浅析高等代数中行列式的计算
- 格式:pdf
- 大小:104.07 KB
- 文档页数:2
浅析行列式的计算方法刘欣(数学科学学院,2007(4)班,07211448)[摘 要]行列式是高等代数课程里基本而重要的内容之一,在数学中有着广泛的应用,懂得如何计算行列式显得尤为重要.本文先阐述行列式的基本性质,然后介绍几种具体的方法,最后由行列式与其它知识的联系介绍其它几种方法. [关键词]行列式 加边法 递推公式法行列式是线性代数中的一个基本工具.无论是高等数学领域里的高深理论,还是现实生活里的实际问题,都或多或少的与行列式有直接或间接的联系,所以本文针对几种行列式的结构特点归纳了行列式计算的常用计算方法,并以实例加以说明.一、 按照行列式的性质将行列式化成上三角(下三角或反三角)法运用行列式的性质是计算行列式的一个重要途径,大多数行列式的计算都依赖于行列式的性质,将行列式化成上三角(下三角或反三角)的形式,再根据行列式的定义来计算行列式.行列式的性质告诉了我们该如何求行列式,而一切的行列式都可以根据以上性质来进行初等行变换(列变换),变成阶梯形(上三角)的行列式,再根据定义计算即可. 其计算步骤可归纳如下:(1)看行列式的行和(列和),如果行列和相等,则均加到某一列(行) (2)有公因子的提出公因子.(3)进行初等行变换(列变换)化成上三角(下三角或反三角)的行列式. (4)由行列式的定义进行计算.由以上四步,计算一般行列式都简洁多了.例1 计算行列式3214214314324321.解 显而易见,该行列式的行和相等,知32102140143043203214214314324321=1112220311*******321121411431432110-----==例2 计算n 阶行列式ab bb a b b b a D n=.解 ()[]a b bab b b n a D n1111-+=()[]ba b a b bb n a ---+=0011()[]1)(1---+=n b a b n a .二、 行列式的乘法原理法行列式的乘法原理:对任意两个同阶矩阵A ,B ,都有B A AB ⨯=,大家都知道,对于矩阵的乘法已是非常麻烦了.尤其是对高阶矩阵而言,其难度越明显.若按照常规办法,先计算AB 再计算AB ,显然过于烦琐.直接应用行列式的原理,就显得方便简洁.同样,如果D=AB ,其中A ,B 为同阶方阵,则B A AB ⨯=,从而达到优化计算的目的,应用行列式的乘法原理,主要是会将一个方阵拆成两个易计算行列式的同阶方阵,使矩阵的行列式计算简洁化.⋅=---=160444003110432110例3 设221;,2,1,0,-+=⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅++=j i ij k n k k k S a k x x x S .),,3,2,1,(n j i ⋅⋅⋅⋅⋅⋅=求ij a .解 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=---22121110)(n nn n n ij s s s s s s s s s a⎪⎪⎪⎪⎪⎭⎫⎝⎛++++++++++++++=------222211111122111111n nn nn nn n n nn nnn n n n n x x x x x x x x x x x x x x x x n⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⨯⎪⎪⎪⎪⎪⎭⎫⎝⎛=------11221111121121111111n n nn n n n n n n x x x x x x x x x x x x,由行列式的乘法原理:ij a 11221111121121111111------⨯=n nnn n n nn n n x x x x x x x x x x x x∏∏<<--=j i i j ji i jx x x x)()(2)(∏<-=ji i j x x .三、 递推公式法无论是初等数学,还是高等数学,递推公式都有着非常广泛的运用.适用递推法计算行列式的行列式有以下规律:按照行列式的某一行(列)展开,会产生阶数比原行列式低但却与原行列式有着相同类型的新的行列式,运用递推法逐层降阶,最终将计算出原行列式的值.运用递推法求解行列式,一般会用到两个公式: (1)若1-=n n pD D 时,则11D p D n n -=(2)若2211--+=n n n D A D A D 时,则122111--+=n n n t A t A D (其中1A ,2A 为待定系数)由(1)的计算过程显然易见,而(2)中却出现了两个未知数,1t ,2t ,这两个未知数可以通过0212=--A x A x 的两根来确定.