浙江省义乌、金华、丽水市2021年中考数学模拟试卷附解析附解析2
- 格式:pdf
- 大小:377.57 KB
- 文档页数:11
2021-2022中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.有一圆形苗圃如图1所示,中间有两条交叉过道AB ,CD ,它们为苗圃O 的直径,且AB ⊥CD .入口K 位于AD 中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x ,与入口K 的距离为y ,表示y 与x 的函数关系的图象大致如图2所示,则该园丁行进的路线可能是( )A .A→O→DB .C→A→O→ BC .D→O→CD .O→D→B→C2.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是( )A .B .C .D .3.如图,Rt AOB 中,AB OB ⊥,且AB OB 3==,设直线x t =截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的( )A.B.C.D.4.下列实数中,结果最大的是()A.|﹣3| B.﹣(﹣π)C.7D.35.下列说法正确的是()A.一个游戏的中奖概率是则做10次这样的游戏一定会中奖B.为了解全国中学生的心理健康情况,应该采用普查的方式C.一组数据8 , 8 , 7 , 10 , 6 , 8 , 9 的众数和中位数都是8D.若甲组数据的方差S=" 0.01" ,乙组数据的方差s=0 .1 ,则乙组数据比甲组数据稳定6.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为()A.26×105B.2.6×102C.2.6×106D.260×1047.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A.4 B.3 C.2 D.18.下列说法中,正确的是( )A.两个全等三角形,一定是轴对称的B.两个轴对称的三角形,一定是全等的C.三角形的一条中线把三角形分成以中线为轴对称的两个图形D.三角形的一条高把三角形分成以高线为轴对称的两个图形9.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30°B.35°C.40°D.50°10.数轴上分别有A、B、C三个点,对应的实数分别为a、b、c且满足,|a|>|c|,b•c<0,则原点的位置()A.点A的左侧B.点A点B之间C.点B点C之间D.点C的右侧二、填空题(共7小题,每小题3分,满分21分)11.如图,△ABC中,AB=6,AC=4,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为_____.12.已知关于x,y的二元一次方程组2321x y kx y+=⎧⎨+=-⎩的解互为相反数,则k的值是_________.13.大型纪录片《厉害了,我的国》上映25天,累计票房约为402700000元,成为中国纪录电影票房冠军.402700000用科学记数法表示是________.14.若一段弧的半径为24,所对圆心角为60°,则这段弧长为____.15.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=34x-3与x轴、y轴分别交于点A、B,点M是直线AB上的一个动点,则PM的最小值为________.16.某中学数学教研组有25名教师,将他们分成三组,在38~45(岁)组内有8名教师,那么这个小组的频率是_______。
2023年浙江省丽水市中考数学试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.有左、中、右三个抽屉,左边的抽屉里放有 2个白球,中间和右边的抽屉里各放一个红球和一个白球,从三个抽屉里任选一个球是红球的概率是( )A .14B .13C .16D .252.若△ABC ∽△DEF ,△ABC 与△DEF 的相似比为2︰3,则S △ABC ︰S △DEF 为( )A .2∶3B .4∶9C .2∶3D .3∶23.如图,在等边△ABC 中,P 为BC 上一点,D 为AC 上一点,且∠APD=60°,BP=1,CD=32,则△ABC 的边长为( ) A .3B .4C .5D .6 4.如图,△ABC 中,D 是AB 上一点,已知 AD=4,BD=5.AC 是AD 与 AB 的比例中项,则AC=( )A .25B .6C .20D .365.在平面直角坐标系中,如果抛物线y =2x 2不动..,而把x 轴、y 轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是( )A .y =2(x -2)2 + 2B .y =2(x + 2)2-2C .y =2(x -2)2-2D .y =2(x + 2)2 + 2 6.已知二次函数21y ax bx =++的大致图象如图所示,那么函数y ax b =+的图象不经过( )A .一象限B .二象限C .三象限D .四象限7.已知四边形ABCD 中,AC 交BD 于点O,如果只给条件“AB ∥CD ”,那么还不能判定四边形 ABCD 为平行四边形,给出以下四种说法:(1)如果再加上条件“BC=AD ”,那么四边形ABCD 一定是平行四边形(2)如果再加上条件“∠BAD=∠BCD ”,那么四边形ABCD 一定是平行四边形(3)如果再加上条件“AO=OC ”,那么四边形ABCD 一定是平行四边形(4)如果再加上条件“∠DBA=∠CAB ”,那么四边形ABCD 一定是平行四边形其中正确的说法是()A.