蛋白质分子的结构基础
- 格式:ppt
- 大小:4.54 MB
- 文档页数:79
蛋白质二级级结构基础医学院生物物理系余子璘 10589031蛋白质结构的研究很早就受到许多科学家的关注,并提出了多种假说,但是一直没有一个令人满意的理论。
直到1952年丹麦生物化学家Linderstrom—Lang第一次提出蛋白质三级结构的概念,才使蛋白质结构的研究走上了正确的道路。
Linderstrom—Lang的三级结构概念包括:一级结构指多肋链中氨基酸的一定的顺序,靠共价键维持多脓链的连接,而不涉及其空间排列;二级结构,指多肤链骨架的局部空间结构,不考虑侧链的构象及整个肽链的空间排列;三级结构则是指整个肽链的折叠情况,包括侧链的排列,也就是蛋白质分子的空间结构或三维结构。
这一概念提出之后,立即被各国科学家所接受。
1958年,英国晶体学家Bernal在研究蛋白质晶体结构时发现,并非所有蛋白质的结构都达到三级结构水平.而有些蛋白质则有更复杂的结构,即由几个蛋白质的亚基结合成几何状排列。
许多蛋白质是由相同的或不同的亚基组成,靠非共价键结合在一起.他将这种结构称为四级结构[3]。
现在蛋白质的一、二、三、四级结构的概念已由国际生物化学与分子生物学协会(IUBMB)的生化命名委员会采纳并做出正式定义。
蛋白质的一级结构一般是指构成蛋白质肽链的氨基酸残基的排列次序,有时也称为残基的序列。
这一定义对只含氨基酸的简单蛋白是适用的。
但是在生物体内还有很多复合蛋白,它们除了氨基酸外,还有其他的组成。
对复合蛋白,完整的一级结构概念念应该包括肤链以外的其他成分(例如糖蛋白上的糖链,脂蛋白中的脂质部分等)以及这些非肽肤链部分是以何种方式,接在脓链中哪些残基上。
蛋白质的一级结构是一个无空间概念的一维结构。
蛋白质的一个引入注目的特征是它们都有确定的三维结构。
一个伸展的或随机排布的多肽肋链没有任何生物活性,多肽肤链必须按照一定的规律折叠成三维结构,才具有生物活性。
生物功能来自构象,构象指的是原子在一个分子结构中的三维排布方式。
蛋白质的一二三四级结构
蛋白质的一级结构:
是蛋白质分子的空间结构基础。
主要的化学键是肽键。
此外还可能有二硫键。
例如胰岛素A链与B链之间是二硫键。
蛋白质二级结构:
主要化学键是氢键。
基本形式有α-螺旋、β-转角、β-折叠和无规卷曲。
主要的化学键是氢键。
蛋白质粉三级结构:
一些只有一条多肽链组成的蛋白质结构能形成的最高空间结构就是三级结构。
形成和稳定主要依靠次级键,包括疏水作用,离子键,氢键,等。
蛋白质的四级结构:
两条及以上的独立三级结构的多肽链相互作用,由非共价键连接成特定的空间构象。
每条独立的三级结构多肽链称为一个亚基,单独存在时不具有生物学活性。
第二章蛋白质的结构基础一、蛋白质结构的层次体系一级、二级、结构模体(超二级结构)、结构域、三级、四级1.一级结构一级结构是指多肽链中氨基酸的顺序,或氨基酸沿线性多肽链的排列。
(包含二硫键的数量和配对方式)一级结构决定高级结构,这是蛋白质结构组织的基本原理。
2.二级结构多肽主链局部区域的规则结构,它不涉及侧链的构象和与多肽链其他部分的关系。
规则构象主要被其内部形成的主链氢键所稳定,因此氢键的排布方式也是二级结构的重要特征。
3.结构模体一级顺序上相邻的二级结构在三维折叠中靠近,彼此按特定的几何排布形成简单地组合,以同一结构模式出现在不同的蛋白质中,这些组合单位称为结构模体。
