哈尔滨市中考数学模拟训练题.doc
- 格式:doc
- 大小:367.54 KB
- 文档页数:8
黑龙江省哈尔滨市中考数学模拟试卷一、选择题(本大题共10小题,共30.0分)1.−8的倒数是()A. −18B. −8 C. 18D. 8【答案】A【解析】【分析】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:−8的倒数是−18,故选:A.2.下列运算一定正确的是()A. a2+a2=a4B. a2⋅a4=a8C. (a2)4=a8D. (a+b)2=a2+b2【答案】C【解析】解:A、a2+a2=2a2,原计算错误,故此选项不合题意;B、a2⋅a4=a6,原计算错误,故此选项不合题意;C、(a2)4=a8,原计算正确,故此选项合题意;D、(a+b)2=a2+2ab+b2,原计算错误,故此选项不合题意.故选:C.根据合并同类项的法则,同底数幂的乘法法则,幂的乘方法则以及完全平方公式逐一计算判断即可.本题主要考查了完全平方公式,同底数幂的乘法,幂的乘方以及合并同类项的法则,熟记公式和运算法则是解答本题的关键.3.下列图形中既是轴对称图形又是中心对称图形的是()A. 扇形B. 正方形C. 等腰直角三角形D. 正五边形【答案】B【解析】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形又是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:B.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【答案】C【解析】解:从左边看第一层是两个小正方形,第二层右边一个小正方形,故选:C.根据从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.如图,AB为⊙O的切线,点A为切点,OB交⊙O于点C,点D在⊙O上,连接AD、CD,OA,若∠ADC=35°,则∠ABO的度数为()A. 25°B. 20°C. 30°D. 35°【答案】B【解析】【分析】此题考查了切线的性质,以及圆周角定理,熟练掌握切线的性质是解本题的关键.根据切线的性质和圆周角定理即可得到结论.【解答】解:∵AB为圆O的切线,∴AB⊥OA,即∠OAB=90°,∵∠ADC=35°,∴∠AOB=2∠ADC=70°,∴∠ABO=90°−70°=20°.故选B.6.将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线为()A. y=(x+3)2+5B. y=(x−3)2+5C. y=(x+5)2+3D. y=(x−5)2+3【答案】D【解析】【分析】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.根据“上加下减,左加右减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将抛物线y=x2向上平移3个单位所得抛物线的解析式为:y=x2+3;由“左加右减”的原则可知,将抛物线y=x2+3向右平移5个单位所得抛物线的解析式为:y=(x−5)2+3;故选:D.7.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB′关于直线AD对称,点B的对称点是点B′,则∠CAB′的度数为()A. 10°B. 20°C. 30°D. 40°【答案】A【解析】解:∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB′关于直线AD对称,点B的对称点是点B′,∴∠AB′B=∠B=50°,∴∠CAB′=∠AB′B−∠C=10°,故选:A.由余角的性质可求∠C=40°,由轴对称的性质可得∠AB′B=∠B=50°,由外角性质可求解.本题考查了轴对称的性质,掌握轴对称的性质是本题的关键.8.方程2x+5=1x−2的解为()A. x=−1B. x=5C. x=7D. x=9【答案】D【解析】解:方程的两边同乘(x+5)(x−2)得:2(x−2)=x−5,解得x=9,经检验,x=9是原方程的解.故选:D.根据解分式方程的步骤解答即可.本题主要考查了解分式方程,熟练掌握把分式方程转化为整式方程是解答本题的关键.9.一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是()A. 23B. 12C. 13D. 19【答案】A【解析】【分析】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.用红球的个数除以球的总个数即可得.【解答】解:∵袋子中一共有9个除颜色不同外其它均相同的小球,其中红球有6个,∴摸出的小球是红球的概率是69=23,故选:A.10.如图,在△ABC中,点D在BC边上,连接AD,点E在AC边上,过点E作EF//BC,交AD于点F,过点E作EG//AB,交BC于点G,则下列式子一定正确的是()A. AEEC =EFCDB. EFCD =EGABC. AFFD =BGGCD. CGBC =AFAD【答案】C【解析】【试题解析】【分析】本题主要考查了平行线分线段成比例性质,关键是熟记定理,找准对应线段.根据平行线分线段成比例性质进行解答便可.【解答】解:∵EF//BC,∴AFFD =AEEC,∵EG//AB,∴AEEC =BGGC,∴AFFD =BGGC,故选:C.二、填空题(本大题共10小题,共30.0分)11.将数4790000用科学记数法表示为______.【答案】4.79×106【解析】解:4790000=4.79×106,故答案为:4.79×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.在函数y=xx−7中,自变量x的取值范围是______.【答案】x≠7【解析】【试题解析】【分析】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.根据分母不等于0列式计算即可得解.【解答】解:由题意得x−7≠0,解得x≠7.故答案为x≠7.13.已知反比例函数y=k的图象经过点(−3,4),则k的值为______.x【答案】−12的图象经过点(−3,4),【解析】解:∵反比例函数y=kx∴k=−3×4=−12,故答案为:−12.即可求k的值.把(−3,4)代入函数解析式y=kx本题考查了反比例函数图象上点的坐标特征,比较简单,考查的是用待定系数法求反比例函数的比例系数,是中学阶段的重点.14.计算√24+6√1的结果是______.6【答案】3√6【解析】解:原式=2√6+√6=3√6.故答案为:3√6.根据二次根式的性质化简二次根式后,再合并同类二次根式即可.本题主要考查了二次根式的加减,熟记二次根式的性质是解答本题的关键.15.把多项式m2n+6mn+9n分解因式的结果是______.【答案】n(m+3)2【解析】【分析】此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键.直接提取公因式n,再利用完全平方公式分解因式得出答案.【解答】解:原式=n(m2+6m+9)=n(m+3)2.故答案为:n(m+3)2.16.抛物线y=3(x−1)2+8的顶点坐标为______.【答案】(1,8)【解析】解:∵抛物线y=3(x−1)2+8是顶点式,∴顶点坐标是(1,8).故答案为:(1,8).已知抛物线顶点式y=a(x−ℎ)2+k,顶点坐标是(ℎ,k).本题考查由抛物线的顶点坐标式写出抛物线顶点的坐标,比较容易.17.不等式组{x3≤−1,3x+5<2的解集是______.【答案】x≤−3【解析】解:{x3≤−1 ①3x+5<2 ②,由①得,x≤−3;由②得,x<−1,故此不等式组的解集为:x≤−3.故答案为:x≤−3.分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.一个扇形的面积是13πcm2,半径是6cm,则此扇形的圆心角是______度.【答案】130【解析】解:设这个扇形的圆心角为n°,nπ×62360=13π,解得,n=130,故答案为:130.根据扇形面积公式S=nπr2360,即可求得这个扇形的圆心角的度数.本题考查扇形面积的计算,解答本题的关键是明确扇形面积计算公式S=nπr2360.19.在△ABC中,∠ABC=60°,AD为BC边上的高,AD=6√3,CD=1,则BC的长为______.【答案】5或7【解析】解:在Rt△ABD中,∠ABC=60°,AD= 6√3,∴BD=ADtanB =6√3√3=6,如图1、图2所示:BC=BD+CD=6+1=7,BC=BD−CD=6−1=5,故答案为:7或5.在Rt△ABD中,利用锐角三角函数的意义,求出BD的长,再分类进行解答.本题考查解直角三角形,掌握直角三角形的边角关系是正确计算的前提.20.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD=2BE,∠DAE=∠DEA,EO=1,则线段AE的长为______.【答案】2√2【解析】解:设BE=x,则CD=2x,∵四边形ABCD为菱形,∴AB=AD=CD=2x,OB=OD,AC⊥BD,∵∠DAE=∠DEA,∴DE=DA=2x,∴BD=3x,∴OB=OD=32x,∵OE+BE=BO,∴1+x=32x,解得x=2,即AB=4,OB=3,在Rt△AOB中,OA=√42−32=√7,在Rt△AOE中,AE=√12+(√7)2=2√2.故答案为2√2.设BE=x,则CD=2x,根据菱形的性质得AB=AD=CD=2x,OB=OD,AC⊥BD,再证明DE =DA =2x ,所以1+x =32x ,解得x =2,然后利用勾股定理计算OA ,再计算AE 的长.本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.三、解答题(本大题共7小题,共60.0分)21. 先化简,再求代数式(1−2x+1)÷x 2−12x+2的值,其中x =4cos30°−1. 【答案】解:原式=x−1x+1⋅2(x+1)(x−1)(x+1)=2x+1,∵x =4cos30°−1=4×√32−1=2√3−1, ∴原式=2√3−1+1=√33. 【解析】直接将括号里面通分运算,再利用分式的混合运算法则计算,把x 的值代入得出答案.此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.22. 如图,方格纸中每个小正方形的边长均为1,线段AB 和线段CD 的端点均在小正方形的顶点上.(1)在图中画出以AB 为边的正方形ABEF ,点E 和点F 均在小正方形的顶点上;(2)在图中画出以CD 为边的等腰三角形CDG ,点G 在小正方形的顶点上,且△CDG 的周长为10+√10.连接EG ,请直接写出线段EG 的长.【答案】解:(1)如图,正方形ABEF 即为所求.(2)如图,△CDG 即为所求.【解析】(1)画出边长为√10的正方形即可.(2)画出两腰为10,底为√10的等腰三角形即可.本题考查作图−应用与设计,等腰三角形的判定,勾股定理等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型.23.为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕“在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的30%.请你根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.【答案】解:(1)15÷30%=50(名),答:在这次调查中,一共抽取了50名学生;(2)50−15−20−5=10(名),补全条形统计图如图所示:=320(名),(3)800×2050答:冬威中学800名学生中最喜欢剪纸小组的学生有320名.【解析】本题考查条形统计图的意义和制作方法,理解数量之间的关系是正确计算的前提,样本估计总体是统计中常用的方法.(1)最喜欢绘画小组的学生人数15人,占所调查人数的30%.可求出调查人数;(2)求出“舞蹈”的人数,即可补全条形统计图;(3)样本估计总体,样本中“喜欢剪纸”占调查人数的2050,因此估计总体800名的2050是最喜欢“舞蹈”的人数.24. 已知:在△ABC 中,AB =AC ,点D 、点E 在边BC 上,BD =CE ,连接AD 、AE .(1)如图1,求证:AD =AE ;(2)如图2,当∠DAE =∠C =45°时,过点B 作BF//AC 交AD 的延长线于点F ,在不添加任何辅助线的情况下,请直接写出图2中的四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.【答案】(1)证明:∵AB =AC ,∵∠B =∠C ,在△ABD 和△ACE 中,{AB =AC ∠B =∠C BD =CE,∴△ABD≌△ACE(SAS),∴AD =AE ;(2)∵AD =AE ,∴∠ADE =∠AED ,∵BF//AC ,∴∠FDB =∠C =45°,∵∠ABC =∠C =∠DAE =45°,∠BDF =∠ADE ,∴∠F =∠BDF ,∠BEA =∠BAE ,∠CDA =∠CAD ,∴满足条件的等腰三角形有:△ABE ,△ACD ,△DAE ,△DBF .【解析】(1)根据SAS 可证△ABD≌△ACE ,根据全等三角形的性质即可求解;(2)根据等腰三角形的判定即可求解.考查了全等三角形的判定与性质,等腰三角形的判定与性质,关键是熟练掌握它们的性质与定理.25. 昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买2个大地球仪和1个小地球仪需用132元.(1)求每个大地球仪和每个小地球仪各多少元;(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪?【答案】解:(1)设每个大地球仪x 元,每个小地球仪y 元,根据题意可得: {x +3y =1362x +y =132, 解得:{x =52y =28, 答:每个大地球仪52元,每个小地球仪28元;(2)设大地球仪为a 台,则每个小地球仪为(30−a)台,根据题意可得:52a +28(30−a)≤960,解得:a ≤5,答:最多可以购买5个大地球仪.【解析】(1)设每个大地球仪x 元,每个小地球仪y 元,根据条件建立方程组求出其解即可;(2)设大地球仪为a 台,则每个小地球仪为(30−a)台,根据要求购买的总费用不超过960元,列出不等式解答即可.本题考查了列二元一次方程组解实际问题的运用,总价=单价×数量的运用,一元一次不等式的运用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.26. 已知:⊙O 是△ABC 的外接圆,AD 为⊙O 的直径,AD ⊥BC ,垂足为E ,连接BO ,延长BO 交AC 于点F .(1)如图1,求证:∠BFC =3∠CAD ;(2)如图2,过点D 作DG//BF 交⊙O 于点G ,点H 为DG 的中点,连接OH ,求证:BE =OH ;(3)如图3,在(2)的条件下,连接CG ,若DG =DE ,△AOF 的面积为9√25,求线段CG 的长.【答案】证明:(1)∵AD为⊙O的直径,AD⊥BC,∴BE=EC,∴AB=AC,又∵AD⊥BC,∴∠BAD=∠CAD,∵OA=OB,∴∠BAD=∠ABO,∴∠BAD=∠ABO=∠CAD,∵∠BFC=∠BAC+∠ABO,∴∠BFC=∠BAD+∠EAD+∠ABO=3∠CAD;(2)如图2,连接AG,∵AD是直径,∴∠AGD=90°,∵点H是DG中点,∴DH=HG,又∵AO=DO,∴OH//AG,AG=2OH,∴∠AGD=∠OHD=90°,∵DG//BF,∴∠BOE=∠ODH,又∵∠OEB=∠OHD=90°,BO=DO,∴△BOE≌△ODH(AAS),∴BE=OH;(3)如图3,过点F作FN⊥AD,交AD于N,设DG=DE=2x,∴DH=HG=x,∵△BOE≌△ODH,∴OE=DH=x,∴OD=3x=OA=OB,∴BE=√OB2−OE2=√9x2−x2=2√2x,∵∠BAE=∠CAE,∴tan∠BAE=tan∠CAE=BEAE =NFAN,∴2√2x4x =NFAN,∴AN=√2NF,∵∠BOE=∠NOF,∴tan∠BOE=tan∠NOF=BEOE =NFON,∴2√2xx =NFON,∴ON=√24NF,∴AO=AN+ON=5√24NF,∵△AOF的面积为9√25,∴12×AO×NF=12×5√24NF2=9√25,∴NF=6√25,∴AO=5√24NF=3=3x,∴x=1,∴BE=2√2=OH,AE=4,DG=DE=2,∴AC=√AE2+CE2=√16+8=2√6,如图3,连接AG,过点A作AM⊥CG,交GC的延长线于M,由(2)可知:AG=2OH=4√2,∵四边形ADGC是圆内接四边形,∴∠ACM=∠ADG,又∵∠AMC=∠AGD=90°,∴△ACM∽△ADG,∴ADAC =AGAM=DGCM,∴2√6=4√2AM=2CM,∴CM=2√63,AM=8√33,∴GM=√AG2−AM2=√32−643=4√63,∴CG=GM−CM=2√63.