钢-混凝土组合梁计算原理及截面设计
- 格式:docx
- 大小:16.52 KB
- 文档页数:3
组合梁模拟方法探讨1问题描述:组合梁是一种较复杂的结构,截面通常由两种不同材料结合或不同工序结合而成的,亦称为联合梁。
目前,桥梁领域使用比较广泛的是钢—混凝土组合梁,其模拟方法基本有两种:①采用施工联合截面,②采用双单元。
对于相同的结构,分别采用上述两种方法,其结果是否一致?如果不相同,是什么原因造成的?2问题分析2.1 模型基本情况介绍主梁为钢—混凝土组合结构,截面由工字型钢梁和混凝土桥面板结合而成,联合截面尺寸数据详见图2-1。
钢材和混凝土材料分别为Q235和C60。
结构为15m+5m+12m三跨连续梁,双单元模型和联合截面模型详见图2-2和图2-3。
图2-1 联合截面图2-2 双单元模型图2-3 联合截面模型2.2 模型细节模拟说明2.2.1联合截面模型截面采用中上对齐,并且考虑剪切变形。
施工阶段为架设钢梁和铺设混凝土板,架设钢梁时考虑自重及混凝土板的湿重。
单个单元消隐图详见图2-4。
图2-4 单元消隐图(中上对齐)2.2.2 双单元模型工字钢和矩形混凝土板均采用中上对齐,并且考虑剪切变形,单元通过弹性连接刚性连接。
施工阶段同联合截面模型,边界约束在混凝土板节点上,单个单元消隐图详见图2-5。
图2-5 单元消隐图(中上对齐)2.3 结果对比2.3.1 架设钢梁(CS1)联合截面模型结果:图2-6 弯矩图(N.mm)图2-7 位移图(mm)图2-8 组合1应力图(MPa)双单元模型计算结果:图2-9 弯矩图(N.mm)图2-10 位移图(mm)图2-11 组合1应力图(MPa)表格结果对比(单位:N,mm)2.3.2 铺设混凝土板(CS2)联合截面Part2计算结果:图2-12 弯矩图(N.mm)图2-13 位移图(mm)图2-14 组合1应力图(MPa)双单元模型混凝土板计算结果:图2-15 弯矩图(N.mm)图2-16 位移图(mm)图2-17 组合1应力图(MPa)2.3.3 结果分析及问题通过上述对比,有如下现象:1 联合截面和双单元模型在CS1阶段,结果基本一致。
钢-混凝土组合结构设计理论及应用摘要:本文对钢—混凝土组合结构及其设计基本要求进行阐述,从理论层面具体分析了钢-混凝土组合结构设计中特别需要注重的问题,并以某工程为例从节点设计角度探讨了钢-混凝土组合结构设计的应用。
关键词:钢-混凝土组合结构;设计;应用;节点设计Abstract: in this paper, the steel - concrete composite structure and elaborates the design basic requirements, specific analysis from theoretical aspects in the design of the steel - concrete composite structure special need to pay attention to the problem, taking a project as an example from the node design Angle discusses the application of steel - concrete composite structure design.Keywords: steel - concrete composite structure; Design; Applications; Node design一、钢-混凝土组合结构及其设计的基本要求 由两种或两种以上性质不同的材料组合成整体,共同受力、协调变形的结构,称其为组合结构。