(1)(2)B.(1)(3)(4)C.(2)(3)D.(2)(3)(4)8.以下各几何体中,不是多面体的是()A.八圆锥B.棱锥C.三棱锥D.四棱柱9.在同一平面内,作已知直线l的平行线,且到l的距离为7 cm,这样的平行线最多可以作()A.1 条B.2 条C.3 条D.无数条10.如图所示,在4×4的正方形网格中,∠1,∠2,∠3的大小关系是()A.∠1>∠2>∠3 B.∠l<∠2=∠3 C.∠1=∠2>∠3 D.∠1=∠2=∠311.下列各式中,能用平方差公式分解因式的是()A.x2+4y2B.x2-2y+1 C.-x2+4y2D.-x2-4y212.将如图所示的两个三角形适当平移,可组成平行四边形的个数为()A.1个B.2个C.3个D.4个二、填空题13.如图,△ABC 内接于⊙O,∠C=30°,AB=2,则⊙O 的半径为.14.当 m 时,关于x的方程2m x x m-++=是一元二次方程.(2)53015.长方形的面积是24,其中一边长是23,则另一边长是.16.已知一次函数y=kx+5的图象经过点(-l,2),则k= .17.命题“有三边对应相等的两个三角形全等”的题设是,结论是.18.甲种糖果每千克l0元,乙种糖果每千克8元,现把甲、乙两种糖果混合制成什锦糖,若要使什锦糖的单价为每千克9元,则100元的甲种糖果应与元的乙种糖果混合.19.如图所示.(1)图中共有个三角形,分别是;(2)∠CDB是的内角,是的外角;(3)在AACD中,∠A是边和的夹角,边AC是的对边.20.如图,三条直线AB、CD、EF都相交于同一点0,若∠AOE=2∠AOC,∠COF=32∠AOE.则∠DOE的度数是.21.某校七年级(2)班期末数学考试成绩的条形统计图如图所示,根据统计图回答下列问题:(1)全班共有人,成绩为的学生最多;(2)成绩在中等以下的学生占全班人数的百分比是 (精确到0.1%).三、解答题22.如图,严亮家养了一只狗看院子,平时狗拴在门柱上,铁链lm长,试画出狗的活动区域.23.阅读材料:为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1视为一个整体,然后设x2-l=y,则(x2-1)2=y2,原方程化为y2-5y+4=0.①解得y1=1,y2=4当y=1时,x2-1=1.∴x2=2.∴x=±2;当y=4时,x2-1=4,∴x2=5,∴x=±5。
2021-2022中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2∶1,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是()A.0.2 B.0.25 C.0.4 D.0.52.已知A(x1,y1),B(x2,y2)是反比例函数y=(k≠0)图象上的两个点,当x1<x2<0时,y1>y2,那么一次函数y=kx -k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.如图给定的是纸盒的外表面,下面能由它折叠而成的是()A.B.C.D.4.如图,这是由5个大小相同的整体搭成的几何体,该几何体的左视图是()A.B.C.D.5.如图,矩形ABCD中,E为DC的中点,AD:AB32,CP:BP=1:2,连接EP并延长,交AB的延长线于点F ,AP 、BE 相交于点O .下列结论:①EP 平分∠CEB ;②2BF =PB•EF ;③PF•EF =22AD ;④EF•EP =4AO•PO .其中正确的是( )A .①②③B .①②④C .①③④D .③④6.为了解某校初三学生的体重情况,从中随机抽取了80名初三学生的体重进行统计分析,在此问题中,样本是指( )A .80B .被抽取的80名初三学生C .被抽取的80名初三学生的体重D .该校初三学生的体重7.在Rt ABC ∆中,90︒∠=C ,2AC =,下列结论中,正确的是( )A .2sin AB A =B .2cos AB A =C .2tan BC A =D .2cot BC A =8.抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的( )A .中位数B .众数C .平均数D .方差9.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为( )A .1.8×105B .1.8×104C .0.18×106D .18×10410.分式2231x x x +--的值为0,则x 的取值为( ) A .x=-3 B .x=3 C .x=-3或x=1 D .x=3或x=-1二、填空题(共7小题,每小题3分,满分21分)11.函数y=12x -的定义域是________. 12.如图,正方形ABCD 的边长为6,E ,F 是对角线BD 上的两个动点,且EF =12x x ,连接CE ,CF ,则△CEF 周长的最小值为_____.13.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是_____.14.如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为_____ m.15.如图,正方形ABCD的边长为3,点E,F分别在边BCCD上,BE=CF=1,小球P从点E出发沿直线向点F 运动,完成第1次与边的碰撞,每当碰到正方形的边时反弹,反弹时反射角等于入射角,则小球P与正方形的边第2次碰撞到__边上,小球P与正方形的边完成第5次碰撞所经过的路程为__.16.