【解析】(1)由垂径定理可得BE=EC,由线段垂直平分线的性质可得AB=AC,由等腰三角形的性质可得∠BAD=∠ABO=∠CAD,由外角的性质可得结论;(2)由“AAS”可证△BOE≌△ODH,可得BE=OH;(3)过点F作FN⊥AD,交AD于N,设DG=DE=2x,由全等三角形的性质可得OE= DH=x,OD=3x=OA=OB,勾股定理可求BE=2√2x,由锐角三角函数可求AN=√2NF,ON=√24NF,可得AO=AN+ON=5√24NF,由三角形面积公式可求NF的长,可求x=1,可得BE=2√2=OH,AE=4,DG=DE=2,勾股定理可求AC=2√6,连接AG,过点A作AM⊥CG,交GC的延长线于M,通过证明△ACM∽△ADG,由相似三角形的性质可求AM,CM的长,由勾股定理可求GM的长,即可求解.本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,三角形中位线定理,相似三角形的判定和性质,锐角三角函数等知识,求出NF的长是本题的关键.27.已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C ,直线OC 的解析式为y =34x ,过点C 作CM ⊥y 轴,垂足为M ,OM =9.(1)如图1,求直线AB 的解析式;(2)如图2,点N 在线段MC 上,连接ON ,点P 在线段ON 上,过点P 作PD ⊥x 轴,垂足为D ,交OC 于点E ,若NC =OM ,求PE OD 的值;(3)如图3,在(2)的条件下,点F 为线段AB 上一点,连接OF ,过点F 作OF 的垂线交线段AC 于点Q ,连接BQ ,过点F 作x 轴的平行线交BQ 于点G ,连接PF 交x 轴于点H ,连接EH ,若∠DHE =∠DPH ,GQ −FG =√2AF ,求点P 的坐标.【答案】解:(1)∵CM ⊥y 轴,OM =9,∴y =9时,9=34x ,解得x =12,∴C(12,9),∵AC ⊥x 轴,∴A(12,0),∵OA =OB ,∴B(0,−12),设直线AB 的解析式为y =kx +b ,则有{b =−1212k +b =0, 解得{k =1b =−12, ∴直线AB 的解析式为y =x −12.(2)如图2中,∵∠CMO=∠MOA=∠OAC=90°,∴四边形OACM是矩形,∴AO=CM=12,∵NC=OM=9,∴MN=CM−NC=12−9=3,∴N(3,9),∴直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),∴OD=4a,把x=4a,代入y=34x中,得到y=3a,∴E(4a,3a),∴DE=3a,把x=4a代入,y=3x中,得到y=12a,∴P(4a,12a),∴PD=12a,∴PE=PD−DE=12a−3a=9a,∴PEOD =94.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.∵GF//x轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR,∴∠OFR=∠R=∠AOS=∠BSG=90°,∴四边形OSRA是矩形,∴OS=AR,AR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°−45°=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵OF⊥FQ,∴∠OSR=∠R=∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠QFR+∠FQR=90°,∴∠OFS=∠FQR,∴△OFS≌△FQR(AAS),∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB=45°,∴SF=SB=QR,∵∠SGB=∠QGR,∠BSG=∠R,∴△BSG≌△QRG(AAS),∴SG =GR =6,设FR =m ,则AR =m ,AF =√2m ,QR =SF =12−m ,∵GQ −FG =√2AF ,∴GQ =√2×√2m +6−m =m +6,∵GQ 2=GR 2+QR 2,∴(m +6)2=62+(12−m)2,解得m =4,∴FS =8,AR =4,∵∠OAB =∠FAR ,FT ⊥OA ,FR ⊥AR ,∴FT =FR =AR =4,∠OTF =90°,∴四边形OSFT 是矩形,∴OT =SF =8,∵∠DHE =∠DPH ,∴tan∠DHE =tan∠DPH ,∴DE DH =DH PD ,由(2)可知DE =3a ,PD =12a ,∴3a DH =DH 12a ,∴DH =6a ,∴tan∠PHD =PD DH =12a 6a =2,∵∠PHD =∠FHT ,∴tan∠FHT =TF HT =2, ∴HT =2,∵OT =OD +DH +HT ,∴4a +6a +2=8,∴a =35,∴OD =125,PD =12×35=365,∴P(125,365). 【解析】(1)求出A ,B 两点坐标,利用待定系数法解决问题即可.(2)由题意直线ON 的解析式为y =3x ,设点E 的横坐标为4a ,则D(4a,0),求出PE ,OD(用a 表示)即可解决问题.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.证明△OFS≌△FQR(AAS),推出SF=QR,再证明△BSG≌△QRG(AAS),推出SG=GR=6,设FR=m,则AR=m,AF=√2m,QR=SF=12−m,GQ−FG=√2AF,根据GQ2= GR2+QR2,可得(m+6)2=62+(12−m)2,解得m=4,由题意tan∠DHE=tan∠DPH,可得DEDH =DHPD,由(2)可知DE=3a,PD=12a,推出3aDH=DH12a,可得DH=6a,推出tan∠PHD=PDDH =12a6a=2,由∠PHD=∠FHT,可得tan∠FHT=TFHT=2,推出HT=2,再根据OT=OD+DH+HT,构建方程求出a即可解决问题.本题属于一次函数综合题,考查了矩形的判定和性质,一次函数的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.第21页,共21页。
黑龙江省哈尔滨市南岗区市级名校2024年中考数学模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如果将抛物线向右平移1个单位,那么所得的抛物线的表达式是A.B.C.D.2.下列图形不是正方体展开图的是()A.B.C.D.3.已知反比例函数y=kx的图象在一、三象限,那么直线y=kx﹣k不经过第()象限.A.一B.二C.三D.四4.反比例函数y=mx的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若点A(﹣1,h),B(2,k)在图象上,则h<k;④若点P(x,y)在上,则点P′(﹣x,﹣y)也在图象.其中正确结论的个数是( )A.1 B.2 C.3 D.45.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.平面上直线a、c与b相交(数据如图),当直线c绕点O旋转某一角度时与a平行,则旋转的最小度数是( )A.60°B.50°C.40°D.30°7.如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为( )A.13124π-B.9π1?24-C.1364π+D.68.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.24 C.28 D.309.9的值是()A.±3 B.3 C.9 D.8110.如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数(k>0,x>0)的图象经过点C,则k的值为()A.B.C.D.二、填空题(共7小题,每小题3分,满分21分)11.如图,将一个长方形纸条折成如图的形状,若已知∠2=55°,则∠1=____.12.如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为_____.13.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为__.14.如图所示,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△BDE:S 四边形DECA的值为_____.15.如图,在△ABC中,AB≠AC.D,E分别为边AB,AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:______,可以使得△FDB与△ADE相似.(只需写出一个)16.某厂家以A、B两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A 原料、1.5千克B原料;乙产品每袋含2千克A原料、1千克B原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A原料和B原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_____元.17.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y=kx(x<0)的图象经过菱形OABC中心E点,则k的值为_____.三、解答题(共7小题,满分69分)18.(10分)如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.19.(5分)观察下列算式:① 1 × 3 - 22 =" 3" - 4 = -1② 2 × 4 - 32 =" 8" - 9 = -1③3 × 5 - 42 =" 15" - 16 = -1④……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.20.(8分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.扇形统计图中九年级参赛作文篇数对应的圆心角是度,并补全条形统计图;经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从21.(10分)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(15,22)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)B点坐标为,并求抛物线的解析式;(2)求线段PC长的最大值;(3)若△PAC为直角三角形,直接写出此时点P的坐标.22.(10分)如图,点A(m,m+1),B(m+1,2m-3)都在反比例函数的图象上.(1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.23.(12分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.24.(14分)如图,一根电线杆PQ直立在山坡上,从地面的点A看,测得杆顶端点P的仰角为45°,向前走6m到达点B,又测得杆顶端点P和杆底端点Q的仰角分别为60°和30°,求电线杆PQ的高度.(结果保留根号).参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】本题主要考查二次函数的解析式【题目详解】解:根据二次函数的解析式形式可得,设顶点坐标为(h,k),则二次函数的解析式为.由原抛物线解析式可得a=1,且原抛物线的顶点坐标为(0,0),向右平移1个单位后的顶点坐标为(1,0),故平移后的解析式为. 故选D.【题目点拨】本题主要考查二次函数的顶点式,根据顶点的平移可得到二次函数平移后的解析式.2、B【解题分析】由平面图形的折叠及正方体的展开图解题.【题目详解】A、C、D经过折叠均能围成正方体,B•折叠后上边没有面,不能折成正方体.故选B.【题目点拨】此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.根据反比例函数的性质得k >0,然后根据一次函数的进行判断直线y=kx-k 不经过的象限.【题目详解】∵反比例函数y =k x的图象在一、三象限, ∴k >0, ∴直线y=kx ﹣k 经过第一、三、四象限,即不经过第二象限.故选:B .【题目点拨】考查了待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=k x(k 为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.也考查了反比例函数与一次函数的性质.4、B【解题分析】根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.【题目详解】解:∵反比例函数的图象位于一三象限,∴m >0故①错误;当反比例函数的图象位于一三象限时,在每一象限内,y 随x 的增大而减小,故②错误;将A(﹣1,h),B(2,k)代入y =x m ,得到h =﹣m ,2k =m , ∵m >0∴h <k故③正确;将P(x ,y)代入y =x m 得到m =xy ,将P′(﹣x ,﹣y)代入y =xm 得到m =xy , 故P(x ,y)在图象上,则P′(﹣x ,﹣y)也在图象上故④正确,故选:B .【题目点拨】本题考查了反比例函数的性质,牢记反比例函数的比例系数的符号与其图象的关系是解决本题的关键.分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.6、C【解题分析】先根据平角的定义求出∠1的度数,再由平行线的性质即可得出结论.【题目详解】解:∵∠1=180°﹣100°=80°,a∥c,∴∠α=180°﹣80°﹣60°=40°.故选:C.【题目点拨】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.7、A【解题分析】根据图形可以求得BF的长,然后根据图形即可求得S1-S2的值.【题目详解】∵在矩形ABCD中,AB=4,BC=3,F是AB中点,∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-22903902ππ⨯⨯⨯⨯-=1312π-,故选A.【题目点拨】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.8、D【解题分析】试题解析:根据题意得9n=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选D.考点:利用频率估计概率.9、C【解题分析】试题解析:∵93∴9的值是3故选C.10、D【解题分析】解:∵四边形ABCD是平行四边形,点A的坐标为(﹣4,0),∴BC=4,∵DB:DC=3:1,∴B(﹣3,OD),C(1,OD),∵∠BAO=60°,∴∠COD=30°,∴OD=,∴C(1,),∴k=,故选D.点睛:本题考查了平行四边形的性质,掌握平行四边形的性质以及反比例函数图象上点的坐标特征是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、1【解题分析】由折叠可得∠3=180°﹣2∠2,进而可得∠3的度数,然后再根据两直线平行,同旁内角互补可得∠1+∠3=180°,进而可得∠1的度数.【题目详解】解:由折叠可得∠3=180°﹣2∠2=180°﹣1°=70°,∵AB∥CD,∴∠1+∠3=180°,∴∠1=180°﹣70°=1°,12、60°【解题分析】解:∵BD是⊙O的直径,∴∠BCD=90°(直径所对的圆周角是直角),∵∠CBD=30°,∴∠D=60°(直角三角形的两个锐角互余),∴∠A=∠D=60°(同弧所对的圆周角相等);故答案是:60°13、2 2【解题分析】首先利用勾股定理计算出AB2,BC2,AC2,再根据勾股定理逆定理可证明∠BCA=90°,然后得到∠ABC的度数,再利用特殊角的三角函数可得∠ABC的正弦值.【题目详解】解:连接ACAB2=32+12=10,BC2=22+12=5,AC2=22+12=5,∴AC=CB,BC2+AC2=AB2,∴∠BCA=90°,∴∠ABC=45°,∴∠ABC的正弦值为22.故答案为:2.【题目点拨】此题主要考查了锐角三角函数,以及勾股定理逆定理,关键是掌握特殊角的三角函数.14、1:1【解题分析】根据题意得到BE :EC=1:3,证明△BED ∽△BCA ,根据相似三角形的性质计算即可.【题目详解】∵S △BDE :S △CDE =1:3,∴BE :EC=1:3,∵DE ∥AC ,∴△BED ∽△BCA ,∴S △BDE :S △BCA =(BE BC)2=1:16, ∴S △BDE :S 四边形DECA =1:1,故答案为1:1.【题目点拨】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.15、//DF AC 或BFD A ∠=∠【解题分析】因为3AC AD =,3AB AE =,A A ∠=∠ ,所以ADE ∆ACB ~∆ ,欲使FDB ∆与ADE ∆相似,只需要FDB ∆与ACB ∆相似即可,则可以添加的条件有:∠A=∠BDF ,或者∠C=∠BDF,等等,答案不唯一.