0)则点(x 0.y 0)处的切线斜度为k =y '|x =x 0=1x1=1x依题意知所求切线()坐x +y =1垂直,从而、0);切线()为k =1.x 0=1利切点为(1故所求切线方程为y -0=x -1即:y =x -1f (2-tc )-f (2)1-2设f (x )=e则lim =-e t →0tc 4-1x12、如果f (x )为偶函数,且f '(0)存在,证明f '(0)=0证明:因为f (x )为偶函数,所以f (-x )=f (x )从而f (0)=lim x →0f (x )-f (0)f (-x )=f (x )-f (0)=lim =-f '(0)-x →0x -0-x -0∴2f '(0)=0故f '(0)=01⎧2⎪x sin y =⎨x⎪⎩0x ≠0x =03、讨函数在x =0处方程连续性与可得1=y (0),所以函数y 在x =0处连续x →0x →0x 1x 2siny -y (0)x =lim x sin 1=0又lim =lim x →0x →0x →0x -0x x 解:lim y =lim x 2sin 故函数y 在x =0处可导、值y '|x =0=0⎧x 2x ≥04、已知f (x )=⎨求f +'(0)及f -'(0),f '(0)是否存在⎩-x x <0f (x )-f (0)x 2=lim =0解:f +'(0)=lim +x →0+x →0x -0xf -'(0)=lim -x →0f (x )-f (0)-x =lim =-1x →0-xx -0故f '(0)不存在⎧sin x x <05、已知f (x )=⎨求f '(x )x ≥0,⎩x解:当x <0时.f '(x )=cos x当x >0时.f '(x =)1f '(x )=lim 1=1f +'(0)=lim ++x →0x →0所以:f 1(0)=1s x <0⎧c o x 从而f '(x )=⎨x ≥0⎩16、证明:双曲线xy =2a 2上往一点处切线与两坐标轴构成的三角形的面积都等于2a 2。
《 高 等 数 学》 试 卷 (1)一.是非判断题 (本大题共10题,每题2分,共20分。
)1.函数sinln(x y e =是初等函数. ( A )A 、正确B 、错误2. ()ln 0.f x x x +=→函数当时是无穷小量( B ) A 、正确 B 、错误3. 当0x →时,21x e -和sin x 是同阶无穷小量。
( A ) A 、正确 B 、错误4. 01sin()12lim2x x x →-=- ( A ) A 、正确 B 、错误25.(cos )2cos .()x x B '=A 、正确B 、错误 6. 22()()()2xx xx x ex e e '''== ( B )A 、正确B 、错误7.()()f x dx f x C '⋅=+⎰ ( A ) A 、正确 B 、错误8.110〈⎰⎰( A )A 、正确B 、错误9.220cos 1sin 4xdx x ππ=+⎰( A )A 、正确B 、错误10. 若是f (x)连续函数,则由曲线y=f (x)和直线x=a 、x=b (a <b )及x 轴所围成的曲边梯形面积为 S =|()b af x ⎰dx | ( B )A 、正确B 、错误二.单项选择题 (本大题共20题,每题3分,共60分) 11. ()f x 在0x 处左、右极限存在是()f x 在0x 处连续的 (B )A 、充分条件B 、必要条件C 、充要条件D 、前三者都不是12. 已知函数f (x) = ln 11x x x x >⎧⎨-≤⎩ ,则10lim ()x f x →-=( A )A. -1;B. 0;C. 1;D. 不存在13.已知21lim232x ax bx x →∞++=-,则a ,b 的值是 ( C ) A 、0,1 B 、1,0 C 、0,6 D 、1,112012214.lim(1)().;.1;.;..xx x A A e B C e D e →+=15. 当x →0时,下列函数为无穷小量的是( D ) A.xe; B.xe-; C.2x-+ 1; D.1sec sinxx+.16. 以下各式中能直接使用洛必达法则计算的是( D )A 、sin lim 3x x x →∞ B、0x → C 、1cos lim x x x →∞- D 、01cos lim 2x xx→-17.ln ()..(,1);.01).(0,);.1)y x x D A B C D =--∞+∞+∞函数的单调递增区间是(,;(,.18. ()sin f x x =,则(())f f x '=( C )A 、sin(sin )xB 、sin(cos )xC 、cos(sin )xD 、cos(cos )x 19. 函数y = f (x)的微分可以表示为( B )A. y ;B. dy;C.y x ∆∆; D. 0lim x yx →∆∆.20. 设()f x 可导,且2()xy f e =,则()dy D =A 、2()xf e dx '; B 、22()xxf e e dx '; C 、222()xxf e e '; D 、以上都不对.332222222221.10,,().330;.330;.3310;.3310.x y y y x A A x y y y B x y y C x y y D x y '++='''++=++='++=++=设为求将方程两边对求导得223.ln(1),1,().1.;.2.3;.2y x x dy A A dx B dx C dx D =+==函数则当时有;dx.233324.,11.2;.3.1;.(1)33x C A x B x C x D x ++在以下各式中的一个原函数是().25.()()u x dv x =⎰( B )A. ()()()()u x v x v x du x +⎰; B. ()()()()u x v x v x du x -⎰;C. ()()()()u x v x u x dv x +⎰;D. ()()()()u x v x u x dv x -⎰26. 函数()f x 在区间[,]a b 上连续是()f x 在区间[,]a b 上可积的( B ) A 、必要条件 B 、充分条件 C 、充要条件 D 、既不是充分条件又不是必要条件0327.().23;.3;.. 1.x dx A A B C D =-⎰.2;28.cos ()x dx C π=⎰A 、0B 、1C 、2D 、π29. 51421cos 21x xdx x x -=--⎰( D ) A 、-1 B 、1 C 、-2 D 、030. 如图所示,阴影部分的面积是( C )A. [()()]b a f x g x dx +⎰;B. [()()]b a f x g x dx -⎰;C. [()()]b a f x g x dx -+⎰;D.[()()]b af xg x dx --⎰(这个题每套卷子基本都有,所以后面几套的30题删了)三.多项选择题(本大题共3题,每题4分,共12分。
医药高等数学试题及答案一、选择题(每题2分,共10分)1. 函数 \( f(x) = x^2 - 4x + 3 \) 的零点是:A. 1B. 2C. 3D. 42. 曲线 \( y = e^x \) 在 \( x = 0 \) 处的切线斜率是:A. 0B. 1C. \( e \)D. \( e^2 \)3. 以下哪个函数是奇函数:A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = x^4 \)D. \( f(x) = \sin(x) \)4. 以下哪个积分是发散的:A. \( \int_0^1 \frac{1}{x} dx \)B. \( \int_1^\infty \frac{1}{x^2} dx \)C. \( \int_0^\infty e^{-x} dx \)D. \( \int_0^\infty \frac{1}{x} dx \)5. 矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) 的行列式是:A. 5B. -2C. 7D. -5二、填空题(每题3分,共15分)1. 函数 \( f(x) = \ln(x) \) 的导数是 ________。
2. 极限 \( \lim_{x \to 0} \frac{\sin(x)}{x} \) 的值是________。
3. 函数 \( f(x) = x^3 - 3x^2 + 2 \) 的极值点是 ________。
4. 函数 \( y = \ln(x) \) 的反函数是 ________。
5. 矩阵 \( A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \) 的逆矩阵是 ________。
三、解答题(每题10分,共30分)1. 求函数 \( f(x) = x^3 - 6x^2 + 9x + 1 \) 的极值点和极值。