不透明袋子中装有5个红色球和3个蓝色球,这些球除了颜色外没有其他差别.从袋子中随机摸出一个球,摸出蓝色球的概率为_______.17.可燃冰是一种新型能源,它的密度很小,31cm可燃冰的质量仅为0.00092kg.数字0.00092用科学记数法表示是__________.三、解答题(共7小题,满分69分)18.(10分)如图,在▱ABCD中,AB=4,AD=5,tanA=43,点P从点A出发,沿折线AB﹣BC以每秒1个单位长度的速度向中点C运动,过点P作PQ⊥AB,交折线AD﹣DC于点Q,将线段PQ绕点P顺时针旋转90°,得到线段PR,连接QR.设△PQR与▱ABCD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).(1)当点R与点B重合时,求t的值;(2)当点P在BC边上运动时,求线段PQ的长(用含有t的代数式表示);(3)当点R落在▱ABCD的外部时,求S与t的函数关系式;(4)直接写出点P运动过程中,△PCD是等腰三角形时所有的t值.19.(5分)如图,某人站在楼顶观测对面的笔直的旗杆AB,已知观测点C到旗杆的距离CE=83m,测得旗杆的顶部A的仰角∠ECA=30°,旗杆底部B的俯角∠ECB=45°,求旗杆AB的髙.20.(8分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD的长.21.(10分)甲班有45人,乙班有39人.现在需要从甲、乙班各抽调一些同学去参加歌咏比赛.如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍.请问从甲、乙两班各抽调了多少参加歌咏比赛?22.(10分)顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(4,0).求出抛物线的解析式;如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣34x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.23.(12分)某学校为了解学生的课余活动情况,抽样调查了部分学生,将所得数据处理后,制成折线统计图(部分)和扇形统计图(部分)如图:(1)在这次研究中,一共调查了学生,并请补全折线统计图;(2)该校共有2200名学生,估计该校爱好阅读和爱好体育的学生一共有多少人?24.(14分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1.【详解】解:设大正方形边长为2,则小正方形边长为1,因为面积比是相似比的平方,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是10.25 4=;故选:B.【点睛】本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.2、B【解析】试题分析:当x1<x2<0时,y1>y2,可判定k>0,所以﹣k<0,即可判定一次函数y=kx﹣k的图象经过第一、三、四象限,所以不经过第二象限,故答案选B.考点:反比例函数图象上点的坐标特征;一次函数图象与系数的关系.3、B【解析】将A、B、C、D分别展开,能和原图相对应的即为正确答案:【详解】A、展开得到,不能和原图相对应,故本选项错误;B、展开得到,能和原图相对,故本选项正确;C、展开得到,不能和原图相对应,故本选项错误;D、展开得到,不能和原图相对应,故本选项错误.故选B.4、A【解析】观察所给的几何体,根据三视图的定义即可解答.【详解】左视图有2列,每列小正方形数目分别为2,1.故选A.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5、B【解析】由条件设3,AB=2x,就可以表示出3,BP=33x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=∠BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论.【详解】解:设3,AB=2x∵四边形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴3x,CD=2x∵CP:BP=1:2∴3,23∵E为DC的中点,∴CE=12CD=x,∴tan∠CEP=PCEC3tan∠EBC=ECBC3∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正确;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴BE BP EF BF∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴2BF=PB·EF,故②正确∵∠F=30°,∴PF=2PB=433x,过点E作EG⊥AF于G,∴∠EGF=90°,∴3∴PF·43322AD2=2×3x)2=6x2,∴PF·EF≠2AD2,故③错误. 在Rt△ECP中,∵∠CEP=30°,∴x∵tan ∠PAB=PB AB =3 ∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt △AOB 和Rt △POB 中,由勾股定理得,x ,∴4AO·2又EF·x=4x 2 ∴EF·EP=4AO·PO .故④正确.