【方法点睛】在解决本题目,直接处理FDB ∆与ADE ∆,无从下手,没有公共边或者公共角,稍作转化,通过ADE ∆ACB ~∆,FDB ∆得与ACB ∆相似.这时,柳暗花明,迎刃而解.16、5750【解题分析】根据题意设甲产品的成本价格为b 元,求出b ,可知A 原料与B 原料的成本和40元,然后设A 种原料成本价格x 元,B 种原料成本价格(40﹣x )元,生产甲产品m 袋,乙产品n 袋,列出方程组得到xn =20n ﹣250,最后设生产甲乙产品的实际成本为W 元,即可解答【题目详解】∵甲产品每袋售价72元,则利润率为20%.设甲产品的成本价格为b 元, ∴72-b b=20%,∴b =60,∴甲产品的成本价格60元,∴1.5kgA 原料与1.5kgB 原料的成本和60元,∴A 原料与B 原料的成本和40元,设A 种原料成本价格x 元,B 种原料成本价格(40﹣x )元,生产甲产品m 袋,乙产品n 袋,根据题意得:10060(240)50060(802)m n m x x n m n x x +≤⎧⎨++-+=+-+⎩ , ∴xn =20n ﹣250,设生产甲乙产品的实际成本为W 元,则有W =60m +40n +xn ,∴W =60m +40n +20n ﹣250=60(m +n )﹣250,∵m +n ≤100,∴W ≤6250;∴生产甲乙产品的实际成本最多为5750元,故答案为5750;【题目点拨】此题考查不等式和二元一次方程的解,解题关键在于求出甲产品的成本价格17、8【解题分析】根据反比例函数的性质结合点的坐标利用勾股定理解答.【题目详解】解:菱形OABC 的顶点A 的坐标为(-3,-4),5,=则点B 的横坐标为-5-3=-8,点B 的坐标为(-8,-4),点C 的坐标为(-5,0)则点E 的坐标为(-4,-2),将点E 的坐标带入y=k x(x <0)中,得k=8. 给答案为:8.【题目点拨】此题重点考察学生对反比例函数性质的理解,掌握坐标轴点的求法和菱形性质是解题的关键.三、解答题(共7小题,满分69分)18、(1)见解析;(2)见解析.【解题分析】试题分析:(1)选取①②,利用ASA 判定△BEO ≌△DFO ;也可选取②③,利用AAS 判定△BEO ≌△DFO ;还可选取①③,利用SAS判定△BEO≌△DFO;(2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.试题解析:证明:(1)选取①②,∵在△BEO和△DFO中12BO DOEOB FOD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BEO≌△DFO(ASA);(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.点睛:此题主要考查了平行四边形的判定,以及全等三角形的判定,关键是掌握两条对角线互相平分的四边形是平行四边形.19、⑴;⑵答案不唯一.如;⑶.【解题分析】(1)根据①②③的算式中,变与不变的部分,找出规律,写出新的算式;(2)将(1)中,发现的规律,由特殊到一般,得出结论;(3)一定成立.利用整式的混合运算方法加以证明.20、【解题分析】试题分析:(1)求出总的作文篇数,即可得出九年级参赛作文篇数对应的圆心角的度数,求出八年级的作文篇数,补全条形统计图即可;(2)设四篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文,用画树状法即可求得结果.试题解析:(1)20÷20%=100,九年级参赛作文篇数对应的圆心角=360°×35100=126°;100﹣20﹣35=45,补全条形统计图如图所示:(2)假设4篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文.画树状图法:共有12种可能的结果,七年级特等奖作文被选登在校刊上的结果有6种,∴P(七年级特等奖作文被选登在校刊上)=61 122.考点:1.条形统计图;2.扇形统计图;3.列表法与画树状图法.21、(1)(4,6);y=1x1﹣8x+6(1)498;(3)点P的坐标为(3,5)或(711,22).【解题分析】(1)已知B(4,m)在直线y=x+1上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值.(1)要弄清PC的长,实际是直线AB与抛物线函数值的差.可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值.(3)根据顶点问题分情况讨论,若点P为直角顶点,此图形不存在,若点A为直角顶点,根据已知解析式与点坐标,可求出未知解析式,再联立抛物线的解析式,可求得C点的坐标;若点C为直角顶点,可根据点的对称性求出结论. 【题目详解】解:(1)∵B(4,m)在直线y=x+1上,∴m=4+1=6,∴B(4,6),故答案为(4,6);∵A(,),B(4,6)在抛物线y=ax1+bx+6上,∴,解得,∴抛物线的解析式为y=1x1﹣8x+6;(1)设动点P的坐标为(n,n+1),则C点的坐标为(n,1n1﹣8n+6),∴PC=(n+1)﹣(1n1﹣8n+6),=﹣1n1+9n﹣4,=﹣1(n﹣)1+,∵PC>0,∴当n=时,线段PC最大且为.(3)∵△PAC为直角三角形,i)若点P为直角顶点,则∠APC=90°.由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在;ii)若点A为直角顶点,则∠PAC=90°.如图1,过点A(,)作AN⊥x轴于点N,则ON=,AN=.过点A作AM⊥直线AB,交x轴于点M,则由题意易知,△AMN为等腰直角三角形,∴MN=AN=,∴OM=ON+MN=+=3,∴M(3,0).设直线AM的解析式为:y=kx+b,则:,解得,∴直线AM的解析式为:y=﹣x+3 ①又抛物线的解析式为:y=1x1﹣8x+6 ②联立①②式,解得:或(与点A重合,舍去),∴C(3,0),即点C、M点重合.当x=3时,y=x+1=5,∴P1(3,5);iii)若点C为直角顶点,则∠ACP=90°.∵y=1x1﹣8x+6=1(x﹣1)1﹣1,∴抛物线的对称轴为直线x=1.如图1,作点A(,)关于对称轴x=1的对称点C,则点C在抛物线上,且C(,).当x=时,y=x+1=.∴P1(,).∵点P1(3,5)、P1(,)均在线段AB上,∴综上所述,△PAC为直角三角形时,点P的坐标为(3,5)或(,).【题目点拨】本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的应用. 22、(1)m=3,k=12;(2)或【解题分析】【分析】(1)把A(m,m+1),B(m+3,m-1)代入反比例函数y=kx,得k=m(m+1)=(m+3)(m-1),再求解;(2)用待定系数法求一次函数解析式;(3)过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,两线交于点P.根据平行四边形判定和勾股定理可求出M,N的坐标.【题目详解】解:(1)∵点A(m,m+1),B(m+3,m-1)都在反比例函数y=kx的图像上,∴k=xy,∴k=m(m+1)=(m+3)(m-1),∴m2+m=m2+2m-3,解得m=3,∴k=3×(3+1)=12.(2)∵m=3,∴A(3,4),B(6,2).设直线AB的函数表达式为y=k′x+b(k′≠0),则4326k bk b=+⎧⎨=+''⎩解得236 kb⎧=-⎪⎨⎪=⎩'∴直线AB的函数表达式为y=-23x+6.(3)M(3,0),N(0,2)或M(-3,0),N(0,-2).解答过程如下:过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,两线交于点P.∵由(1)知:A(3,4),B(6,2),∴AP=PM=2,BP=PN=3,∴四边形ANMB是平行四边形,此时M(3,0),N(0,2).当M′(-3,0),N′(0,-2)时,根据勾股定理能求出AM′=BN′,AB=M′N′,即四边形AM′N′B是平行四边形.故M(3,0),N(0,2)或M(-3,0),N(0,-2).【题目点拨】本题考核知识点:反比例函数综合. 解题关键点:熟记反比例函数的性质.23、(1)见解析;(2)见解析;【解题分析】(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【题目详解】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四边形BFDE是平行四边形.24、(6+23)米【解题分析】根据已知的边和角,设CQ=x,BC=3QC=3x,PC=3BC=3x,根据PQ=BQ列出方程求解即可.【题目详解】解:延长PQ交地面与点C,由题意可得:AB=6m,∠PCA=90°,∠PAC=45°,∠PBC=60°,∠QBC=30°,设CQ=x,则在Rt△BQC中,33x,∴在Rt△PBC中3BC=3x,∵在Rt△PAC中,∠PAC=45°,则PC=AC,∴,3,3PQ=PC-CQ=3x-x=2x=6+23PQ高为(6+23解得33【题目点拨】此题重点考察学生对解直角三角形的理解,掌握解直角三角形的方法是解题的关键.。
图1 图2 哈尔滨市中考数学模拟训练题一、选择题:本大题共10个小题,每小题3分,共30分. 在每小题给出的四个选项中,只有一个选项符合题意要求. 1.下运算正确的是( )A. (-a )2=-a 2B.(b 3)2 =b 5C. 2x 5+x 5=3x 5D. y 8n ÷y 4n =y 2n2. 已知小明同学身高1.5米,经太阳光照射,在地面的影长为2米,若此时测得一塔在同一地面的影长为60米,则塔高应为 ( ) A. 90米B. 80米C. 45米D. 40米3. 如果关于x 的不等式 (a+1) x>a+1的解集为x<1,那么a 的取值范围是 ( )A. a>0B. a<0C. a>-1D. a<-14. 如图1,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为 ( ) A. 400 cm 2B. 500 cm 2C. 600 cm 2D. 4000 cm 25.下列结论中,错误的命题有( )①半圆是弓形;②平分弦的直径垂直平分弦;③正n 边形的对称轴共有n 条;④各角相等的圆的外切n 边形一定是正n 边形A.0B.1C.2D.46. 点M(-sin 60°,cos60°)关于x 轴对称的点的坐标是 ( )A .312) B .(312 ) C .(312) D .(-2137. 如图2,在ΔABC 中,∠C=90°,AC=8,AB=10,点P 在AC 上,AP=2,若⊙O 的圆心在线段BP 上,且⊙O 与AB 、AC 都相切,则⊙O 的半径是 ( ) A. 1 B . 45 C. 712 D. 948. 如图3,已知BC 为等腰三角形纸片ABC 的底边,AD ⊥BC ,AD=BC. 将此三角形纸片沿图3AD 剪开,得到两个三角形,若把这两个三角形拼成一个平面四边形,则能拼出互不全等的四边形的个数是 ( ) A. 1B. 2C. 3D. 4OBACED9.BC 为圆的半径,O 为圆心,D 是AC 的中点,四边形ABCD 的对角线AC ,BD 交于点E ,则下列结论:①AD=CD;②OD//AB;③AE ·BD=AB ·CD;④AD 2=DE ·BD;⑤BD ·BD+CE ·CA =BC 2,则正确的个数是( )A .2B .3C .4D .510.两个完全相同的长方体的长、宽、高分别为5cm 、4cm 、3cm ,把它们叠放在一起组成一个新的长方体,在这些新长方体中,表面积最大是( ).A.2158cmB.2164cmC.2176cmD.2188cm二、填空题:本大题共10个小题,每小题3分,共30分.把答案直接填在题中横线上. 11. 分解因式:a 3-a= ;12. 十届人大三次会议温总理在班府报告中指出,中央财政将安排1090000万元解决下岗工人再就业问题,这个数字用科学记数发表示成 ; 13. 如图,在ΔABC 中,BC=5 cm ,BP 、CP 分别是∠ABC 和∠ACB 的角平分线,且PD∥AB,PE∥AC,则ΔPDE 的周长是___________ cm. 14. 若非零实数a,b 满足4a 2+b 2=4ab ,则ba=___________. 15. 我市某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米,则按每立方米1元收费;若每月用水超过7立方米,则超过部分按每立方米2元收费. 如果某居民户今年5月缴纳了17元水费,那么这户居民今年5月的用水量为________立方米 . 16.在直角坐标系中,直线y=2006-x 与函数4y x的图象交于点AB 。
哈尔滨市中考数学模拟试卷(01)一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2020•哈尔滨)﹣8的倒数是()A.﹣8B.8C.﹣D.2.(3分)(2020•哈尔滨)下列运算一定正确的是()A.a2+a2=a4B.a2•a4=a8C.(a2)4=a8D.(a+b)2=a2+b23.(3分)(2020•哈尔滨)下列图形中既是轴对称图形又是中心对称图形的是()A.扇形B.正方形C.等腰直角三角形D.正五边形4.(3分)(2020•哈尔滨)五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.5.(3分)(2021•哈尔滨)方程=的解为()A.x=5B.x=3C.x=1D.x=26.(3分)(2021•哈尔滨)一个不透明的袋子中装有12个小球,其中8个红球、4个黄球,这些小球除颜色外无其它差别,从袋子中随机摸出一个小球,则摸出的小球是红球的概率是()A.B.C.D.7.(3分)(2021•哈尔滨)如图,AB是⊙O的直径,BC是⊙O的切线,点B为切点,若AB=8,tan∠BAC=,则BC的长为()A.8B.7C.10D.68.(3分)(2022•哈尔滨)抛物线y=2(x+9)2﹣3的顶点坐标是()A.(9,﹣3)B.(﹣9,﹣3)C.(9,3)D.(﹣9,3)9.(3分)(2022•哈尔滨)方程=的解为()A.x=3B.x=﹣9C.x=9D.x=﹣310.(3分)(2022•哈尔滨)一辆汽车油箱中剩余的油量y(L)与已行驶的路程x(km)的对应关系如图所示.如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35L时,那么该汽车已行驶的路程为()A.150km B.165km C.125km D.350km二.填空题(共10小题,满分30分,每小题3分)11.(3分)(2020•哈尔滨)将数4790000用科学记数法表示为.12.(3分)(2020•哈尔滨)在函数y=中,自变量x的取值范围是.13.(3分)(2020•哈尔滨)已知反比例函数y=的图象经过点(﹣3,4),则k的值为.14.(3分)(2020•哈尔滨)把多项式m2n+6mn+9n分解因式的结果是.15.(3分)(2021•哈尔滨)计算﹣2的结果是.16.(3分)(2021•哈尔滨)二次函数y=﹣3x2﹣2的最大值为.17.(3分)(2021•哈尔滨)不等式组的解集是.18.(3分)(2022•哈尔滨)一个扇形的面积为7πcm2,半径为6cm,则此扇形的圆心角是度.19.(3分)(2022•哈尔滨)同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是.20.(3分)(2022•哈尔滨)如图,菱形ABCD的对角线AC,BD相交于点O,点E在OB 上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF 的长为.三.解答题(共7小题,满分60分)21.(7分)(2021•哈尔滨)先化简,再求代数式(﹣)÷的值,其中a=2sin45°﹣1.22.(7分)(2020•哈尔滨)如图,方格纸中每个小正方形的边长均为1,线段AB和线段CD的端点均在小正方形的顶点上.(1)在图中画出以AB为边的正方形ABEF,点E和点F均在小正方形的顶点上;(2)在图中画出以CD为边的等腰三角形CDG,点G在小正方形的顶点上,且△CDG 的周长为10+.连接EG,请直接写出线段EG的长.23.(8分)(2022•哈尔滨)民海中学开展以“我最喜欢的健身活动”为主题的调查活动,围绕“在跑步类、球类、武术类、操舞类四类健身活动中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢操舞类的学生人数占所调查人数的25%.请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若民海中学共有1600名学生,请你估计该中学最喜欢球类的学生共有多少名.24.(8分)(2021•哈尔滨)已知四边形ABCD是正方形,点E在边DA的延长线上,连接CE交AB于点G,过点B作BM⊥CE,垂足为点M,BM的延长线交AD于点F,交CD 的延长线于点H.(1)如图1,求证:CE=BH;(2)如图2,若AE=AB,连接CF,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形(△AEG除外),使写出的每个三角形都与△AEG全等.25.(10分)(2020•哈尔滨)昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买2个大地球仪和1个小地球仪需用132元.(1)求每个大地球仪和每个小地球仪各多少元;(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪?26.(10分)(2021•哈尔滨)已知⊙O是△ABC的外接圆,AB为⊙O的直径,点N为AC 的中点,连接ON并延长交⊙O于点E,连接BE,BE交AC于点D.(1)如图1,求证:∠CDE+∠BAC=135°;(2)如图2,过点D作DG⊥BE,DG交AB于点F,交⊙O于点G,连接OG,OD,若DG=BD,求证:OG∥AC;(3)如图3,在(2)的条件下,连接AG,若DN=,求AG的长.27.(10分)(2022•哈尔滨)在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+b经过点A(,),点B(,﹣),与y轴交于点C.(1)求a,b的值;(2)如图1,点D在该抛物线上,点D的横坐标为﹣2.过点D向y轴作垂线,垂足为点E.点P为y轴负半轴上的一个动点,连接DP,设点P的纵坐标为t,△DEP的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);(3)如图2,在(2)的条件下,连接OA,点F在OA上,过点F向y轴作垂线,垂足为点H,连接DF交y轴于点G,点G为DF的中点,过点A作y轴的平行线与过点P 所作的x轴的平行线相交于点N,连接CN,PB,延长PB交AN于点M,点R在PM上,连接RN,若3CP=5GE,∠PMN+∠PDE=2∠CNR,求直线RN的解析式.。
