[人教部编版]小学数学“简便运算”真题详解!9个方法
- 格式:docx
- 大小:2.81 MB
- 文档页数:22
小学数学简便运算方法归类一、带符号搬家法(根据:加法交换律和乘法交换率)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+c+b, a+b-c=a-c+b, a-b+c=a+c-b, a-b-c=a-c-b;a×b×c=a×c×b, a÷b÷c=a÷c÷b, a×b÷c=a÷c×b, a÷b×c=a×c÷b二、结合律法(一)加括号法1.当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
)a+b+c=a+(b+c), a+b-c=a +(b-c), a-b+c=a-(b-c), a-b-c= a-( b +c);2.当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。
但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。
(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
)a×b×c=a×(b×c), a×b÷c=a×(b÷c), a÷b÷c=a÷(b×c), a÷b×c=a÷(b÷c)(二)去括号法1.当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。
小学数学8种简便计算方法归类(精编版)小学阶段(中、高年级)的简便运算,在一定程度上突破了算式原来的运算顺序,根据运算定律、性质重组运算顺序。
如果学生没真正理解运算定律、性质,他只能照葫芦画瓢。
在实际解题的过程当中,学生的思路不清晰,常出现这样或那样的错误。
因此,培养学生思维的灵活性就显得尤为重要。
1.提取公因式这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
注意相同因数的提取。
例如:0.92×1.41+0.92×8.59=0.92×(1.41+8.59)2.借来借去法看到名字,就知道这个方法的含义。
用此方法时,需要注意观察,发现规律。
还要注意还哦 ,有借有还,再借不难。
考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。
例如:9999+999+99+9=9999+1+999+1+99+1+9+1-43.拆分法顾名思义,拆分法就是为了方便计算把一个数拆成几个数。
这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。
分拆还要注意不要改变数的大小哦。
例如:3.2×12.5×25=8×0.4×12.5×25=8×12.5×0.4×254.加法结合律注意对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
例如:5.76+13.67+4.24+6.33=(5.76+4.24)+(13.67+6.33)5.拆分法和乘法分配律结合这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。
例如:34×9.9 = 34×(10-0.1)案例再现:57×101=?6.利用基准数在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+c+ba+b-c=a-c+ba-b+c=a+c-ba-b-c=a-c-b例如:a×b×c=a×c×ba÷b÷c=a÷c÷ba×b÷c=a÷c×ba÷b×c=a×c÷b)例如:(一)加括号法1.在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
2.在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
(二)去括号法1.在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加。
)。
2.在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。
)。
1.分配法括号里是加或减运算,与另一个数相乘,注意分配例:8×(12.5+125)=8×12.5+8×125=100+1000=11002.提取公因式注意相同因数的提取。
例:9×8+9×2=9×(8+2)=9×10=903.注意构造,让算式满足乘法分配律的条件。
例:8×99=8×(100-1)=8×100-8×1=800-8=792看到名字,就知道这个方法的含义。
用此方法时,需要注意观察,发现规律。
还要注意还哦,有借有还,再借不难嘛。
例:9999+999+99+9=(10000-1)+(1000-1)+(100-1)+(10-1)=(10000+1000+100+10)-4=11110-4=11106拆分法就是为了方便计算把一个数拆成几个数。
小学三年级数学简便运算方法归类一、带符号搬家法(根据:加法交换律和乘法交换率)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
(a+b+c=a+c+b,a+b-c=a-c+b,a-b+c=a+c-b,a-b-c=a-c-b;a×b×c=a×c×b,a÷b÷c=a÷c÷b,a×b÷c=a÷c×b,a÷b×c=a×c÷b)二、结合律法(一)去括号法1.当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。
但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。
(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)a+(b+c)= a+b+c a +(b-c)= a+b-c a- (b-c)= a-b+c a-( b +c)= a-b-c2.当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。
但是将除号后面的括号去掉时,原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。
(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)a×(b×c) = a×b×c, a×(b÷c) = a×b÷c, a÷(b×c) = a÷b÷c , a÷(b÷c) = a÷b ×c(二)加括号法1.当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
卓立教育-小学数学简便计算方法总结一、拆分法:为了方便计算或能使计算变得简便,在进行计算时,会将某些数字拆分开来再进行重新组合,这样的方法叫拆分法。