故选,B【点睛】本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.6、C【解析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】样本是被抽取的80名初三学生的体重,故选C .【点睛】此题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位. 7、C【解析】直接利用锐角三角函数关系分别计算得出答案.【详解】∵90︒∠=C ,2AC =, ∴2cos AC A AB AB==, ∴2cos AB A =, 故选项A ,B 错误,∵tan 2BC BC A AC ==, ∴2tan BC A =,故选项C 正确;选项D 错误.故选C .【点睛】此题主要考查了锐角三角函数关系,熟练掌握锐角三角函数关系是解题关键.8、A【解析】7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,故选A .【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键. 9、A【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】180000=1.8×105,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10、A【解析】分式的值为2的条件是:(2)分子等于2;(2)分母不为2.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】∵原式的值为2,∴2230 {10x xx+--≠=,∴(x-2)(x+3)=2,即x=2或x=-3;又∵|x|-2≠2,即x≠±2.∴x=-3.故选:A.【点睛】此题考查的是对分式的值为2的条件的理解,该类型的题易忽略分母不为2这个条件.二、填空题(共7小题,每小题3分,满分21分)11、2x≠【解析】分析:根据分式有意义的条件是分母不为0,即可求解.详解:由题意得:x-2≠0,即x2≠.故答案为x2≠点睛:本题考查了使函数有意义的自变量的取值范围的确定.函数是整式型,自变量去全体实数;函数是分式型,自变量是使分母不为0 的实数;根式型的函数的自变量去根号下的式子大于或等于0的实数;当函数关系式表示实际问题时,自变量不仅要使函数关系式有意义,还要使实际问题有意义.12、【解析】如图作CH∥BD,使得CH=EF=22,连接AH交BD由F,则△CEF的周长最小.【详解】如图作CH∥BD,使得CH=EF=22,连接AH交BD由F,则△CEF的周长最小.∵CH=EF,CH∥EF,∴四边形EFHC是平行四边形,∴EC=FH,∵FA=FC,∴EC+CF=FH+AF=AH,∵四边形ABCD是正方形,∴AC⊥BD,∵CH∥DB,∴AC⊥CH,∴∠ACH=90°,在Rt△ACH中,AH=22AC CH=45,∴△EFC的周长的最小值=22+45,故答案为:22+45.【点睛】本题考查轴对称﹣最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题.13、5 13【解析】如图,有5种不同取法;故概率为513.14、7.5【解析】试题解析:当旋转到达地面时,为最短影长,等于AB,∵最小值3m,∴AB=3m,∵影长最大时,木杆与光线垂直,即AC=5m,∴BC=4,又可得△CAB∽△CFE,∴BC AB EC EF=,∵AE=5m,∴4310EF=,解得:EF=7.5m.故答案为7.5.点睛:相似三角形的性质:相似三角形的对应边成比例.15、AB,115【解析】根据已知中的点E,F的位置,可知入射角的正切值为12,通过相似三角形,来确定反射后的点的位置.再由勾股定理就可以求出小球第5次碰撞所经过路程的总长度.根据已知中的点E,F 的位置,可知入射角的正切值为12,第一次碰撞点为F ,在反射的过程中,根据入射角等于反射角及平行关系的三角形的相似可得, 第二次碰撞点为G ,在AB 上,且AG=16AB , 第三次碰撞点为H,在AD 上,且AH=13AD , 第四次碰撞点为M,在DC 上,且DM=13DC , 第五次碰撞点为N,在AB 上,且BN=16AB , 第六次回到E 点,BE=13BC. 由勾股定理可以得出EF=5,FG=32 5,GH=12 5,HM=5,MN=32 5,NE=125,故小球第5次经过的路程为:5+32 5+12 5+5+32 5=1125, 故答案为AB , 112 5. 【点睛】本题考查了正方形与轴对称的性质,解题的关键是熟练的掌握正方形与轴对称的性质.16、38【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值即其发生的概率.详解:由于共有8个球,其中篮球有5个,则从袋子中摸出一个球,摸出蓝球的概率是38 ,故答案是38. 点睛:此题主要考查了概率的求法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件 A 出现m 种结果,那么事件A 的概率P (A )=m n . 17、9.2×10﹣1. 【解析】根据科学记数法的正确表示为()10110n a a ⨯≤<,由题意可得0.00092用科学记数法表示是9.2×10﹣1.根据科学记数法的正确表示形式可得:0.00092用科学记数法表示是9.2×10﹣1.故答案为: 9.2×10﹣1.【点睛】本题主要考查科学记数法的正确表现形式,解决本题的关键是要熟练掌握科学记数法的正确表现形式.