2023—2024学年度下学期哈尔滨市第四十九中学校九年级毕业考试试卷一、选择题(每题3分,共30分)1.下列实数是无理数的是( )A .B .CD .2.马虎同学在下面的计算中只做对了一道题,他做对的题目是( )A .B .C .D .3.下列立体图形中,三视图都相同的是()A .B .C .D .4.下面图形中是中心对称图形但不是轴对称图形的是()A .科克曲线B .笛卡尔心形线C .阿基米德螺旋线D .赵爽弦图5.将抛物线向左平移1个单位,再向下平移3个单位得到的解析式是( )A .B .C .D .6.如图,等腰内接于,点D 是圆中优孤上一点,连接DB 、DC ,已知,,则的度数为( )A .10°B .20°C .30°D .40°52-π2-23325a a a +=()222b a b a-=-326236a a a⋅=2632a a a-÷=-22y x =+()211y x =+-()211y x =--()211y x =++()211y x =-+ABC △O AB AC =70ABC ∠=︒BDC ∠7.如图,将45°的按下面的方式放置在一把刻度尺上:顶点O 与尺下沿的左端点重合,OA 与尺下沿重合,OB 与尺上沿的交点B 在尺上的读数为.若按相同的方式将37°的放置在该刻度尺上,则OC 与尺上沿的交点C 在尺上的读数是(结果精确到,参考数据,,).( )A .B .C .D .8.下列各点中,在反比例函数的图象上的是( )A .B .C .D .9.如图,在中,,分别以A ,C为圆心,大于长为半径作弧(弧所在圆的半径都相等),两弧相交于P ,Q 两点,直线PQ 分别交AB ,AC 于点D ,E ,连接CD ,则下列结论一定正确的是( )A .B .C .D .10.如图,矩形ABCD 的对角线交于点O ,,,动点P 从点A 出发,沿折线以每秒1个单位长的速度运动到点O 停止,设运动时间为x 秒,,则y 与x 的函数图象大致为( )A .AB .BC .CD .D二、填空题(每题3分,共30分)11.自从扫描隧道显微镜发明以后,世界上便诞生了一门新兴的学科,这就是“纳米技术”.已知:,则32.95纳米用科学记数法表示为______米.12.在函数中,自变量x 的取值范围为______.AOB ∠2cm AOC ∠0.1cm sin 37060︒≈.cos370.80︒≈tan 370.75︒≈2.3cm 2.5cm 2.7cm 3cm12y x=-()2,4-()3,4-()2,6()4,3--ABC △90ACB ∠=︒12AC 12DE AE =12DE BC =2AB BC =2AC CD=60BOC ∠=︒3AD =AD DO -poc y S =△9110-=纳米米726y x =-13______.14.分解因式:______.15.2019年泉州市初中学业水平考试中,每位参加体育考试的学生都必需从“篮球、足球、排球”中选择一种球类参加测试,则小聪和小明同时选考“足球”的概率是______.16.将两块直角三角尺的直角顶点重合为如图的位置,若,则______度.17.在中,,D 为AB 边的中点,,交直线AC 于点E ,连接BE ,若,则的度数为______.18.某医院内科病房有护士x 人,每2人一班,轮流值班,每8小时换班一次,某两人同值一班后,到下次两人同班,最长需要的天数是70天,则______.19.如图,边长为1的正方形ABCD 的顶点A 在扇形EOF 的半径OE 上,点B 、C 在OF 上,点D 在EF 上,若,则扇形EOF 的面积为______.20.如图,在矩形ABCD 中,点E 为边AD 上一点,连接BE ,作的平分线,交CD 于点F ,连接EF ,若,,且,则______.三、解答题(21、22各7分,23、24各8分,25,26,27各10分)21.先化简,再求值:,其中.22.图1,图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点,(1)在图1中画出等腰直角三角形MON ,使点N 在格点上,且;(2)在图2中以格点为顶点画出一个正方形ABCD ,使正方形AB CD 的面积等于(1)中等腰直角三角形MON 面积的4倍.3234x y x -=110AOD ∠=︒COB ∠=ABC △AB AC =DE AB ⊥50BED ∠=︒ABC ∠x =45EOF ∠=︒EBC ∠4CF =2DF =45EFB ∠=︒BE =2211211x x x x ⎛⎫÷+ ⎪-+-⎝⎭sin 4530x =︒︒90MON ∠=︒23.为了解学生完成书辆作业所用时间的情况,进步优化作业管理某中学从全校学生中随机抽取部分学生,对他们周平均每天完成书面作业的时间t (单位:分钟)进行调查将调查数据进行整理后分为五组:A 组“”;B 组“”;C 组“”;D 组“”;E 组“”.现将调查结果绘制成如下两幅不完整的统计图根据以上信息,解答下列问题:(1)这次调查的样本容量为______,请补全条形统计图;(2)在扇形统计图中,A 组对应的圆心角的度数是______°,本次调查数据的中位数落在______组内;(3)若该中学有2000名学生,请你估计该中学一周平均每天完成书面作业不超过90分钟的学生有多少人?24.如图,菱形ABCD 中,E 为对角线BD 的延长线上一点.(1)求证:.(2)若,,,则BE 的长______,DE 的长为______.25.某居民小区为美化环境,计划对面积为的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为区域的绿化时,甲队比乙队少用5天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少?(2)若小区每天需付给甲队的绿化费用为0.2万元,乙队为0.15万元,要使这次的绿化总费用不超过5万元,至少应安排甲队工作多少天?26.已知,在圆O 中,AB 是圆O 的弦,点C 是优弧AB 的中点,点E 在弦AB 上,且,连接CE 并延长交圆O 于点D .(1)如图(1)求证:CD 是圆O 直径;(2)如图(2)连接AC 、BC ,点F 在弦AB 上,且,连接CF ,并延长交圆O 于点G ,连接AG,045t <≤4560t <≤6075t <≤7590t <≤90t >AE CE =6BC =10AE =120BAE ∠=︒21200m 2300m 2m AE BE =BF AC =求证:;(3)如图(3)在(2)的条件下,过点D 作,交BC 于点K ,,过B 作于点M ,交CD 于点N ,若,求ON 的长.27.如图:直线分别与x 轴负半轴、y 轴正半轴交于点A 、B ,点C 在x 轴正半轴上,,(1)求a 值;(2)直线过点A 交y 轴负半轴于点D ,点P 在线段BC 上,,垂足为H ,PH 交y 轴于点T ,点P 的横坐标为t ,若线段,求d 与t 之间的函数关系式(不用写出自变量t 的取值范围);(3)在(2)的条件下,若延长BC 和AD 相交于点Q ,点E 在BQ 延长线上一点,点G 为第四象限内线段BE 右侧一点,连接GE 并延长交y 轴于点F ,若,,,,求点E 的坐标.2024哈49中考数学毕业考0531参考答案一、填空题12345678910B DDDADCBBA二、填空题11121314152BAC DCF ∠=∠HD CF ∥2CD CK =BM AC ⊥2AF =34y x a =+10AB AC ==12y x b =-+PH AD ⊥BT d =PGQ BQA ∠=∠PG BF =GE EF =92HQG S =△三、简答题21.解:原式,∴原式22.如下图23.(1)10(人)(2)36°C (3)1920(人)24.证明:(1)∵四边形ABCD 是菱形,∴,在与中,,,∴(2)过点E 做的延长线于F ,∴∵,∴,∴∴在,由勾股定理得,∵四边形ABCD 是菱形,∴25.解:(1)设,乙队每天能完成绿化的面积是,则甲队每天能完成绿化的面积是21x =-sin 45tan 301x =︒+︒=+===ABE CBE ∠=∠AB CB=ABE △CEB △ABE CBE BD A C D B B D∠=∠==⎧⎪⎨⎪⎩ABE CEB ≌△△AE CE=EF BA ⊥90AFE ∠=︒120BAE ∠=︒18060FAE BAE ∠=︒-∠=︒9030FEA FAE ∠=︒-∠=︒Rt AFE △152AF AE ==FE ===6AB BC ==2m x 22m,解得,,检验:当时,∴原分式方程的解是,∴.答:略.(2)设,安排甲工作a 天,则安排乙工作天,,解得,.答:略.30030052x x=+30x =30x =20x ≠30x =260x =12006030a-120060.20.15530aa -+⨯≤10a ≥。
2024年黑龙江省哈尔滨市中考模拟检测数学试题(一)一、单选题1.-5的相反数是( ) A .15-B .15C .5D .-52.下列运算正确的是( ) A .2232a a -=B .23a a a +=C .()3328a a -=-D .623a a a ÷=3.下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.五个大小相同的正方体搭成的几何体如图所示,其主视图是( )A .B .C .D .5.如图,AB 是O e 的直径,C 、D 是O e 上两点,CD AB ⊥,若70DAB ∠=︒,则BOC ∠=( )A .70︒B .130︒C .140︒D .160︒6.分式方程12x x 3=+的解是【 】 A .x=﹣2 B .x=1 C .x=2 D .x=37.如图,在ABC V 中,70CAB ∠=︒,将ABC V 绕点A 旋转到AB C ''△的位置,点B 和点B '是对应顶点,点C 和点C '是对应顶点,若CC AB '∥,则BAB ∠'的度数为( )A .30︒B .35︒C .40︒D .50︒8.一个不透明的袋子中装有5个小球,其中3个红球,2个白球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球,则摸出的小球是红球的概率是( ) A .16B .15C .25D .359.如图,已知AB CD EF ∥∥,:3:5AD AF =,12BE =,那么CE 的长等于( )A .365B .245C .152 D .9210.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s (km),甲出发后的时间为t (h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是【 】A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h二、填空题11.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米,数据2 500 000用科学记数法表示为.12.如图,在小孔成像问题中,小孔 O 到物体AB 的距离是60 cm ,小孔O 到像CD 的距离是30 cm ,若物体AB 的长为16 cm ,则像 CD 的长是 cm.13. 14.把多项式22ma mb -分解因式的结果是. 15.函数294y x =-的顶点坐标是. 16.不等式组2841+2x x x ⎧⎨-⎩<>的解集是.17.如图,随机闭合开关123S S S ,,中的两个,能够让灯泡发亮的概率是.18.正方形ABCD 的边长为8,E 为BC 边上一点,BE =6,M 为AE 上一点,射线BM 交正方形一边于点F ,且BF =AE ,则BM 的长为.19.半径为4 cm ,圆心角为60°的扇形的面积为cm 2.20.如图,在ABC V 中,D 为ABC V 内的一点,且=90BDC ∠︒,且A B D C D E ∠=∠,若点E 为AC 的中点,3,8DE AB ==,则BC 的长.三、解答题21.先化简,再求代数式()211x x x x -⎛⎫-÷- ⎪⎝⎭的值,其中2cos451x ︒=+22.如图,在由边长为1个单位长度的小正方形组成的网格中,点,,,A B C D 均为格点(网格线的交点).(1)画出线段AB 关于直线CD 对称的线段11A B ;(2)将线段AB 向左平移2个单位长度,再向上平移1个单位长度,得到线段22A B ,画出线段22A B ;(3)描出线段AB 上的点M 及直线CD 上的点N ,使得直线MN 垂直平分AB .23.近年,“青少年视力健康”受到社会的广泛关注.某校综合实践小组为了解该校学生的视力健康状况,从全校学生中随机抽取部分学生进行视力调查.根据调查结果和视力有关标准,绘制了两幅不完整的统计图.请根据图中信息解答下列问题:(1)所抽取的学生人数为__________;(2)补全条形统计图,并求出扇形统计图中“轻度近视”对应的扇形的圆心角的度数; (3)该校共有学生3000人,请估计该校学生中近视程度为“轻度近视”的人数.24.为了加强视力保护意识,欢欢想在书房里挂一张测试距离为5m 的视力表,但两面墙的距离只有3m .在一次课题学习课上,欢欢向全班同学征集“解决空间过小,如何放置视力表问题”的方案,其中甲、乙两位同学设计方案新颖,构思巧妙. 图例(1)甲生的方案中如果大视力表中“E ”的高是3.5cm ,那么小视力表中相应“E ”的高是多少? (2)乙生的方案中如果视力表的全长为0.8m ,请计算出镜长至少为多少米.25.习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然正气.”某校为提高学生的阅读品味,现决定购买获得矛盾文学奖的甲、乙两种书共100本,已知购买2本甲种书和1本乙种书共需100元,购买3本甲种书和2本乙种书共需165元. (1)求甲,乙两种书的单价分别为多少元:(2)若学校决定购买以上两种书的总费用不超过3200元,那么该校最多可以购买甲种书多少本?26.已知四边形ABCD 内接于O e ,AB 是O e 的直径»»CDBC ,连接OC .(1)如图1,求证AD OC ∥;(2)如图2,连接BD ,过点C 作CH AB ⊥,垂足为H ,CH 交BD 于点E ,求证:CE BE =; (3)如图3,在(2)的条件下,连接AC ,过O 作OF BC ∥,交AC 于点F ,连接DF 并延长交O e 于点G ,若45ADG ∠=︒,FG EH 的长.27.如图,在平面直角坐标系中,点O 为坐标原点,抛物线235y ax ax =--与x 轴交于点A ,点B ,与y 轴交于点C ,点A 坐标为()2,0-(1)求抛物线解析式;(2)点P 为抛物线上一点,连接PA 交y 轴于点D ,设P 的横坐标为,t CD 的长为d ,求d 关于t 的函数解析式(不要求写出自变量t 的取值范围);(3)当7d =时,过点A 作AG PA ⊥交抛物线于点G ,连接PG ,点E F 、分别是PAG △的边AP GP 、上的动点,且PE GF =,连接AF GE 、,设AF GE m +=,求m 的最小值,并直接写出当m 有最小值时EGP ∠的正切值.。