是三级结构的建筑模块。
有的模体与特定的功能相关,如与DNA结合;许多模体并没有专一的生物功能,只是大结构和组装体的一个组成部分。
4.结构域二级结构和结构模体以特定的方式组织连接,在蛋白质分子中形成两个或多个在空间上可以明显区分的三级折叠实体。
结构单位:结构域是蛋白质三级结构的基本单位,一个分子中的结构域区之间以共价键相连接,这是与蛋白质亚基结构(非共价缔合)的基本区别。
功能单位:不同的结构域常常与蛋白质的不同功能相关联。
5.三级结构结构域在三维空间中以专一的方式组合排布,或者二级结构、结构模体及其与之相关联的各种环肽链在空间中的进一步协同盘曲、折叠,形成包括主链、侧链在内的专一排布。
6.四级结构亚基的数目、类型、空间排布方式和亚基间相互作用二、蛋白质结构分类1) α型结构(αstructure)主要由α螺旋组成,其螺旋含量一般在60%以上,有的高达80%。
α螺旋在这类蛋白质中大多以反平行方式排布和堆积,所以又称反平行α结构。
A) 线绕式α螺旋(coiled-coil α helix)B) 四螺旋束 (four helix bundle)C) 珠状折叠(globin fold)D) 复杂螺旋组合2) β型结构(β structure)主要由反平行β层构成。
蛋白质的氨基酸序列与结构1. 氨基酸序列蛋白质是由氨基酸组成的,氨基酸序列是蛋白质结构的基础。
在生物体中,有20种不同的氨基酸,它们通过肽键连接形成蛋白质的氨基酸序列。
蛋白质的氨基酸序列决定了其结构和功能。
1.1 氨基酸的结构氨基酸由一个中心碳原子(称为α-碳原子)、一个氢原子、一个羧基(-COOH)、一个氨基(-NH2)和一个侧链(R基团)组成。
不同的氨基酸之间的区别在于它们的侧链R基团的不同。
1.2 氨基酸序列的编码氨基酸序列的编码由DNA上的基因序列决定。
基因中的核苷酸序列通过转录和翻译过程转化为氨基酸序列。
在这个过程中,三个核苷酸(称为密码子)编码一个氨基酸。
共有64个可能的密码子,其中有3个终止密码子不编码氨基酸。
1.3 氨基酸序列的变异氨基酸序列的变异是指基因序列的改变,导致蛋白质的结构或功能发生变化。
变异可以由点突变、插入或缺失突变引起。
氨基酸序列的变异可能会影响蛋白质的稳定性、活性或与其他分子的相互作用。
2. 蛋白质结构蛋白质的结构分为四个层次:一级结构、二级结构、三级结构和四级结构。
2.1 一级结构蛋白质的一级结构是指其氨基酸序列。
一级结构的氨基酸序列决定了蛋白质的生物活性、折叠方式和与其他分子的相互作用。
一级结构的改变,如氨基酸替换、插入或缺失,可能导致蛋白质功能的丧失或改变。
2.2 二级结构蛋白质的二级结构是指由氢键连接的氨基酸残基之间的局部折叠模式。
最常见的二级结构有α-螺旋和β-折叠。
α-螺旋是一种右旋螺旋结构,由氨基酸的侧链伸出并与螺旋轴形成氢键。
β-折叠是由相邻的β-折叠片段通过氢键连接而成的平面结构。
2.3 三级结构蛋白质的三级结构是指整个蛋白质分子的空间折叠方式。
三级结构的形成受到氨基酸序列、侧链相互作用、氢键、疏水作用和离子键等因素的影响。
三级结构的稳定性对于蛋白质的功能至关重要。
2.4 四级结构蛋白质的四级结构是指由多个多肽链组成的复合蛋白质的结构。
四级结构的形成受到各个多肽链之间的相互作用的影响,包括氢键、疏水作用、离子键和范德华力。