例题1:101+75=(100+1)+75=100+75+1=176例题2:125×32=125×8×4=1000×4=4000例题3:999×999+1999=999×999+(1000+999)【将1999拆分】=999×999+999+1000去括号,并使用交换律交换位置=999×999+999×1+1000为使用乘法分配律,故将原式变形,给拆分出来的999乘以1=999(999+1)+1000使用乘法分配律,提取999=999000+1000=1000000例题4:33333×66666+99999×77778此题数字中最为特殊的是77778,我们发现这个数字加上22222正好等于100000,所以最好能从其他数字中拆分出来22222。
经过观察,我们发现只有66666可以拆出,所以将66666拆分成22222×3。
原式=33333×3×22222+99999×77778=99999×22222+99999×77778=99999(22222+77778)=9999900000例题5:13000÷125=13×1000÷125=13×8=104例题6:19881988÷20002000=1988×10001÷2000×10001=1998÷2000,即二、归零法:为了方便计算或能使计算变得简便,在进行计算时,要在计算式中加上一个数再减去同一个数的方法叫归零法。
(即等于加了个“0”,所以叫归零法)例题1:+++++++-=++++++在上式中,我们加了一个又减去了一个,等于没加没减。
10种小学数学简便运算技巧,小升初的家长们还不快打印收藏!小升初时,如果要准备参加学校的面试,那么不可避免的就会遇到不少涉及到口算以及快速运算的问题,下面这13种简便运算方法能极大的提升运算时的速度和精度:1.凑整数法、利用乘法公式法:1)125×618×32×25=?解题思路:125×618×32×25=(125×8)×(4×25)×618=61800000。
2)99×101=?解题思路:99×101=(100-1)(100+1)=10000-1=9999。
3)1998²-1997×1999=?解题思路:1998²-1997×1999=1998²-(1998-1)×(1998+1)=1998²-1998²+1=14)199+99×99有多少个0?解题思路:199+99×99 =1+2×99+99×99=(1+99)²=100² 有4个0.2.观察尾数法1)425+683+544+828=?A.2488B.2486C.2484D.2480答案D解题思路:如果几个数的数值较大,又似乎没有什么规律可循,可以先考察几个答案项尾数是否都是唯一的,如果是,那么可以先利用个位数进行运算得到尾数,再从中找出唯一的对应项。
如上题,各项的个位数相加=5+3+4+8=20,尾数为0,所以很快可以选出正确答案为D。
2)1111+6789+7897 =?A、15797B、14798C、15698D、15678答案A3)22²+23²+25²—24²=?A、1061B、1062C、1063D、1064答案B。
解题思路:此题只需要计算出:2²+3²+5²—4²3.基准数法1)1997+1998+1999+2000+2001=?A.9993B.9994C.9995D.9996答案C。
小学数学“简便运算”真题详解!9个方法,快速解题!
数学一直都是很多学生最怕的一门学科,不少学生都在留言跟我反映,学习数学太难了,学习数学到底对我们今后有什么帮助呢?数学运算这块很考验孩子的逻辑思考能力和分析能力,但往往掌握的方法不佳,孩子的方向只会出现偏差,浪费更多的时间和精力。
小学数学的学习也决定着孩子将来的学习生涯,所以作为家长我们需要还孩子提供最适合的学习方法,帮助他们提高学习成绩。
今天,老师给大家分享一下我们数学中经常遇到的简便计算题型的解题方法,希望对大家有帮助。
请归纳小学数学简便计算得几种方法1、利用运算定律、性质、法则。
①加法加法交换律:a+b=b+a,加法结合律:(a+b)+c=a+(b+c),②减法性质a-(b+c)=a-b-c,a-(b-c)=a-b+c,a-b-c=a-c-b,(a+b)-c=a-c+b=b-c+a。
③乘法乘法交换律:a×b=b×a,乘法结合律:(a×b)×c=a×(b×c),乘法分配律:(a+b)×c=a×c+b×c,(a-b)×c=a×c-b×c,④除法性质a÷(b×c)=a÷b÷c,a÷(b÷c)=a÷b×c,a÷b÷c=a÷c÷b,(a+b)÷c=a÷c+b÷c,(a-b)÷c=a÷c-b÷c、⑤与、差、积、商不变得规律与不变:如果a+b=c,那么(a+d)+(b-d)=c,差不变:如果a-b=c,那么(a+d)-(b+d)=c,积不变:如果a×b=c,那么(a×d)×(b÷d)=c,商不变:如果a÷b=c,那么(a×d)÷(b×d)=c,(a÷d)÷(b÷d)=c、2、拆数法、凑整法。
3、利用基准数法。
4、等差数列求与。
例1:87+44+56=?分析:运用加法结合律,先将44与56凑整,再计算。
解:87+44+56=87+(44+56)=87+100=187例2:63+18+19=?分析:将63拆分为60+1+2,然后再用结合律将18与2,19与1凑整。
解:63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100例3:45-18+19=?分析:在只有加减法得同级运算中,运算顺序可改动,先+19,再-18,也可以理解为“带符号搬家”。
8类小学数学简便计算方法小学数学里的简便算法居然这么多,数学加编辑都开始佩服自己了!不过数学加编辑提醒大家,简便算法是很好用,但是基本的计算也要打扎实。
而且最好是把简便算法的来龙去脉搞清楚,这样才能掌握的牢固!一起来看看吧!提取公因式这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
注意相同因数的提取。
例如:0.92×1.41+0.92×8.59=0.92×(1.41+8.59)借来借去法看到名字,就知道这个方法的含义。
用此方法时,需要注意观察,发现规律。
还要注意还哦,有借有还,再借不难。
考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。
例如:9999+999+99+9=9999+1+999+1+99+1+9+1-4拆分法顾名思义,拆分法就是为了方便计算把一个数拆成几个数。
这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。
分拆还要注意不要改变数的大小哦。
例如:3.2×12.5×25=8×0.4×12.5×25=8×12.5×0.4×25加法结合律注意对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
例如:5.76+13.67+4.24+6.33=(5.76+4.24)+(13.67+6.33)拆分法和乘法分配律这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。
例如:34×9.9 = 34×(10-0.1)案例再现:57×101=?利用基准数在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。