黑龙江省哈尔滨市中考数学第一次模拟试题 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,①13∠=∠,②23∠∠=,③14∠=∠,④25180+=︒∠∠可以判定b c ∥的条件有( ). A .①②④ B .①②③ C .②③④ D .①②③④2、纳米(nm )是非常小的长度单位,1nm 0.000000001m =.1nm 用科学记数法表示为( ) A .7110m -⨯ B .8110m -⨯ C .91m 10-⨯ D .10110m -⨯3、若分式1x x -有意义,则x 的值为( ) A .1x =B .1x ≠C .0x =D .0x ≠ ·线○封○密○外4、如图,AD 为O 的直径,8AD =,DAC ABC ∠=∠,则AC 的长度为( )A .B .C .4D .5、有一个边长为1的正方形,以它的一条边为斜边,向外作一个直角三角形,再分别以直角三角形的两条直角边为边,向外各作一个正方形,称为第一次“生长”(如图1);再分别以这两个正方形的边为斜边,向外各自作一个直角三角形,然后分别以这两个直角三角形的直角边为边,向外各作一个正方形,称为第二次“生长”(如图2)……如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是( )A .1B .2020C .2021D .20226、如图,有三块菜地△ACD 、△ABD 、△BDE 分别种植三种蔬菜,点D 为AE 与BC 的交点,AD 平分∠BAC ,AD =DE ,AB =3AC ,菜地△BDE 的面积为96,则菜地△ACD 的面积是( )A .24B .27C .32D .367、如图,已知ABC 与ADE 都是以A 为直角顶点的等腰直角三角形,ADE 绕顶点A 旋转,连接,BD CE .以下三个结论:①BD CE =;②45∠+∠=︒AEC DBC ;③BD CE ⊥;其中结论正确的个数是( )A .1B .2C .3D .0 8、下面的图形中,是轴对称图形但不是中心对称图形的是( ) A . B . C . D . 9、下列现象: ①用两个钉子就可以把木条固定在墙上 ②从A 地到B 地架设电线,总是尽可能沿着线段AB 架设 ③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线 ④把弯曲的公路改直,就能缩短路程 其中能用“两点之间线段最短”来解释的现象有( ) A .①④ B .①③ C .②④ D .③④ 10、下列方程变形不正确的是( ) A .4332x x -=+变形得:4323x x -=+B .方程110.20.5x x --=变形得:1010212x x --=C .()()23231x x -=+变形得:6433x x -=+D .211332x x -=+变形得:41318x x -=+ ·线○封○密○外第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,两个多边形的面积分别为13和22,两个阴影部分的面积分别为a ,()b a b <,则b a -的值为______.2、小明在写作业时不慎将一滴墨水滴在数轴上,根据图所示的数轴,请你计算墨迹盖住的所有整数的和为______.3、长方形纸片ABCD 按图中方式折叠,其中,EF EC 为折痕,如果折叠后',',A B E 在一条直线上,那么CEF ∠的大小是________度.4、如图,一架梯子AB 斜靠在左墙时,梯子顶端B 距地面2.4m ,保持梯子底端A 不动,将梯子斜靠在右墙时,梯子顶端C 距地面2m ,梯子底端A 到右墙角E 的距离比到左墙角D 的距离多0.8m ,则梯子的长度为_____m .5、如图,在ABC 中,BC 的垂直平分线MN 交AB 于点D ,若5BD =,3AD =,P 是直线MN 上的任意一点,则PA PC +的最小值是______. 三、解答题(5小题,每小题10分,共计50分) 1、在数轴上,点A ,B 分别表示数a ,b ,且6100a b ++-=,记AB a b . (1)求AB 的值; (2)如图,点P ,Q 分别从点A ,B ;两点同时出发,都沿数轴向右运动,点P 的速度是每秒4个单位长度,点Q 的速度是每秒1个单位长度,点C 从原点出发沿数轴向右运动,速度是每秒3个单位长度,运动时间为t 秒. ①请用含t 的式子分别写出点P 、点Q 、点C 所表示的数; ②当t 的值是多少时,点C 到点P ,Q 的距离相等?2、如图,在平面直角坐标系中,ABC 在第二象限,且(52)A -,,(24)B -,,(11)C -,. ·线○封○密○外(1)作出ABC 关于y 轴对称的111A B C △,并写出1B ,1C 的坐标;(2)在x 轴上求作一点P ,使得AP BP +最小,并求出AP BP +最小值及P 点坐标.3、若2x =4y +1,27y =3x ﹣1,试求x 与y 的值.4、已知,点A ,B 是数轴上不重合的两个点,且点A 在点B 的左边,点M 是线段AB 的中点.点A ,B ,M 分别表示数a ,b ,x .请回答下列问题.(1)若a =-1,b =3,则点A ,B 之间的距离为 ;(2)如图,点A ,B 之间的距离用含a ,b 的代数式表示为x = ,利用数轴思考x 的值,x = (用含a ,b 的代数式表示,结果需合并同类项);(3)点C ,D 分别表示数c ,d .点C ,D 的中点也为点M ,找到a b c d ,,,之间的数量关系,并用这种关系解决问题(提示:思考x 的不同表示方法,找相等关系).①若a =-2,b =6,c =73则d = ;②若存在有理数t ,满足b =2t +1,d =3t -1,且a =3,c =-2,则t = ;③若A ,B ,C ,D 四点表示的数分别为-8,10,-1,3.点A 以每秒4个单位长度的速度向右运动,点B 以每秒3个单位长度的速度向左运动,点C 以每秒2个单位长度的速度向右运动,点D 以每秒3个单位长度的速度向左运动,若t 秒后以这四个点为端点的两条线段中点相同,则t = . 5、如图,D 、E 、F 分别是△ABC 各边的中点,连接DE 、DF 、CD . (1)若CD 平分∠ACB ,求证:四边形DECF 为菱形; (2)连接EF 交CD 于点O ,在线段BE 上取一点M ,连接OM 交DE 于点N .已知CE =a ,CF =b ,EM =c ,求EN 的值. -参考答案- 一、单选题1、A【解析】 【分析】 根据平行线的判定定理逐个排查即可. 【详解】 解:①由于∠1和∠3是同位角,则①可判定b c ∥; ②由于∠2和∠3是内错角,则②可判定b c ∥; ③①由于∠1和∠4既不是同位角、也不是内错角,则③不能判定b c ∥; ·线○封○密○外④①由于∠2和∠5是同旁内角,则④可判定b c ∥;即①②④可判定b c ∥.故选A .【点睛】本题主要考查了平行线的判定定理,平行线的判定定理主要有:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.2、C【解析】【分析】根据科学记数法的特点即可求解.【详解】解:91nm 0.000000001=110m -=⨯.故选:C【点睛】本题考查了用科学记数法表示绝对值小于1的数,绝对值小于1的数用科学记数法可以写为10n a -⨯的形式,其中1≤|a |<10,n 为正整数,n 的值为从第一个不为0的数向左数所有0的个数,熟知科学记数法的形式并准确确定a 、n 的值是解题关键.3、D【解析】【分析】根据分式有意义,分母不为0列出不等式,解不等式即可.【详解】解:由题意得:0x ≠故答案为:D【点睛】本题考查的是分式有意义的条件,即分式的分母不为零.4、A【解析】【分析】 连接CD ,由等弧所对的圆周角相等逆推可知AC =DC ,∠ACD=90°,再由勾股定理即可求出AC = 【详解】 解:连接CD ∵DAC ABC ∠=∠ ∴AC =DC 又∵AD 为O 的直径 ∴∠ACD =90°∴222AC DC AD +=∴222AC AD =∴8AC AD === 故答案为:A .·线○封○密·○外【点睛】本题考查了圆周角的性质以及勾股定理,当圆中出现同弧或等弧时,常常利用弧所对的圆周角或圆心角,通过相等的弧把角联系起来,直径所对的圆周角是90°.5、D【解析】【分析】根据题意可得每“生长”一次,面积和增加1,据此即可求得“生长”了2021次后形成的图形中所有的正方形的面积和.【详解】解:如图,由题意得:SA=1,由勾股定理得:SB+SC=1,则“生长”了1次后形成的图形中所有的正方形的面积和为2,同理可得:“生长”了2次后形成的图形中所有的正方形面积和为3,“生长”了3次后形成的图形中所有正方形的面积和为4,……“生长”了2021次后形成的图形中所有的正方形的面积和是2022,故选:D【点睛】本题考查了勾股数规律问题,找到规律是解题的关键.6、C【解析】【分析】 利用三角形的中线平分三角形的面积求得S △ABD =S △BDE =96,利用角平分线的性质得到△ACD 与△ABD 的高相等,进一步求解即可. 【详解】 解:∵AD =DE ,S △BDE =96, ∴S △ABD =S △BDE =96, 过点D 作DG ⊥AC 于点G ,过点D 作DF ⊥AB 于点F , ∵AD 平分∠BAC ,∴DG=DF ,∴△ACD 与△ABD 的高相等, 又∵AB =3AC , ∴S △ACD =13S △ABD =196323⨯=. 故选:C . ·线○封○密○外【点睛】本题考查了角平分线的性质,三角形中线的性质,解题的关键是灵活运用所学知识解决问题.7、B【解析】【分析】证明△BAD≌△CAE,由此判断①正确;由全等的性质得到∠ABD=∠ACE,求出∠ACE+∠DBC=45°,依∠≠∠,故判断②错误;设BD交CE于M,根据∠ACE+∠DBC=45°,据AE AC≠,推出AEC ACE∠ACB=45°,求出∠BMC=90°,即可判断③正确.【详解】解:∵ABC与ADE都是以A为直角顶点的等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE,=,故①正确;∴BD CE∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∵AE AC≠,∠≠∠,∴AEC ACE∴45AEC DBC不成立,故②错误;∠+∠=︒设BD交CE于M,∵∠ACE+∠DBC=45°,∠ACB=45°,∴∠BMC=90°,∴BD CE ,故③正确,故选:B . 【点睛】 此题考查了三角形全等的判定及性质,等腰直角三角形的性质,熟记三角形全等的判定定理及性质定理是解题的关键. 8、D 【解析】 【分析】 根据轴对称图形与中心对称图形的概念求解. 【详解】 解:A 、是轴对称图形,是中心对称图形,故此选项不符合题意; B 、不是轴对称图形,是中心对称图形,故此选项不符合题意; C 、不是轴对称图形,是中心对称图形,故此选项不符合题意; D 、是轴对称图形,不是中心对称图形,故此选项符合题意; 故选:D . 【点睛】 此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 9、 C·线○封○密○外【解析】【分析】直接利用直线的性质和线段的性质分别判断得出答案.【详解】解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意; ②从A 地到B 地架设电线,总是尽可能沿着线段AB 架设,能用“两点之间,线段最短”来解释,故此选项符合题意;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意. 故选:C .【点睛】本题考查了直线的性质和线段的性质,正确掌握相关性质是解题关键.10、D【解析】【分析】根据等式的性质解答.【详解】解:A . 4332x x -=+变形得:4323x x -=+,故该项不符合题意;B . 方程110.20.5x x --=变形得:1010212x x --=,故该项不符合题意; C . ()()23231x x -=+变形得:6433x x -=+,故该项不符合题意;D . 211332x x -=+变形得:46318x x -=+,故该项符合题意;故选:D .【点睛】此题考查了解方程的依据:等式的性质,熟记等式的性质是解题的关键.二、填空题1、9【解析】 【分析】 由重叠部分面积为c ,(b -a )可理解为(b +c )-(a +c ),即两个多边形面积的差. 【详解】 解:设重叠部分面积为c , b -a =(b +c )-(a +c )=22-13=9. 故答案为:9. 【点睛】 本题考查了等积变换,添括号,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键. 2、-10 【解析】 【详解】 解:结合数轴,得墨迹盖住的整数共有−6,−5,−4,−3,−2,1,2,3,4, 以上这些整数的和为:-10 故答案为:-10 【点睛】 本题主要考查数轴,解题的关键是熟练掌握数轴的定义. 3、90 ·线○封○密○外【解析】【分析】根据折叠的性质,∠1=∠2,∠3=∠4,利用平角,计算∠2+∠3的度数即可.【详解】如图,根据折叠的性质,∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°,∴CEF ∠=90°,故答案为:90.【点睛】本题考查了折叠的性质,两个角的和,熟练掌握折叠的性质,灵活运用两个角的和是解题的关键. 4、2.5##52【解析】【分析】设AD x =,则0.8,AE x 结合,90,AB AC D E 再利用勾股定理建立方程22222.420.8,x x 再解方程求解,x 再利用勾股定理求解梯子的长即可. 【详解】解:设AD x ,则0.8,AE x 而 2.4,2,,90,BD CE ABAC D E 由勾股定理可得:22222.420.8,x x 整理得:1.6 1.12,x 解得:0.7,x 22 2.40.7 6.25 2.5,AB 所以梯子的长度为2.5m. 故答案为:2.5 【点睛】 本题考查的是勾股定理的应用,熟练的利用勾股定理建立方程是解本题的关键. 5、8 【解析】 【分析】 如图,连接PB .利用线段的垂直平分线的性质,可知PC =PB ,推出PA +PC =PA +PB ≥AB ,即可解决问题. 【详解】解:如图,连接PB . ∵MN 垂直平分线段BC , ·线○封○密·○外∴PC=PB,∴PA+PC=PA+PB,∵PA+PB≥AB=BD+DA=5+3=8,∴PA+PC≥8,∴PA+PC的最小值为8.故答案为:8.【点睛】本题考查轴对称﹣最短问题,线段的垂直平分线的性质等知识,解题的关键是学会利用两点之间线段最短解决最短问题,属于中考常考题型.三、解答题1、 (1)AA=16或(2)①点P所表示的数为−6+4A,点Q所表示的数为10+A,点C所表示的数为3A;②A=163A=4【解析】【分析】(1)先根据绝对值的非负性求出A,A的值,再代入计算即可得;(2)①根据“路程=速度×时间”、结合数轴的性质即可得;②根据|AA|=|AA|建立方程,解方程即可得.(1)解:∵|A+6|+|A−10|=0,∴A+6=0,A−10=0,解得A=−6,A=10,∴AA=|−6−10|=16;(2)解:①由题意,点P 所表示的数为−6+4A ,点Q 所表示的数为10+A ,点C 所表示的数为3A ;②|AA |=|−6+4A −3A |=|−6+A |,|AA |=|10+A −3A |=|10−2A |,由|AA |=|AA |得:|−6+A |=|10−2A |, 即−6+A =10−2A 或−6+A =−10+2A , 解得A =163或A =4, 故当A =163或A =4时,点C 到点A ,A 的距离相等. 【点睛】本题考查了数轴、绝对值、一元一次方程的应用等知识点,熟练掌握数轴的性质是解题关键. 2、 (1)见解析,A 1(2,4),A 1(1,1) (2)见解析,3√5,A (−4,0) 【解析】 【分析】 (1)由题意依据作轴对称图形的方法作出ABC 关于y 轴对称的111A B C △,进而即可得出1B ,1C 的坐标; (2)根据题意作A 关于x 轴的对称点A ′,连接两点与x 轴的交点即为点P ,进而设直线A ′A 的解析式为y kx b =+并结合勾股定理进行求解. (1) 解:如图所示,即为所求.A 1(2,4),A 1(1,1) ·线○封○密·○外(2)解:如图点P 即为所求.A 点关于x 轴对称点A ′(−5,−2). 设直线A ′A 的解析式为y kx b =+. 将A ′(−5,−2),A (−2,4)代入得 {−5A +A =−2−2A +A =4,∴{A =2A =8, ∴直线A ′A :A =2A +8 当0y =时,2A +8=0.A =−4,∴A (−4,0), ∵AA +AA 最小=A ′A +AA =A ′A .∴A ′A =√(−5+2)2+(−2−4)2=√45 =3√5【点睛】本题考查画轴对称图形以及勾股定理,熟练掌握并利用轴对称的性质解决线段和的最小值是解题的关键. 3、{A =4A =1 【解析】 【分析】 根据幂的乘方的意义得到二元一次方程组,再进行计算即可. 【详解】 解:∵2x =4y +1,27y =3x ﹣1, ∴2A =22(A +1),33A =3A −1 ∴{A =2(A +1)3A =A −1 整理得,{A −2A =2①3A −A =−1②①+②得,A =1 把A =1代入①得,A −2=2 ∴A =4∴方程组的解为{A =4A =1 【点睛】 本题主要考查了幂的乘方和解二元一次方程组,熟练掌握解题步骤是解答本题的关键. 