例4 计算n 阶行列式ba ab b a b a ab b a ab b a D n +++++=0000010001000.解 将n D 按第一行展开,得ba ab b a b a ab ab D b a D n n +++-+=-100000001)(1,于是得到一个递推关系21)(---+=n n n abD D b a D ,变形得)(111-----=n b n n b n D D a D D , 易知)()(4333221--------==n b n n b n n b n D D a D D a D D[]nn bn a b a b ab b a aD D a=+--+==---)()()(22122,所以1-+=n n n bD a D ,据此关系式在递推,有22121)(----++=++=n n nn n nn D b b aabD ab aDnn n nn n n nbab b aa D bb a b a a ++⋅⋅⋅++=++⋅⋅⋅++=-----1111221,如果我们将n D 的第一行元素看作b a +,1+0,…0+0,按第一行拆成两个行列式的和,那么可直接得到递推关系式如下:1-+=n nn bD aD ,同样可得nD 的值.例5 计算n 阶行列式accb ac b b aD n=,其中0,≠≠bc c b .解 将n D 的第一行视为c c c c a +++-0,,0,)( ,据行列式的性质,得accb ac b b c a cb a b bc a a ccb ac b b c c a D n+-=+++-=000因为11)()(---+-=n n n b a c D c a D (1)由b 与c 的对称性,不难得到11)()(---+-=n n n c a b D b a D (2) 所以联立(1),(2)解之,得[]n n n b a c c a b c b D )()()(1----=-用递推公式法计算行列式,逻辑性较强,其适用于计算那些有一定规律但却十分费解的行列式.四、 提取公因式法若行列式满足下列条件之一,则可以用此法: (1)有一行(列)元素相同,称为“a a a ,,, 型”.(2)有两行(列)的对应元素之和或差相等,称为“邻和型”. (3)各行(列)元素之和相等,称为“全和型”.满足条件(1)的行列式可直接提取公因式a 变为“1,1,…,1型”,于是应用按行(列)展开定理,使行列式降一阶.满足(2)和(3)的行列式都可以根据行列式的性质变为满足条件(1)的行列式,间接使用提取公因式法.例6 计算行列式nn n n a x a a a a x a a a a x D +++=212121.解 该行列式各行元素之和等于∑=+ni i a x 1,属于“全和型”,所以nn n ni i n a x a a a x a a a x D +++=∑= 2221111)(xx a a a x n ni i001)(21∑=+=)(11∑=-+=ni in a x xabb a abb a n ⨯=-1nb a )(22-=.五、 加边法计算行列式往往采用降阶的办法,但在一些特殊的行列式的计算上却要采用加边法。
行列式的计算技巧与方法总结行列式是线性代数中的重要概念,广泛应用于各个领域,如线性方程组的求解、线性变换的判断等。
在实际应用中,计算行列式是一个必不可少的环节。
本文将对行列式的计算技巧和方法进行总结,以便读者能够更加轻松地解决行列式相关问题。
一、行列式的定义行列式是一个数。
行列式的定义通常有多种不同的形式,其中最常见的是按照矩阵的形式定义的。
对于一个n阶方阵A=(a_ij),其行列式记作det(A),可以通过以下方式计算:det(A) = a_11 * C_11 + a_12 * C_12 + ... + (-1)^(n+1) * a_1n * C_1n其中,C_ij是指元素a_ij的代数余子式。
二、行列式的计算方法1.二阶行列式的计算对于2阶方阵A=(a_11,a_12;a_21,a_22),其行列式可以直接通过以下公式计算:det(A) = a_11 * a_22 - a_12 * a_212.三阶行列式的计算对于3阶方阵A=(a_11,a_12,a_13;a_21,a_22,a_23;a_31,a_32,a_33),可以通过Sarrus法则来计算行列式:det(A) = a_11*a_22*a_33 + a_12*a_23*a_31 + a_13*a_21*a_32 -a_13*a_22*a_31 - a_12*a_21*a_33 - a_11*a_23*a_323.高阶行列式的计算对于n(n>3)阶方阵A,一般采用高斯消元法将矩阵转化为上三角矩阵,然后再计算行列式的值。
具体操作如下:a)对第一列进行第二行、第三行、..、第n行的倍加,使得第一列除了第一个元素外的其他元素都为0。
b)接着在第二列中对第三行、第四行、..、第n行的倍加,使得第二列除了第二个元素外的其他元素都为0。