钢-混凝土组合结构是在钢结构和钢筋混凝土结构基础上发展起来的一种新型结构,是专指型钢或用钢板焊接成的钢骨架,与混凝土形成一体的结构,是继传统的木结构、砌体结构、钢结构和钢筋混凝土结构之后的第5大结构体系。
这种组合结构体系,主要有压型钢板组合板、组合梁、型钢混凝土、钢管混凝土和外包钢混凝土等5种类型。
钢骨混凝土梁的力学性能及计算原理(浙江东南建筑设计有限公司 310000)摘要:高层建筑越来越多,带转换层的建筑也比较普遍。
转换层的存在使竖向刚度发生突变导致力的传递发生改变,在转换层处受力变得复杂,在考虑地震情况下,更是复杂。
所以对转换层的研究是非常必要的。
关键词:钢骨;梁;计算原理1、钢骨混凝土梁的性能钢骨混凝土(src)构件和普通钢筋混凝土(rc)构件相比,其受力性能的差别主要表现如下:1、src构件的含钢量比rc构件的含钢量大得多,所以src构件比rc构件的刚度明显提高。
这为在风荷载和地震作用下控制结构的水平位移提供了有利的条件。
2、src构件的强度、刚度和延性较好,采用src结构不仅具有足够的抗震能力,而且可以使得梁、柱等构件截面大大减小,因此能减少构件的面积,降低建筑物高度,在改善房间功能、降低造价和能耗及结构抗震方面都极为有利,可获得较好的综合效益。
3、src构件的混凝土有利于提高型钢的整体稳定性,防止发生局部屈曲、弯曲失稳及梁发生侧向失稳的不利现象。
4、src构件的耗能性能好。
从试验中得到src柱滞回曲线饱满,所围的面积较大,这说明其耗能性能好。
2、钢骨混凝土梁计算的基本假定我国冶金部颁布的《钢骨混凝土结构设计规程》isl(ybgo82一97)中规定:型钢混凝土框架梁的正截面受弯承载力应按下列基本假定进行计算;(1)截面应变分布符合平截面假定;(2)不考虑混凝土的抗拉强度;(3)受压边缘混凝土极限压应变气取0.003,相应韵最大压应力取混凝土轴心抗压强度设计值关,受压区应力图形简化为等效的矩形应力图,其高度取按平截面假定所确定的中和轴高度乘以系数0.8,矩形应力图的应力取为混凝土轴心抗压强度设计值;(4)型钢腹板的应力图形为拉、压梯形应力图形。
设计计算时,简化为等效矩形应力图形;(5)钢筋应力取等于钢筋应变与其弹性模量的乘积,但不大于其强度设计值。
受拉钢筋和型钢受拉翼缘的极限拉应变气取0.01。
钢-混凝土组合梁结构计算书编制单位:计算:复核:审查:2009年3月目录1. 设计资料 (1)2. 计算方法 (2)2.1 规范标准 (2)2.2 换算原理 (2)2.3 计算方法 (3)3. 不设临时支撑_计算结果 (3)3.1 组合梁法向应力及剪应力结果 (4)3.2 施工阶段钢梁竖向挠度结果 (6)3.3 结论 (7)3.4 计算过程(附件) (7)4.设置临时支撑_有限元分析计算 (7)4.1 有限于建模 (7)4.2 施工及使用阶段结构内力 (9)4.2.1 施工阶段结构内力 (10)4.2.2 使用阶段结构内力 (11)4.3 组合梁截面应力 (13)4.3.1 截面应力汇总 (13)4.3.2 截面应力组合 (15)4.4 恒载作用竖向挠度 (16)4.4.1 施工阶段竖向挠度 (16)4.4.2 使用阶段恒载作用竖向挠度 (16)4.5 结论 (16)钢-混凝土组合梁结构计算1. 设计资料钢-混凝土组合梁桥,桥长40.84m ,桥面宽19.0m ;钢主梁高1.6m(梁端高0.7m),桥面板厚0.35m ;钢材采用Q345D 级,桥面板采用C50混凝土;车辆荷载采用公路-I 级车道荷载计算。