4、 (1)4 (2)A −A ,A +A 2 (3)①53;②7;③0或116或7 ·线○封○密○外【解析】【分析】(1)由图易得A、B之间的距离;(2)A、B之间的距离为两点表示的数差的绝对值;由数轴得点M表示的数x为A+12AA,从而可求得x;(3)①由(2)得:12(A+A)=12(A+A),其中a、b、c的值已知,则可求得d的值;②由12(A+A)=12(A+A)可得关于t的方程,解方程即可求得t;③分三种情况考虑:若线段AB与线段CD共中点;若线段AC与线段BD共中点;若线段AD与线段BC共中点;利用(2)的结论即可解决.(1)AB=3+1=4故答案为:4(2)A=A−A;由数轴知:A=A+12AA=A+12(A−A)=A−A2故答案为:A−A,A+A2 (3)①由(2)可得:12(A+A)=12(A+A)即12(−2+6)=12(73+A)解得:A=53故答案为:53②由12(A +A )=12(A +A ),得12(3+2A +1)=12(−2+3A −1) 解得:A =7 故答案为:7 ③由题意运动t 秒后A =4A −8,A =−3A +10,A =2A −1,A =−3A +3. 分三种情况: 若线段AB 与线段CD 共中点,则12(4A −8−3A +10)=12(−3A +3+2A −1),解得A =0;若线段AC 与线段BD 共中点,则12(4A −8+2A −1)=12(−3A +3−3A +10),解得A =116; 若线段AD 与线段BC 共中点,则12(4A −8−3A +3)=12(2A −1−3A +10),解得A =7. 综上所述,A =0,116,7故答案为:0或116或7 【点睛】本题考查了数轴上两点间的距离,数轴上线段中点表示的数,解一元一次方程等知识,灵活运用这些知识是关键,注意数形结合. 5、 (1)见解析 (2)EN =2bca c + 【解析】 【分析】 (1)根据三角形的中位线定理先证明四边形DECF 为平行四边形,再根据角平分线+平行证明一组邻边相等即可;·线○封○密○外DE AC,所以要求EN的长,想到构造一个“A“字型相似图形,进而延长MN交(2)由(1)得//CA于点G,先证明ENO FGO∆∆∽,然后根据相似三角形对应边=,再证明MEN MCG∆≅∆,得到EN FG成比例,即可解答.(1)证明:D、E、F分别是ABC∆各边的中点,∆的中位线,∴,DE是ABCDF∴,////DF BCDE AC,∴四边形DECF为平行四边形,CD平分ACB∠,∴∠=∠,ACD DCEDF BC,//∴∠=∠,CDF DCE∴∠=∠,ACD CDF∴=,DF CF∴四边形DECF为菱形;(2)解:延长MN交CA于点G,DE AC,//∠=∠,∠=∠,ENO FGO∴∠=∠,NEO GFOMED MCA四边形DECF 为平行四边形,OE OF ∴=,()ENO FGO AAS ∴∆≅∆, EN FG ∴=, EMN CMG ∠=∠, MEN MCG ∴∆∆∽, ∴EN ME CG MC=, ∴EN c b EN c a =-+, 2bc EN a c ∴=+. 【点睛】 本题考查了菱形的判定与性质,三角形的中位线定理,相似三角形的判定与性质,解题的关键是根据题目的已知并结合图形. ·线○封○密○外。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:的倒数是( )A.7B.C.D.试题2:下列运算正确的是( )A. B. C.D.试题3:下列图形中,既是轴对称图形又是中心对称图形的是( )A B CD试题4:评卷人得分抛物线的顶点坐标是( )A. B. C. D.试题5:方程的解为( )A. B. C.D.[试题6:如图,中,弦,相交于点,,,则的大小是( )[来A. B. C.D.试题7:在中,,,,则的值为( )A. B. C.D.如图,在中,分别为边上的点,,点为边上一点,连接交于点,则下列结论中一定正确的是( )A. B. C.D.试题9:周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离(单位:m)与他所用的时间(单位:min)之间的函数关系如图所示,下列说法中正确的是( )A.小涛家离报亭的距离是900m[B.小涛从家去报亭的平均速度是C.小涛从报亭返回家中的平均速度是D.小涛在报亭看报用了15min ]试题10:将57 600 000用科学记数法表示为 .函数中,自变量的取值范围是 .试题12:把多项式分解因式的结果是.试题13:计算的结果是.试题14:已知反比例函数的图象经过点,则的值为.试题15:不等式组的解集是.试题16:一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差别,从袋子中随机摸出一个小球,则摸出的小球是红球的概率为 .试题17:已知扇形的弧长为,半径为8,则此扇形的圆心角为试题18:四边形是菱形,,,对角线与相交于点,点在上,若,则的长为 .试题19:如图,在矩形中,为边上一点,连接,过点作,垂足为,若,,则的长为 .试题20:先化简,再求代数式的值,其中.试题21:如图,方格纸中每个小正方形的边长均为1,线段的两个端点均在小正方形的顶点上.(1)在图中画出以为底、面积为12的等腰,且点在小正方形的顶点上;(2)在图中画出平行四边形,且点和点均在小正方形的顶点上,,连接,请直接写出线段的长.试题22:随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.试题23:已知:和都是等腰直角三角形,,连接,交于点,与交于点,与交于点.(1)如图1,求证:;(2)如图2,若,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.试题24:威丽商场销售A、B两种商品,售出1件A种商品和4件B种商品所得利润为600元;售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?试题25:已知:是的弦,点是的中点,连接、,交于点.(1)如图1,求证:;(2)如图2,过点作的切线交的延长线于点,点是上一点,连接、,求证:(3)如图3,在(2)的条件下,连接、,延长交于点,若,,求的值. 试题26:如图,在平面直角坐标系中,点为坐标原点,抛物线交轴于、两点,交轴于点,直线经过、两点.(1)求抛物线的解析式;(2)过点作直线轴交抛物线于另一点,点是直线下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点作轴于点,交于点,交于点,连接,过点作于点,设点的横坐标为,线段的长为,求与之间的函数关系式(不要求写出自变量的取值范围);(3)在(2)的条件下,连接,过点作于点(点在线段上),交于点,连接交于点,当时,求线段的长.试题1答案:试题2答案:试题3答案:试题4答案:试题5答案:试题6答案:试题7答案:试题8答案:试题9答案:试题10答案:试题11答案: 试题12答案: 试题13答案: 试题14答案: 试题15答案: 试题16答案: 试题17答案: 试题18答案: 试题19答案: 试题20答案: 试题21答案: 试题22答案: 试题23答案: 试题24答案: 试题25答案: 试题26答案:。
2023年黑龙江省哈尔滨市中考模拟数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.12-的倒数是( ) A . B . C .12- D .12 2.下列运算正确的是( )A .236a a a ⋅=B .352()a a =C .235a a a ÷=D .44()a a -= 3.下列图形中,是中心对称图形但不是轴对称图形的是( )A .B .C .D . 4.已知反比例函数k y x =的图象经过点()12P --,,则这个函数的图象位于( ) A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限 5.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )A .B .C .D . 6.斜坡的倾斜角为α,一辆汽车沿这个斜坡前进了500米,则它上升的高度是( )A .500sinα米B .500sin a 米C .500cosα米D .500cos a 米 7.某水果园2019年水果产量为50吨,2021年水果产量为75吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( )A .275(1)50x -=B .250(1)75x -=C .250(1)75x +=D .275(1)50x += 8.如图,A 、D 是⊙O 上的两个点,BC 是直径,若⊙D=35°,则⊙OAC 的度数是( )A .35°B .55°C .65°D .70°9.如图,,AB CD AE FD ∥∥,AE ,FD 分别交BC 于点G ,H ,则下列结论中错误的是( )A .DH CH FH BH =B .GE CG DF CB =C .AF HG CE CG =D .=FH BF AG FA 10.小明和小强两名同学同时进行800米耐力跑,小明和小强所跑的路程S (米)与所用时间t (秒)之间的函数图像分别为线段OA 和折线OBCD ,下列说法正确的是( ).A .小明的速度随时间的增大而增大B .小强的平均速度比小明的平均速度大C .在起跑后180秒后,小强的速度为5米/秒D .在起跑后50秒时,小明在小强的前面二、填空题11.根据Worldometer 实时统计数据,截至北京时间2022年5月16日,美国累计确诊新冠肺炎病例约为84000000例,令人触目惊心.同时也为我们伟大的祖国在抗疫上取得的成就而骄傲.把84000000用科学记数法表示为____________.12.在函数x y x 3=+中,自变量x 的取值范围是_____. 13.把22ab ab a -+分解因式的结果是_________.14.计算____________. 15.不等式组21343x x +≤⎧⎨>-⎩的解集为____________. 16.抛物线22(1)3y x =--的顶点坐标为____________.17.在围棋盒中有x 颗白色棋子和6颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋的概率是25,则盒中有白色棋子____________颗. 18.圆心角为60︒的扇形的面积为32π,则扇形的半径为____________. 19.如图,已知矩形ABCD 中,点E 为AD 的中点,F 为CD 中点,4AB =,6AD =,点H 为BC 上一点且EH 为FH 的长为____________.20.如图,四边形ABCD .连接AC 、BD ,AB AD =,3CAD BAC ∠=∠,90CBD ∠=︒,若:5:8AB BD =,若AC =CD 的长为____________.三、解答题21.先化简,再求代数式2122()3x x y x xy x--÷--的值,其中x=2+tan60°,y=4sin30°. 22.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A 、B 在小正方形的顶点上,请在图1、图2中各画一个三角形,满足以下要求:(1)在图1中,画直角三角形ABC,点C在小正方形的顶点上,使其面积为5;(2)在图2中,画平行四边形ABEF,点E、F在小正方形的顶点上,且使其面积为7.并直接写出AE的长.23.2022年3月中旬起,哈尔滨市又一次经历了疫情的考验,同学们不得不在线上进行了很长一段时间的学习,在线上上课期间,学校提倡同学们在空余时间多读书来充实自己.某学校为了解学生的疫情期间的课外阅读情况,张老师随机抽查部分学生,并对其疫情期间的课外阅读量进行统计分析,绘制成如图所示但不完整的统计图,已知抽查的学生在疫情期间阅读量为2本的人数占抽查总人数的20%,根据所给出信息,解答下列问题:(1)求被抽查学生人数;(2)通过计算,将条形统计图补充完整;(3)若规定:疫情阅读3本及3本以上课外书者为良好,据此估计该校1500名学生中,达到良好程度的有多少名学生?24.如图,四边形ABCD为平行四边形,点O为BD的中点,过点O作EF BD,交AD于点F,交BC于点E.(1)如图1,求证:四边形FBED 为菱形(2)如图2,当90A ∠=︒,ABF BDE ∠=∠长的线段.25.某商店购进A 、B 两种商品,B 商品每件进价比A 商品每件进价多1元,若60元购进A 商品的件数与72元购进B 商品的件数相同.(1)求A 、B 商品每件进价分别是多少元?(2)若该商店购进A 、B 两种商品共140件,A 种商品每件售价8元,B 种商品每件售价10元,全部商品售出后,获利不少于460元,求最多购进A 商品多少件?26.已知,BF 为O 直径,弦AB 交弦CD 于点E ,连接AD 、CF 、BC ,连接CG ,AD CF =.(1)如图1,求证:AB CD ⊥;(2)如图2,点G 为BE 上一点,连接CG ,若2CGB F CBF ∠-∠=∠,求证:AE EG =;(3)如图3,连接BD ,BD CG =,过点A 作O 的切线交CF 的延长线于点H ,过点B作BK BC ⊥,作CK BF ∥交BK 于点K ,连接DK ,若1tan 2BCG ∠=,AH =DK 的长.27.如图1,在平面直角坐标系内,点O 为坐标原点,直线4y x =-+交x 轴于C ,交y 轴于A ,点B 与点C 关于y 轴对称.(1)求直线AB 的解析式:(2)如图2,点E 为AC 上一点,以BE 为斜边作等腰直角三角形BEF ,FE FB =,90BFE∠=︒,连接AF,设AF的长为m,EC的长为d,求d与m之间的函数关系式(不要求写出自变量的取值范围)(3)如图3,点G为y轴负半轴上一点,连接,EG交x轴于点H,EG BF=,连接FH交BE于点Q,点I为FQ上一点,且BF BI=,若45AFEH=,求IQ的长参考答案:1.A【解析】【分析】根据倒数的概念求解即可.【详解】的倒数为-2.根据乘积等于1的两数互为倒数,可直接得到-12故选A.2.D【解析】【分析】根据同底数幂乘除法、幂的乘方、积的乘方运算法则,分别进行判断,即可得到答案.【详解】A.235⋅=,故此选项计算错误,不符合题意;a a aB.()326a a=,故此选项计算错误,不符合题意;C.231a a a,故此选项计算错误,不符合题意;()44a a-=,故此选项计算正确,符合题意.故选:D.【点睛】本题考查了整式的运算,熟练掌握同底数幂乘法、幂的乘方、积的乘方、同底数幂除法法则是解题的关键.3.A【解析】【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,也是中心对称图形.故选:A.【点睛】本题主要考查了轴对称图形和中心对称图形,解题的关键在于能够熟练掌握轴对称图形和中心对称图形的定义.4.B【解析】【分析】直接根据P的位置和反比例函数关于原点成中心对称,即可得出答案.【详解】解法一:⊙P(-1,-2)在第三象限,⊙反比例函数过第三象限⊙反比例函数图形关于原点对称⊙反比例函数kyx=位于一、三象限故选:B.解法二:将P(-1,-2)代入kyx=得2k=,⊙20k=>,⊙反比例函数kyx=位于一、三象限,故选:B.【点睛】本题考查反比例函数图象,理解k的符号与反比例函数图象的位置是解题的关键.5.D【解析】【分析】根据俯视图是从上面看到的图形解答即可.【详解】从上面看,左边和中间都是2个正方形,右上角是1个正方形, 故选D .【点睛】本题考查了三视图的知识,关键是找准俯视图所看的方向.6.A【解析】【详解】sin 500h α= , 500sin h α∴= .故选A.7.C【解析】【分析】2021年的产量=2019年的产量×(1+年平均增长率)2,把相关数值代入即可.【详解】解:2020年的产量为50(1+x ),2021年的产量为50(1+x )(1+x )=50(1+x )2,即所列的方程为50(1+x )2=75.故选:C .【点睛】考查列一元二次方程;得到2021年产量的等量关系是解决本题的关键. 8.B【解析】【详解】解:⊙⊙D=35°,⊙⊙AOC=2⊙D=70°,⊙⊙OAC=(180°-⊙AOC)÷2=110°÷2=55°.故选B.9.D【解析】【分析】根据平行线分线段成比例和相似三角形的性质与判定,进行逐一判断即可.【详解】解:⊙AB∥CD,⊙DH CH FH BH=,⊙A选项正确,不符合题目要求;⊙AE∥DF,⊙⊙CGE=⊙CHD,⊙CEG=⊙D,⊙⊙CEG⊙⊙CDH,⊙GE CG DH CH=,⊙EG DH CG CH=,⊙AB∥CD,⊙CH DH CB DF=,⊙DH DF CH CB=,⊙GE DF CG CB=,⊙GE CG DF CB=,⊙B选项正确,不符合题目要求;⊙AB∥CD,AE∥DF,⊙四边形AEDF是平行四边形,⊙AF=DE,⊙AE∥DF,⊙DE GH CE GC=,⊙AF HG CE CG=; ⊙C 选项正确,不符合题目要求;⊙AE∥DF ,⊙⊙BFH ⊙⊙BAG , ⊙FH BF AG AB=, ⊙AB >F A , ⊙FH BF AG FA≠ ⊙D 选项不正确,符合题目要求.故选D .【点睛】本题考查了平行线分线段成比例定理,相似三角形的性质和判定的应用,能根据定理得出比例式是解此题的关键.10.C【解析】【分析】根据函数图像对各个选项分别进行判断,选项主要判断的是速度,要把图像中路程和时间的关系换算成速度再判断.