c)重复以上步骤,直到将矩阵转化为上三角矩阵。
d)上三角矩阵的行列式等于主对角线上的元素相乘。
4.行列式的性质行列式具有以下性质,可以在计算中灵活运用:a)行互换或列互换,行列式的值不变,其符号变为相反数。
引言 (1)一、行列式的定义及性质 (2)(一)行列式的定义及相关公式 (2)(二)n级行列式的性质: (4)二、行列式的计算 (6)(一)行列式的基本计算方法 (6)1、定义法: (6)2、三角形法: (7)3、降阶法: (12)4、换元法: (14)5、递推法: (15)6、数学归纳法: (16)7、目标行列式法: (18)(二)行列式的辅助计算方法 (19)1、加边法: (19)2、析因子法: (21)3、连加法: (21)4、拆项法: (22)5、乘积法: (23)结束语 (24)参考文献: (26)行列式的计算方法摘要行列式是线性代数理论中极其重要的组成部分,是高等数学的一个基本的概念。
行列式产生于解线性方程组中,并且也是最早应用于解线性方程组中,并且在其他学科分支都有广泛的应用,可以说它是数学、物理学以及工科许多课程的重要学习工具.行列式也为解决实际问题带来了许多方便。
本文针对行列式这一数学工具,进行系统讨论,从不同的角度理解了行列式的定义,重点证明了行列式性质,介绍一些展开定理,总结了行列式的几种计算方法,如定义法、三角形法、降阶法、换元法、递推法、数学归纳法及目标行列式法.辅助方法有:加边法、析因子法、乘积法、连加法、拆项法等,并结合例题说明行列式计算的技巧性和灵活性。
关键词行列式,计算方法,线性方程组。
The Calculation of DeterminantLiuHui(College of Mathematics and Physics Bohai University Liaoning Jinzhou 121000 China)Abstract The determinant is the extremely important constituent in the linear algebra theory, it is a basic concept of higher mathematics。
行列式的计算方法摘 要:行列式的求解是高等数学中一个非常重要的内容,通常是用行列式的性质和相关定理求解。
通过对课本知识的理解,加上参考网上与课外书有关资料,找出十种行列式的计算方法,整理如下:1. 定义法例 计算行列式0010020010000n D n n=-解 D n 中不为零的项用一般形式表示为112211!n n n n na aa a n---=. 该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2)2n n --,故(1)(2)2(1)!.n n n D n --=-2.利用行列式的性质计算例2 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-=则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2,,ii a i n==故行列式D n 可表示为1213112232132331230000n n n n nnna a a a a a D a a a a a a -=-----由行列式的性质A A '=1213112232132331230000n n n n nn n a a a a a a D a a a a a a -----=- 12131122321323312300(1)00n n nn nnna a a a a a a a a a a a -=------(1)nnD =-当n 为奇数时,得D n =-D n ,因而得D n = 0.3.化为三角形行列式若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。
因此化三角形是行列式计算中的一个重要方法。
例3 计算n 阶行列式a b b b b a b b D bb a b bbba=解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…,n 列都加到第1列上,行列式不变,得(1)(1)(1)(1)a n b b b b a n b a b b D a n bb a b a n bb ba +-+-=+-+- 11[(1)]11b b b a b b a n b b a b b ba=+-1000[(1)]0000b b b a b a n b a b a b-=+---1[(1)]()n a n b a b -=+--4.降阶法降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。