图 1 横向布置(cm)图 2 桥梁立面 (cm)钢主梁沿纵向分3个制作段加工,节段长度为13.6+13.64+13.6m ,边段与中段主要结构尺寸(图 3)见下表,其余尺寸详见设计图纸图 3 钢梁标准构造(mm)2. 计算方法2.1 规范标准现行《钢结构设计规范》(GB 50017-2003)第11章《钢与混凝土组合梁》针对不直接承受动力荷载的一般简支组合梁及连续组合梁而确定,对于直接承受动力荷载的组合梁,则应采用弹性分析法计算。
《铁路桥梁钢结构设计规范》(TB 10002.2-2005)第4.1.1条也规定:结构构件的内力应按弹性受力阶段确定。
尽管弹性分析法(容许应力法)不能充分组合梁的承载能力极限状态,但对于承受动力荷载的桥梁钢结构的强度计算是基本符合结构的实际受力状况的。
目录钢-混凝土连续梁桥设计计算书 (1)1 工程结构概况 (1)2 结构设计参数及设计原理 (1)3 截面特性计算 (2)3.1钢梁截面特性 (3)3.2混凝土截面特性 (3)3.3组合截面特性 (4)4 横向连接系的设计 (5)4.1横向联结系的设计 (5)4.2钢主梁腹板加劲肋的设计 (6)4.3主梁荷载的横向分布系数计算 (7)5 内力计算 (10)5.1恒载内力计算 (10)5.2活载内力的计算 (11)6 主梁作用效应组合与应力验算 (13)6.1应力验算 (13)6.2最不利荷载组合及应力组合 (18)6.3负弯矩区混凝土板的配筋计算 (20)6.4剪力连接件的计算 (21)6.5横隔梁的内力计算 (23)7 有限元软件分析计算 (26)7.1有限元建模与计算 (26)7.2结构内力计算结果 (27)7.3结构挠度计算结果 (29)钢-混凝土连续梁桥设计计算书1 工程结构概况本设计桥梁为某高速公路跨线桥,设计车道数为双向四车道,设计车速为120km/h ,设计荷载采用1.3倍公路-Ⅰ级荷载。
桥梁为跨径布置50m+80m+50m 的连续梁桥,桥宽为25.5m 。
通过综合分析比较各类桥型,本桥梁采用钢-混凝土组合梁桥结构形式对跨线桥进行初步设计,并进行结构设计验算。
本文先后分别进行截面设计,抗弯强度计算,以及抗剪强度设计。
本文设计过程先采用手工计算,再运用有限元软件进行复核。
2 结构设计参数及设计原理结构形式:采用连续有承托焊接工字型板梁方案,横桥向为等间距并排9个焊接工字梁,钢主梁的上翼缘顶部通过栓钉与现浇混凝土桥面板相连接,形成钢-混凝土组合结构共同承受外荷载作用。
桥梁沿桥跨方向,主跨等间距布置14道横隔梁,边跨布置9道横隔梁,以提高钢主梁的整体稳定性,保证各根主梁整体承载,三跨的横隔梁标准间距为6.00m ,结构立面如图2.1所示,桥梁桥跨方向的横断面如图2.2所示,结构钢主梁及横隔梁布置形式如图2.3所示。
钢管混凝土混合结构设计原理及其在桥梁工程中的应用摘要:钢管混凝土是--种轻质.高强的组合材料。
近年来在桥梁工程中的应用已越来越多,是一种有效而经济的结构形式。
钢管混凝土不仅已广泛用于拱式桥梁,在其他桥粱及桥粱的其他部位都已有应用。
文章着重介绍了钢管混凝土在桥墩.连续刚构桥,斜拉桥和拱桥上的应用实例,并建议尽快完善桥梁设计规范中的相关内容,以促进钢管混凝土在桥梁工程中的应用与发展。
关键词:钢管混凝土;应用;实例;桥梁工程1前言钢管混凝土是在圆形钢管内填入混凝土形成的一种轻质,高强的组合材料,是套箍混凝土的一种特殊形式。
其基本原理是借助圆形钢管对核心混凝土的套箍约束,使核心混凝土处于三向受压状态,从而具有更高的抗压强度和压缩变形能力。
钢管混凝土除具有强度高、重量轻,延性好,耐疲劳耐冲击等优越的力学性能外,还具有省工省料﹑架设轻便﹑施工快捷等优越的施工性能。