【详解】A.小明的函数图像是OA ,是一条直线,所以小明是匀速跑动,速度不随时间变化,与题意不符,故此选项错误;B.跑相同的路程800米时,小强用时220秒,小明用时180秒,小强用时更长,所以小强的平均速度比小明的平均速度要小,与题意不符,故此选项错误;C.从图像可知,小强在起跑180秒后在图像CD 上,此期间为匀速跑动,速度为8006005220180-=-(米/秒),符合题意,故此选项正确; D.从图像可知,起跑50秒时,小明的图像在小强的图像下面,即:小明在小强的后面,与题意不符,故此选项错误.故选 C .【点睛】此题考查了一次函数的应用,解题关键是要利用数形结合,找出所求问题需要的条件,要明确理解每个选项的题意.11.78.410⨯【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:84000000=78.410⨯.故答案为:78.410⨯.【点睛】本题考查科学计数法,科学计数法是将一个数写成10n a ⨯ 的形式,其中110a ≤<是易错点.12.x ≠-3【解析】【详解】解:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使x x 3+在实数范围内有意义,必须x +3≠0, ⊙x ≠-3.故答案为:x ≠-3.13.2(1)a b -【解析】【分析】先提取公因式,然后利用完全平方公式因式分解即可.【详解】解:22ab ab a -+=()221-+a b b=2(1)a b -故答案为:2(1)a b -.【点睛】此题考查的是因式分解,掌握利用提公因式法和公式法因式分解是解决此题的关键.14.【解析】【分析】首先分母有理化,然后再进行减法运算即可.【详解】解:====故答案为:【点睛】此题主要考查了二次根式的加减与分母有理化,熟练掌握分母有理化的运算是解题的关键.15.11x -<【解析】【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】解:21343x x +≤⎧⎨>-⎩①② 由⊙得,1x ≤,由⊙得,1x ->故此不等式组的解集为:11x -<.故答案为:11x -<.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(1,3)-【解析】【分析】根据二次函数顶点式2()y a x h k =-+的顶点坐标为(,)h k 即可求出.【详解】⊙二次函数2()y a x h k =-+的顶点坐标为(,)h k ,⊙抛物线22(1)3y x =--的顶点为(1,-3).故答案为:(1,-3).【点睛】本题考查了二次函数的顶点式,需熟练理解二次函数顶点式2()y a x h k =-+的顶点坐标为(,)h k .17.4【解析】【分析】根据概率计算公式可知摸出白色棋子的概率等于白色棋子的数量除以总棋子数,由此列出分式方程求解即可.【详解】 解:由题意得:265x x =+, 解得4x =,经检验4x =是原方程的解,⊙盒中有白色棋子4颗,故答案为:4.【点睛】本题主要考查了概率计算公式,解分式方程,正确理解题意列出方程求解是解题的关键. 18.3【解析】【分析】根据扇形面积公式S扇=2360n rπ(n为圆心角度数),代入圆心角,已知面积求半径即可.【详解】⊙扇形面积公式S扇=2360n rπ(n为圆心角度数),⊙S扇=222603 36036062 n R r rππππ===,⊙2369 2rππ⨯==,⊙3r==.故答案为:3.【点睛】本题考查了扇形面积,要能熟练掌握扇形面积公式并进行相关计算.19【解析】【分析】分情况讨论,第一种情况,过点E作EM⊙BC于点M,当H点在M点左侧时,连接HF、HE,利用勾股定理即可求解;第二种情况,过点E作EM⊙BC于点M,当H点在M点右侧时,连接HF、HE,同理可求出HF,问题得解.【详解】如图,第一种情况,过点E作EM⊙BC于点M,当H点在M点左侧时,连接HF、HE,在矩形ABCD中,AD=BC=6,AB=DC=4,⊙E点为AD中点,F点为DC中点,⊙AE=ED=3,DF=FC=2,⊙EM⊙BC,⊙可知四边形AEMB是矩形,⊙EMB=90°,⊙BM =AE =3,ME =DC =4,即MC =BC -BM =6-3=3,⊙Rt ⊙EMH 中,EH =⊙2HM ==,⊙HC =MH +MC =2+3=5,⊙R t⊙HFC 中,⊙HF =第二种情况,过点E 作EM ⊙BC 于点M ,当H 点在M 点右侧时,连接HF 、HE ,如图,同理HM =2,则有HC =MC -HM =3=2=1,⊙Rt ⊙HFC 中,HF.【点睛】本题考查了矩形的判定与性质、勾股定理等知识,注重分类讨论的思想是解答本题的关键.20【解析】【分析】过点A 作AE ⊙BD 于点E ,AC 、BD 交于点F ,从而证明AE BC ∥,得出BCA CAE ∠=∠,根据等腰三角形的性质和3CAD BAC ∠=∠,得出EAF BAC ∠=∠,即可得出BAC BCA ∠=∠,证明BC BA =,根据:5:8AB BD =,得出:5:4AB BE =,设5AB a =,则4BE a =,根据勾股定理算出AE =3a ,根据平行线分线段成比例定理,得出35AF EF AE CF BF BC ===,求出58CF =⨯5582BF BE a ==,根据勾股定理列出关于a 的方程,解方程即可得出a 的值,最后求出CD 即可.【详解】解:过点A 作AE ⊙BD 于点E ,AC 、BD 交于点F ,如图所示:⊙90AEB CBD ∠=∠=︒,⊙AE BC ∥,⊙BCA CAE ∠=∠,AB AD =,AE BD ⊥,⊙BAE DAE ∠=∠,12BE DE BD ==, ⊙3CAD BAC ∠=∠,⊙设BAC x ∠=,则3CAD x ∠=,⊙34DAB x x x ∠=+=, ⊙1422BAE x x ∠=⨯=, EAF BAC x ∴∠=∠=,⊙BAC BCA ∠=∠,⊙BC BA =,⊙:5:8AB BD =,:5:4AB BE ∴=,设5AB a =,则4BE a =,则3AE a ==,3355AE a AB a ∴==, 35AE BC ∴=, AE BC ∥,⊙~AEF CBF ⊙35AF EF AE CF BF BC ===,⊙AF CF AC +==⊙58CF =⨯= ⊙4BF EF BE a +==, ⊙5582BF BE a ==, ⊙5BC AB a ==,222CF BC BF =+,⊙()222552a a ⎛⎫=+ ⎪⎝⎭, 解得:1a =或1a =-(舍去),⊙5BC =,8BD =,⊙CD【点睛】本题主要考查了等腰三角形的判定和性质,勾股定理,相似三角形的判定和性质,平行线的判定和性质,作出辅助线,根据角度之间的关系,得出AB =BC ,是解题的关键. 21【解析】【分析】首先将括号里面的分式进行通分,然后将除法改成乘法进行约分化简,最后将x 和y 根据三角函数的计算法则求出x 和y 的值,最后代入进行计算.【详解】解:原式=23()2x xx x y x-⋅--=3x y-y=4×12=2⊙原式【点睛】本题考查分式的化简求值.22.(1)见解析(2)图见解析,AE=【解析】【分析】(1)先确定90A∠=︒,求出AB,根据面积公式及AB的长即可求得AC,进而可求解.(2)根据平行四边形的性质,确定EF,再利用面积即可求解.(1)解:如图所示,在Rt ABC在,90A∠=︒,AC==AB=11522ABCS AB AC∴=⋅=⨯,ABC∴即为所求.(2)如图所示,AB EF=AF=BE,AB EF AF BE∴==,∴四边形ABEF是平行四边形,1135122322722ABEF S =⨯-⨯⨯⨯-⨯⨯⨯=,AE ==, ∴平行四边形ABEF 即为所求,AE =【点睛】本题考查了作图—复杂作图、三角形面积、平行四边形面积、勾股定理,解题的关键是利用数形结合思想解决问题.23.(1)50人(2)见解析(3)1080名【解析】【分析】(1)通过条形图可知阅读量为2本的人数是10人,用人数除以其占比即可求解;(2)用总人数减去阅读量为1本、2本、3本、5本的人数,即可求出阅读量为4本的人数,据此画条形图即可;(3)先求出样本中阅读量在3本及以上人数的占比,在与全校总人数相乘即可求解.(1)1020%50÷=(人),即调查总人数为50人;(2)阅读量为4本的人数:5041015615----=(人),补全条形统计图如图所示,(3)151561*********++⨯=(人), 即全校阅读量在3本及以上达到良好的人数估计有1080人.【点睛】本题考查了条形统计图、用样本估计总体的知识,注意数形结合是解答本题的关键. 24.(1)证明见解析(2)OB ,OD ,AB ,CD【解析】【分析】(1)先根据平行四边形的性质可得AD BC ∥,再根据三角形全等的判定定理证出BOE DOF ≅△△,根据全等三角形的性质可得BE DF =,然后根据平行四边形的判定可得四边形FBED 为平行四边形,最后根据菱形的判定即可得证;(2)先根据矩形的判定与性质可得,90AB CD ABC =∠=︒,再根据菱形的性质可得,DBF DBC DBF BDE ∠=∠∠=∠,从而可得30ABF DBF DBC ∠=∠=∠=︒,然后分别在Rt BOF △和Rt ABF 中,解直角三角形即可得.(1) 证明:四边形ABCD 为平行四边形,AD BC ∴,,OBE ODF OEB OFD ∴∠=∠∠=∠,点O 为BD 的中点,OB OD ∴=,在BOE △和DOF △中,OBE ODF OEB OFD OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BOE DOF AAS ∴≅,BE DF ∴=,∴四边形FBED 为平行四边形,又EF BD ⊥,∴四边形FBED 为菱形.(2) 解:四边形ABCD 为平行四边形,且90A ∠=︒,∴四边形ABCD 为矩形,AB CD =,90ABC ∴∠=︒,由(1)已证:四边形FBED 为菱形,BF DE ∴∥,DBF DBC ∠=∠,DBF BDE ∴∠=∠,ABF BDE ∠=∠,1303ABF DBF DBC ABC ∴∠=∠=∠=∠=︒,在Rt BOF △中,tan OF OB DBF==∠,2BF OF =,OD ∴=,在Rt ABF 中,cos 2cos30AB BF ABF OF =⋅∠=⋅︒=,CD ∴,长的线段有OB ,OD ,AB ,CD .【点睛】本题考查了菱形的判定与性质、矩形的判定与性质、解直角三角形等知识点,熟练掌握特殊四边形的判定与性质是解题关键.25.(1)A 种进价每个为5元,则B 每个进价为6元(2)100件【解析】【分析】(1)设购进A 商品每件进价x 元,B 商品每件进价x +1元.等量关系:60元购进A 商品的件数与72元购进B 商品的件数相同.据此列出方程,并解答;(2)设购进A 种m 件,则购进B 种()140m -件,根据购进A 、B 两种商品降价前后共获利不少于460元列出不等式解答即可.(1)解:设A 种进价每个为x 元,则B 每个为(1)x +元, 由题意列得:60721x x =+, 解得:5x =经检验5x =是原分式方程的解,答:A 种进价每个为5元,则B 每个进价为6元.(2)设购进A 种m 件,则购进B 种()140m -件,根据题意得(85)(106)(140)460m m -+--,解得100m ,答:最多购进A 商品100件.【点睛】本题考查了一元一次不等式的应用和分式方程的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的不等或等量关系.26.(1)见解析(2)见解析(3)【解析】【分析】(1)连接DB ,先利用BF 为直径,证得90BCF ∠=︒ ,则90F FBC ∠+∠=︒,再利用弧、弦与圆周角的关系,得到FBC ABD ∠=∠,CFB BDC ∠=∠,即可得90CDB ABD ∠+∠=︒,求得90BED ∠=︒即可得答案.(2)连接AC ,设CBF α∠=,证明ECG CGB CEG α∠=∠-∠=,ACD FBC GCE α∠=∠==∠,再加上CE CE =,可证ACE GCE △△≌,即可求得AE GE =;(3)先证得BED CEG △△≌,得求出45NGB NBG ∠=∠=︒,则NG NB =,即可求得13GE CE = ,再证得1tan tan 2FBA BCG ∠=∠=,再通过解直角三角形,求得6AF AM MF =+=,12AB =, =AD BDCFBK 为平行四边形,BK CF AD ===1tan tan2DBL FBA ∠=∠=,则BD =DL =BL =得KL BL BK =+=(1)BF 为直径90BCF ∴∠=︒90F FBC ∴∠+∠=︒CF AD =⊙CF AD =FBC ABD ∴∠=∠CFB ∠与BDC ∠同对弧BCCFB BDC ∴∠=∠90CDB ABD ∴∠+∠=︒18090BED CDB ABD ∴∠=︒-∠-∠=︒AB CD ∴⊥(2)连接AC设CBF α∠=,则90CFB α∠=︒-2CGB F CBF ∠-∠=∠90CGB α∴∠=︒+由(1)可知AB CD ⊥90CEG ∴∠=︒ECG CGB CEG α∴∠=∠-∠=AD CF =∵CF AD ∴=弧弧ACD FBC GCE α∴∠=∠==∠90CEA CEG ∠=∠=︒,CE CE =ACE GCE ∴△△≌AE GE ∴=(3)连接OA ,F A ,AC ,过点H 作HM FA ⊥于点M ,过点G 作GN BC ⊥于点N ,过点D 作DL KB ⊥交KB 的延长线于点L .⊙ACE GCE △△≌⊙⊙CAB =⊙EGC⊙⊙CAB =⊙EDB ,⊙⊙EGC =⊙EDB又⊙⊙CEG =⊙BED =90°,BD =CG⊙BED CEG △△≌EB EC ∴=45EBC ECB ∴∠=∠=︒GN BC ⊥45NGB NBG ∴∠=∠=︒NG NB ∴=设NB NG k ==1tan 2BCG ∠=2CN k ∴=,BG =3BC k ∴=CE BE ∴==,EG 13GE CE ∴= AE EG =AG BG ∴=180HFA AFC ∠+∠=︒ ,180CBA AFC ∠+∠=︒45HFA CBA ∴∠=∠=︒45ECG BCG ∠+∠=︒,45FBA CBF ∠+∠=︒,ECG CBF ∠=∠BCG FBA ∴∠=∠1tan tan 2FBA BCG ∴∠=∠= OA OF =OAF OFA ∴∠=∠ HA 切O 于点A⊙=HAF FBA ∠∠(弦切角定理)1tan tan 2HAF FBA ∴∠=∠=⊙sin HAF ∠=⊙5sin 25HM HAF AH =∠=,4tan HM AM HAM ==∠ ⊙2FM HM ==⊙6AF AM MF =+=212AB AF ∴==⊙162AG BG AB === ⊙132AE AG ==,9BE =⊙=AD BD =⊙BK BC ⊥,90FCB ∠=︒⊙FCB CBH ∠=∠又⊙//FC BF⊙四边形CFBK 为平行四边形BK CF AD ∴===⊙FC AD =⊙FBC ABD ∠=∠⊙45FBC FBA ∠+∠=︒,45ABD DBL ∠+∠=︒⊙DBL FBA ∠=∠ ⊙1tan tan 2DBL FBA ∠=∠=⊙BD =⊙解Rt BDL 得DL =BL =⊙KL BL BK =+=⊙利用勾股定理得:DK =【点睛】本题主要考查的是圆的综合应用,解答本题主要应用了切线的性质、圆周角定理、特殊锐角三角函数值,平行四边形的判定和性质,能构造直角三角形是解题的关键. 27.(1)4y x =+ (2)d =【解析】【分析】(1)先求解A ,B 的坐标,再利用待定系数法求解一次函数的解析式即可;(2)过点F 作FH FA ⊥交AB 于点H ,记,AB EF 的交点为P ,证明FAE FHB △△≌,可得BH AE =,,FH AF 从而可得结论;(3)过点E 作EL y ⊥轴于点L ,过点B 作BK FH ⊥于点K ,过点E 作EN x ⊥轴于点N ,交F A 的延长线于点M .证明FME GLE △△≌,MFE HEN ∠=∠,由(2)问可知EC =,又CE =, 可得AF EN =,结合45AF EH = ,证明4an 3t FEM ∠=,设4AF EN m ==,EM EL a AM ===,可得344tan MF a m FEM ME a +∠=== ,可得12a m =,164FM m MN ===,可得14m = ,再求解FQ =2222,FB FK BH KH 求解517,17FK 从而可得答案. (1)解: 直线4y x =-+交x 轴于C ,交y 轴于A , 当0,y = 则4,x = 当0,x = 则4,y = 4,0,0,4C A ,点B 与点C 关于y 轴对称.4,0,B设AB 为,y kx b =+4,40b k b 解得:1,4k b 所以AB 为: 4.yx (2)过点F 作FH FA ⊥交AB 于点H ,记,AB EF 的交点为P ,0,4,4,0,4,0,A B C,OA OB OC ∴==45,OAB OBA OAC OCA ∴ 90BAC ∠=︒, 90,BAC BFE,FPB APE ,FBP FEA 90,BAC BFE ∴ 90,BFH HFE HFE AFE ,BFH EFA ∴ FAE FHB △△≌,BH AE ∴=,,FH AFAB BH AC AE ∴-=-,2,AHAF AH CE ∴=, 2,CE AFd ∴=(3)过点E 作EL y ⊥轴于点L ,过点B 作BK FH ⊥于点K ,过点E 作EN x ⊥轴于点N ,交F A 的延长线于点M .由(2)问可知45,BAFBAO 则AF y ⊥轴, ∴ FA BC ∥ ,,FA EN则45CAO MAE ∠=∠=︒,,EL EM AM ∴==而,,EG BF BF EF 则,EF EG = 90,M GLE∴ FME GLE △△≌,FEM GEL ∴∠=∠,90FEL FEM ∠+∠=︒,90GEL FEL ∴∠+∠=︒,90FEG ∴∠=︒,90HEN FEM ∴∠+∠=︒,90EFM FEM ∠+∠=︒,MFE HEN ∴∠=∠,由(2)问可知EC =,又CE =, AF EN ∴=, 45AF EH = , 45EN EH ∴=, 4sin 5EHN ∴∠= , 4tan ,3EHN4tan 3FEM ∴∠=, 设4AF EN m ==,EM EL a AM ===, 344tan MF a m FEM ME a+∴∠=== , 12a m ∴=,164FM m MN ∴===,14m ∴= , 1AF ∴=,3,EM∴ 5FE =, 过点Q 作QR EF ⊥于R , 31,4,1,,3,4AF AO EN HNON AM 91,4,3,1,,0,4F E H 同理可得:BE 为14,77y x FH 为1636,1313y x答案第25页,共25页 1477,16361313yx y x 解得:85,45x y 84,,55Q FQ ∴ 2241045,BI BF 229514017,44FH由勾股定理可得:2222,FB FK BH KH 2222951754,44FK FK517,17FK,,BF BI BK FH∴FK IK==2IQ ∴= 【点睛】本题考查的是利用待定系数法求解一次函数的解析式,全等三角形的判定与性质,等腰直角三角形的性质,勾股定理的应用,锐角三角函数的应用,本题的综合程度高,属于中考压轴题.。