数学与统计学学院中期报告学院:专业:年级:题目:学生姓名: 学号:指导教师姓名职称:年月日目录1 引言 (1)2行列式性质 (2)3行列式计算方法 (6)3.1定义法 (6)3.2递推法 (9)3.3化三角法 (9)3.4拆元法 (11)3 .4加边法 (12)3.6数学归结法 (13)3.7降价法 (15)3.8利用普拉斯定理 (16)3.9利用范德蒙行列式参考文献......................................................................................................... 错误!未定义书签。
8行列式的概念及应用摘要:本文先列举行列式计算相关性质,然后归纳总结出行列式的方法,包括:定义法,化三角法,递推法,拆元法,加边法,数学归结法,降价法,利用拉普拉斯定理,利用范德蒙行列式。
关键词:行列式;线性方程组;范德蒙行列式The concept and application of determinant Summary:This article lists calculated properties of determinants, and then sum up the determinant method, including: Definition, triangulation, recursive method, remove method, bordered by, mathematical resolution method, cut method, using Laplace theorem, using the vandermonde determinant.Keywords: determinant;Linear equations;;Vandermonde determinant1 引言行列式的概念最初是伴随着方程组的求解而发展起来的。
浅析高等代数中的行列式作者:刘娇来源:《新校园·上旬刊》2015年第05期摘要:高等代数是数学专业的一门基础课程,对于提高学生的逻辑思维和抽象思维能力尤为重要,同时也是学习其他相关学科的基础。
在高等代数中行列式为基础重点知识之一。
关键词:高等代数;行列式;计算方法一、行列式行列式是高等代数中的一个基本概念,它不仅有助于探讨线性方程组,而且在矩阵的相关求解中有着重要的作用。
本文通过几个实例,讨论行列式的性质及求解方法。
1.行列式的性质性质1:行列互换,行列式不变。
性质2:数乘(提公因式),即若行列式有一行(列)的所有元素都有公因式k,则k可以提到行列式外再相乘。
性质3:拆项,即若行列式中某一行(列)的所有元素都是两组数的和,则这个行列式可以表示为来两个同阶行列式的和。
性质4:若行列式有两行(列)相同,则行列式为零。
性质5:若行列式某两行(列)成比例,则行列式为零。
性质6:倍加,即把行列式的某一行(列)的倍数加到另外一行(列),行列式的值不变。
性质7:互换,即交换行列式中的某两行(列)的位置,行列式的值要变成原行列式的相反数。
2.行列式的求解方法(1)化成三角形行列式。
利用行列式的基本性质,将所给的行列式化成三角形行列式,再利用三角行列式的结论求出行列式的值。
例1:(2)递推法。
利用行列式的性质把原行列式变换成同类型的n-1阶或者更低阶的行列式表示出来,即可得递推关系式,由递推关系式求出原行列式的值。
例2:解:将dn按第1行展开,可得递推关系式:dn=adn-1+b0 ;①由①式可得等式组②:即,对n阶行列式结论也成立。
故由数学归纳法原理可知,结论成立。
二、克拉默法则(应用行列式解决线性方程组)若线性方程组参考文献:[1]王萼芳,石生明.高等代数(第三版)[M].北京:高等教育出版社,2003.[2]徐仲.高等代数(第二版)导教导学导考[M].西安:西北工业大学出版社,2006.。
浅谈高阶行列式的几种基本计算方法
行列式的概念是随着求解线性方程组而发展起来,是线性代数中的一个重要工具,在数学本身、物理学、工程技术等其他学科领域有着广泛的应用。
方法一、定义法
由行列式定义可以知道,阶行列式值等于所有取自不同行、不同列的个元素的乘积的代数和。
随着行列式阶数的增大,计算量越来越大,在行列式阶数较低或含有很多零元素的情况下选择利用定义法计算行列式的值。
例1 计算行列式。
解行列式D中每行只有一个非零元,由定义仅考虑非零项,其符号为,故。
利用定义法计算出三角行列式及对角行列式的结果都是主对角线元素的乘积。
方法二、化三角形法
参考文献
[1] 戴斌祥. 线性代数[M]. 北京:北京邮电大学出版社,2013. 12.
[2] 李师正. 高等代数解题方法与技巧[M]. 北京:高等教育出版社,2010.
11.
[3] 钱吉林. 高等代数题解精粹[M]. 北京:中央民族大学出版社,2014. 6.。