大量试验表明,钢管混凝土的工作性能比较接近于钢,而塑性和韧性还胜于钢。
钢管混凝土在桥梁中的应用是一种最有效,最经济的结构形式,因为:1)钢管对核心混凝土的套箍作用能有效地克服高强混凝土的脆性;2)钢管内无钢筋骨架,便于浇注;3)钢管外无混凝土保护层,能充分发挥高强混凝土的承载力。
钢管混凝土在桥梁工程中的应用越来越多,现简介如下。
2应用实例2.1桥墩日本秋田新干线某高架桥长约1km,其中 150m长路段为软土地带,采用填充土与水泥混合物的钢管桩并采用钢管混凝土桥墩。
对高架桥桥墩采用填充混凝土的钢管,具有如下优点:1)施工快捷;2)承载力大,抗震安全系数高;3)结构柔细,与风景协调。
其设计方法是将钢管截面积转换成钢筋截面积,并将它当作钢筋混凝土构件来计算。
施工步骤为:1)在钢管桩顶部安装锚固架作为承台;2)使用25t吊机将钢管混凝土桥墩的钢管插人锚固架中;3)在墩身与钢管桩钢管接头处填充无收缩水泥浆,并将它们完全固定;4)浇注承台与地下梁的钢筋混凝土;5)在墩身钢管中填充混凝土。
钢-混凝土组合梁计算原理及截面设计
钢-混凝土组合梁计算原理及截面设计
钢-混凝土组合梁是在钢结构和混凝土结构基础上发展起来的一种新型结构型式。
它主要通过在钢梁和混凝土翼缘板之间设置剪力连接件(栓钉、槽钢、弯筋等),抵抗两者在交界面处的掀起及相对滑移,使之成为一个整体而共同工作。
钢-混凝土组合梁同钢筋混凝土梁相比,可以减轻结构自重,减小地震作用,减小截面尺寸,增加有效使用空间,节省支模工序和模板,缩短施工周期,增加梁的延性等。
同钢梁相比,可以减小用钢量,增大刚度,增加稳定性和整体性,增强结构抗火性和耐久性等。
近年来,钢-混凝土组合梁在我国城市立交桥梁及建筑结构中已得到了越来越广泛的应用,并且正朝着大跨方向发展。
钢-混凝土组合梁在我国的应用实践表明,它兼有钢结构和混凝土结构的优点,具有显著的技术经济效益和社会效益,适合我国基本建设的国情,是未来结构体系的主要发展方向之一。
计算原理
在钢-混凝土组合梁弹性分析中,采用以下假定:
1、钢材与混凝土均为理想的弹性体。
2、钢筋混凝土翼缘板与钢梁之间有可靠的连接交互作用,相对滑移很小,可以忽略不计。
3、平截面假定依然成立。
4、不考虑混凝土翼缘板中的钢筋(该假设只在正弯矩承载力计算时成立,负弯矩承载力计算式需考虑钢筋作用[1])。
钢-混凝土组合梁弹性分析采用换算截面法。
(a)表示换算前截面,(b)表示换算后截面。
换算截面法的基本原理是:混凝土翼缘板按照总力不变及应变相同条件,换算成弹性模量为Es、应力为бs的与钢等价的换算截面面积。
具体计算时,为了混凝土截面重心高度换算前后保持不变,换算时混凝土翼缘板厚度不变而仅将翼缘板有效翼缘宽度be除以α E(钢材弹性模量与混凝土弹性模量的比值。
求得等价的钢梁截面后,可以按照材料力学的方法来计算截面的抗弯承载力。
设换算后截面的惯性矩为 I换算,换算截面形心轴距离钢梁底部为y 换算,组合梁总高为y换算作用在截面上的弯矩为M,而组合梁挠度的计算,则按照换算截面惯性矩计算组合梁截面刚度后,再由结构力学的方法计算梁的挠度。
截面设计
根据《公路桥涵钢结构及木结构设计规范》(JTJ025-86),对钢-混凝土组合梁进行了设计。
如图4所示,为该工程选用的组合梁截面图。
钢梁选为Q345B钢,混凝土翼缘板用 C40混凝土,剪力连接件采用[10槽钢。
组合梁总高为1650mm,高跨比约为31.5。
组合梁截面换算惯性矩为8.576×1010mm^4,而纯钢梁的截面惯性矩只有5.228×10 10mm^4,组合梁截面惯性矩是纯钢梁的1.64倍,大大提高了组合梁的刚度,减小了组合梁在荷载作用下的挠度。