2024年黑龙江省哈尔滨市中考数学考前模拟试题一、单选题1.2024的相反数是( )A .2021B .2024-C .12024D .12024- 2.下列计算中,正确的是( )A .32523a a a -=B .()236a a -=C .3412236⨯=D .347m m m m ⋅⋅=3.如图是由大小相同的小正方体搭成的几何体,下列关于该几何体三视图的描述:①主视图是中心对称图形;②左视图是轴对称图形;③俯视图既是轴对称图形,又是中心对称图形.其中正确的是( )A .①B .②C .③D .②③4.某无盖分类垃圾桶如右图所示,则它的俯视图是( )A .B .C .D . 5.如图所示,已知AB CD ∥,37A ∠=︒,63C ∠=︒,那么F ∠的度数为( )A .63°B .45°C .37°D .26°6.如图,抛物线2y ax bx c =++经过点()2,0-,()3,0.下列结论:①0ab c >;②2c b =;③若抛物线上有点15,2y ⎛⎫ ⎪⎝⎭,()23,y -,31,2y ⎛⎫- ⎪⎝⎭,则213y y y <<;④方程20cx bx a ++=的解为112x =,213x =-,其中正确的个数是( )A .4B .3C .2D .17.现定义一种新运算“※”,对任意有理数m 、n 都有()m n mn m n =-※,则()()a b a b +-=※( )A .2222ab b -B .2322a b b -C .2222ab b +D .222ab ab -8.“敬老爱老”是中华民族的优秀传统美德.小刚、小强计划利用暑期从A ,B ,C 三处养老服务中心中,随机选择一处参加志愿服务活动,则两人恰好选到同一处的概率是( )A .12B .13C .16D .299.如图,已知正方形ABCD 由四个全等的直角三角形和一个小正方形EFGH 组成,把四个直角三角形分别沿斜边向外翻折,得到正方形MNPQ ,连接MF 并延长交NP 于点O ,设正方形EFGH 的面积为1S ,正方形MNPQ 的面积为2S ,若12449S S =,则OP OC 的值为( )A.4920B.5625C.3516D.210.双胞胎兄弟小明和小亮在同一班读书,周五16:00时放学后,小明和同学走路回家,途中没有停留,小亮骑车回家,他们各自与学校的距离s(米)与用去的时间t(分)的关系如图所示,根据图象提供的有关信息,下列说法中错误的是()A.兄弟俩的家离学校1000米B.他们同时到家,用时30分C.小明的速度为50米/分D.小亮中间停留了一段时间后,再以80米/分的速度骑回家二、填空题11.截止2021年4月中国高速路总里程达16万公里.请将“16万”用科学记数法表示记为.12.在函数31yx=+中,自变量x的取值范围是.13.反比例函数y=1kx+的图像经过点(-2,3),则k的值为.14.一个等腰三角形的周长为15.因式分解:3221218a a a-+=.16.不等式组2(1)3213x x +≤⎧⎪-⎨>-⎪⎩的解集为. 17.如图,ABC V 是等腰三角形,AC BC ⊥,以点A 为圆心,AC 为半径画弧,交边AB 于点D .若2AB =,则»CD 的长为(结果保留π).18.用火柴棍拼成如下图案,其中第①个图案由4个小等边三角形围成1个小菱形,第②个图案由6个小等边三角形围成2个小菱形,……,若按此规律拼下去,则第n 个图案需要火柴棍的根数为(用含n 的式子表示).19.如图所示的一块地,∠ADC=90°,CD=3,AD=4,AB=13,BC=12,求这块地的面积为.20.如图,在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒,1AC =,点D 为AB 边上一点(不与A ,B 重合),点E 为BC 的中点,将CDE V 沿DE 翻折,得到DEF V ,连接BF ,当以点D ,E ,B ,F 为顶点的四边形为平行四边形时,AD 的长为.三、解答题21.先化简,再求值.22421244x x x x x x x x -+-⎛⎫÷+ ⎪--+⎝⎭.已知2x .22.如图,在Rt ABC △中,30B ∠=o ,3AC =.(1)求作:以斜边AB 为对角线且其中一个顶点在BC 边上的菱形;(尺规作图,保留作图痕迹)(2)求(1)中所求作菱形的边长.23.在贯彻落实“五育并举”的工作中,某校开设了五个社团活动:传统国学(A )、科技兴趣(B )、民族体育(C )、艺术鉴赏(D )、劳技实践(E ),每个学生每个学期只参加一个社团活动.为了了解本学期学生参加社团活动的情况,学校随机抽取了若干名学生进行调查,并将调查结果绘制成如下两幅尚不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)将条形统计图补充完整;(2)在扇形统计图中,传统国学(A )对应扇形的圆心角度数是______;(3)若该校有2700名学生,请估算本学期参加艺术鉴赏(D )活动的学生人数;(4)若小明和小亮可从这五个社团活动中任选一个参加,请直接写出两人恰好选择同一个社团的概率.24.如图,在ABC V 中,90BAC ∠=︒,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF .(1)求证:四边形ADCF 是菱形;(2)若60ACB ∠=︒,平行线AF 与BC 间的距离为ADCF 的面积.25.2022年7月19日亚奥理事会宣布将于2023年9月23日至10月8日在杭州举办第19届亚运会,吉祥物为“宸宸”、“琮琮”、“莲莲”,如图,某校准备举行“第19届亚运会”知识竞赛活动,拟购买30套吉祥物(“宸宸”、“琮琮”、“莲莲”)作为竞赛奖品.某商店有甲,乙两种规格,其中乙规格比甲规格每套贵20元.(1)若用700元购买甲规格与用900元购买乙规格的数量相同,求甲、乙两种规格每套吉祥物的价格;(2)在(1)的条件下,若购买甲规格数量不超过乙规格数量的2倍,如何购买才能使总费用最少?26.如图,已知抛物线经过原点O ,顶点为A(1,1),且与直线-2y x =交于B ,C 两点. (1)求抛物线的解析式及点C 的坐标;(2)求△ABC 的面积;(3)若点N 为x 轴上的一个动点,过点N 作MN ⊥x 轴与抛物线交于点M ,则是否存在以O ,M ,N 为顶点的三角形与△ABC 相似?若存在,请求出点N 的坐标;若不存在,请说明理由.27.如图,在Rt ABC △中,90BAC ∠=︒,AB AC =,D ,E 是边BC 上的两点,过点D ,E 分别作DM AB ⊥,EN AC ⊥,垂足为M ,N ,MD 与NE 的延长线交于点F ,连接,AD AE .(1)若BD CE =.①求证:AD AE =.②试判断四边形AMFN 是什么特殊的四边形,并说明理由.(2)若BD CE ≠,45DAE =︒∠,DE AD =,求22CE BD DE CD +⋅的值.。
xx 年 5 月哈尔滨市中考数学模拟训练题一、选择题 :本大题共 10 个小题,每小题 3 分,共 30 分 . 在每小题给出的四个选项中, 只有一个选项符合题意要求 . 1. 下运算正确的是()A. (- a ) 2 =- a 2B.(b 3)2 = b 5C. 2x 5+ x 5= 3x 5D. y 8n ÷y 4n = y 2n 2. 已知小明同学身高 1.5 米,经太阳光照射,在地面的影长为2 米,若此时测得一塔在同一地面的影长为 60 米,则塔高应为 ( )A. 90 米B. 80 米C. 45 米D. 40 米3. 如果关于 x 的不等式 (a+1) x>a+1的解集为 x<1,那么 a 的取值范围是 ()A. a>0B. a<0C. a>-1D. a<-14. 如图 1,宽为 50 cm 的矩形图案由 10 个全等的小长方形拼成,其中一个小长方形的面积为 ( )A. 400 cm 2B. 500 cm 2C. 600 cm 2D. 4000 cm 2图 15. 下列结论中,错误的命题有()①半圆是弓形;②平分弦的直径垂直平分弦;③正相等的圆的外切 n 边形一定是正 n 边形图 2n 边形的对称轴共有 n 条;④各角A.0B.1C.2D.46. 点 M(-sin60°, cos6 0°) 关于 x 轴对称的点的坐标是 ()A . (3 , 1) B . ( - 3 , 1)C. ( - 3 , 1)D .( - 1,- 3 )222 2 22227. 如图 2,在 ABC 中,∠ C=90°, AC=8, AB=10,点 P 在 AC 上, AP=2,若⊙O 的圆心在线段 BP 上,且⊙O 与 AB 、 AC 都相切,则⊙O 的半径是 ( )A. 1B. 5C.12 D.94748. 如图 3,已知 BC 为等腰三角形纸片 ABC 的底边, AD ⊥ BC , AD=BC. 将此三角形纸片沿AD剪开,得到两个三角形,若把这两个三角形拼成一个平面四边形,则能拼出互不全等的四边形的个数是( )A. 1B. 2C. 3D. 4ADEBOC图 39.BC 为圆的半径, O为圆心, D是 AC的中点,四边形ABCD的对角线 AC,BD交于点 E,则下列结论:① AD=CD;② OD//AB; ③ AE· BD=AB·CD;④AD 2=DE·BD;⑤ BD·BD+CE·CA=BC 2, 则正确的个数是()A. 2 B . 3 C . 4 D . 510.两个完全相同的长方体的长、宽、高分别为5cm、 4cm、3cm,把它们叠放在一起组成一个新的长方体,在这些新长方体中,表面积最大是( ).A. 158 cm2B. 164 cm2C. 176 cm2D. 188 cm2二、填空题:本大题共 10 个小题 , 每小题 3 分 , 共 30 分 . 把答案直接填在题中横线上 .11.分解因式: a3-a=;12.十届人大三次会议温总理在班府报告中指出,中央财政将安排1090000 万元解决下岗工人再就业问题,这个数字用科学记数发表示成;13.如图,在ABC中, BC=5 cm, BP、 CP分别是∠ ABC 和∠ ACB的角平分线,且PD∥AB,PE∥AC,则PDE的周长是 ___________ cm.14.若非零实数a,b 满足 4a2+b2=4ab,则b=___________. a15.我市某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7 立方米,则按每立方米 1 元收费;若每月用水超过 7 立方米,则超过部分按每立方米2 元收费 . 如果某居民户今年 5 月缴纳了 17 元水费,那么这户居民今年 5 月的用水量为 ________立方米 .16.在直角坐标系中,直线y=xx-x 与函数y4的图象交于点 AB 。
设点 A 的标点为( x1,xy1),那么x1, y1的矩形的周是;17.分析① , ② , ④中阴影部分的分布律,按此律在③中画出其中的阴影部分.18.如,矩形 ABCD中, AB=6,BC=4,以 A 心, AD 半径画弧交 AB于点 E,以 C心, CD半径画弧交CB的延于点F,中阴影面是;xO AO1·B yCP19.如,一个正三角形依次成正六形、正十二形、正二十四形、⋯.当些正多形的周都相等,正六形的面正十二形的面( 填不等的符号 ). A 1 B1A 1A 2= 2B 1B 2 B 2 B 6正十二边形B 3 B 5(图略 )A 2 A 3 B420.如在平面直角坐系中,·与 x 正半交于·○ O1 A 、B 两点, BO 的延交○O1 C交 y 的半于P。
PC=BC=10 。
O1点的坐-·3,D ○O1上一点,当 S△ ABD=4, D 的坐.三 . 解答:(21 4 分, 22 5 分, 23 4 分, 24 5 分, 25 5 分, 26— 28 各 6 分, 30 10 分,共60 分)。
21.先化x 1 (x 2 3 ) ,再求x=tan45°-cos30°.x2 x 2 x 222.换元法解方程:( x ) 2 5( x ) 6 0 。
x 2 x 223.如图9,E 是正方形ABCD 的对角线BD 上一点,EF BC , EG CD ,垂足分别是 F , G . 求证:AE FG .DGC E FA B图 924、某中学团委到位于 A 市南偏东600方向 50 海里的 B 基地慰问驻车,然后乘船前往位于B 基地正西方向的C哨所看望值班战士,C 哨所位于 A 市的南偏西430方向,求 C 到A 的距离(精确到 1 海里,以下数据供选用sin43 0≈0.68,cos43 0≈0.73)ACB25、我市部分学生参加了xx 年全国初中数学竞赛决赛,并取得优异成绩. 已知竞赛成绩分数都是整数,试题满分为140 分,参赛学生的成绩分数分布情况如下:分数段0- 1920- 39 40- 59 60- 79 80- 99 100-120- 140 119人数0 37 68 95 56 32 12请根据以上信息解答下列问题:(1)全市共有多少人参加本次数学竞赛决赛?最低分和最高分在什么分数范围?(2)经竞赛组委会评定,竞赛成绩在 60 分以上 ( 含 60 分 ) 的考生均可获得不同等级的奖励,求我市参加本次竞赛决赛考生的获奖比例;(3)决赛成绩分数的中位数落在哪个分数段内?(4)上表还提供了其他信息,例如:“没获奖的人数为 105 人”等等 . 请你再写出两条此表提供的信息 .26、如图 AB是半圆 O的直径,OB是半圆 C的直径,半圆 O的弦 AE切半圆 C于 F。
已知 AE=8cm,求:( 1)半圆 C 的半径;( 2)△ BCE的面积。
27、现计划把甲种货物1240 吨和乙种货物880 吨用一列货车运往某地,已知这列货车挂有 A、 B 两种不同规格的车厢共40 节,如果每节 A 型车厢最多可以装甲种货物35 吨和乙种货物15 吨,每节 B 型车厢最多可装甲种货物25 吨和乙种货物35 吨,装货时按此要求安排A、 B 两节车厢的节数,那么共有几种安排车厢的方案?28、如图甲、乙两人在A、 B 两地间行程的函数图像如下,回答问题。
(1)甲在什么时间改变速度?(2)甲乙在何时相距最远?(要求说明理由)( 5)甲出发后多长时间两车相距10km?y8070605040302010 甲乙x1 23 4 5 6时间 (h)29、已知在Rt △ ABC中∠ ABC= 90°, D为 AC上一点,且 AD和 CD的长是关于 X 的一元二次方程 x2- 12x+ m2+ 4m+ 40= 0 的两个实数根,⊙O 经过 A、 D、 B 三点, CB的延长线交⊙O 于点 E,过点 E 作⊙ O的切线交 AC延长线于点 F,连续 DE交 AB于 N,连接 ON和 CN。
(1)求证:△ ABD为等腰三角形 ;(2)过 D作 DM⊥ AE于 M,若满足 CF· DE= AE· DM,求 sin ∠ FAB的值 ;(3)在( 2)条件下,求作以 NO、 NC为根的一元二方程。
NM30.如图,二次函数 y 1 ax2 1ax a (a 0 )的图象与 y 轴交于点A,与x轴交于36 4点 B、 C,过 A 点作 x 轴的平行线交抛物线于另一点D,线段 OC上有一动点P,连结DP,作 PE⊥DP,交 y 轴于点 E.( 1)当 a 变化时,线段AD的长是否变化?若变化,请说明理由;若不变,请求出AD 的长;( 2)若 a 为定值,设OP x , OE= ,试求y关于 x 的函数关系式;y( 3)若在线段 OC上存在不同的两点P 、 P 使相应的点 E 1、 E 2都与点 A 重合,试求1 2a 的取值范围.yA DEB COP x。