三、解答题(共7小题,满分69分)18、(1)127;(2)45(9﹣t);(3)①S =﹣23t2+163t﹣327;②S=﹣27t2+1.③S=24175(9﹣t)2;(3)3或215或4或173.【解析】(1)根据题意点R与点B重合时t+43t=3,即可求出t的值;(2)根据题意运用t表示出PQ即可;(3)当点R落在□ABCD的外部时可得出t的取值范围,再根据等量关系列出函数关系式;(3)根据等腰三角形的性质即可得出结论.【详解】解:(1)∵将线段PQ绕点P顺时针旋转90°,得到线段PR,∴PQ=PR,∠QPR=90°,∴△QPR为等腰直角三角形.当运动时间为t秒时,AP=t,PQ=PQ=AP•t anA=43t.∵点R与点B重合,∴AP+PR=t+43t=AB=3,解得:t=127.(2)当点P在BC边上时,3≤t≤9,CP=9﹣t,∵tanA=43,∴tanC=43,sinC=45,∴PQ=CP•sin C=45(9﹣t).(3)①如图1中,当127<t≤3时,重叠部分是四边形PQKB.作KM⊥AR于M.∵△KBR∽△QAR,∴KMQP=BRAR,∴KM4t3=74373tt,∴KM=47(73t﹣3)=43t﹣167,∴S=S△PQR﹣S△KBR=12×(43t)2﹣12×(73t﹣3)(43t﹣167)=﹣23t2+163t﹣327.②如图2中,当3<t≤3时,重叠部分是四边形PQKB.S=S△PQR﹣S△KBR=12×3×3﹣12×t×47t=﹣27t2+1.③如图3中,当3<t<9时,重叠部分是△PQK.S=47•S △PQC =47×12×35(9﹣t )•45(9﹣t )=24175(9﹣t )2. (3)如图3中,①当DC=DP 1=3时,易知AP 1=3,t=3.②当DC=DP 2时,CP 2=2•CD•324=55, ∴BP 2=15, ∴t=3+121=55. ③当CD=CP 3时,t=4.④当CP 3=DP 3时,CP 3=2÷310=53, ∴t=9﹣103=173. 综上所述,满足条件的t 的值为3或215或4或173. 【点睛】本题考查四边形综合题、动点问题、平行四边形的性质、多边形的面积、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题,属于中考压轴题.19、 3.【解析】利用∠ECA 的正切值可求得AE ;利用∠ECB 的正切值可求得BE ,由AB=AE+BE 可得答案.【详解】在Rt△EBC中,有BE=EC×tan45°=83m,在Rt△AEC中,有AE=EC×tan30°=8m,∴AB=83+8(m).【点睛】本题考查了解直角三角形的应用-俯角、仰角问题,要求学生能借助其关系构造直角三角形并解直角三角形..20、(1)证明见解析;(2)CD的长为223【解析】(1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD 可得四边形ABCD是菱形;(2)作EF⊥CD于F,在Rt△DEF中,根据30°的性质和勾股定理可求出EF和DF的长,在Rt△CEF中,根据勾股定理可求出CF的长,从而可求CD的长.【详解】证明:(1)在△ADE与△CDE中,,∴△ADE≌△CDE(SSS),∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四边形ABCD为平行四边形,∵AD=CD,∴四边形ABCD是菱形;(2)作EF⊥CD于F.∵∠BDC=30°,DE=2,∴EF=1,DF=,∵CE=3,∴CF=2,∴CD=2+..【点睛】本题考查了全等三角形的判定与性质,平行线的性质,菱形的判定,含30°的直角三角形的性质,勾股定理.证明AD=BC 是解(1)的关键,作EF⊥CD于F,构造直角三角形是解(2)的关键.21、从甲班抽调了35人,从乙班抽调了1人【解析】分析:首先设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,根据题意列出一元一次方程,从而得出答案.详解:设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,由题意得,45﹣x=2[39﹣(x﹣1)],解得:x=35,则x﹣1=35﹣1=1.答:从甲班抽调了35人,从乙班抽调了1人.点睛:本题主要考查的是一元一次方程的应用,属于基础题型.理解题目的含义,找出等量关系是解题的关键.22、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣94)2+8116;当x=94时,S有最大值,最大值为8116;(3)存在,点P的坐标为(4,0)或(32,0).【解析】(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式.(2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示.(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CG=HG,列等式求解即可.【详解】(1)将点E代入直线解析式中,0=﹣34×4+m,解得m =3,∴解析式为y =﹣34x+3, ∴C(0,3),∵B(3,0), 则有3093c b c =⎧⎨=-++⎩, 解得23b c =⎧⎨=⎩, ∴抛物线的解析式为:y =﹣x 2+2x+3; (2)∵y =﹣x 2+2x+3=﹣(x ﹣1)2+4, ∴D(1,4),设直线BD 的解析式为y =kx+b ,代入点B 、D , 304k b k b +=⎧⎨+=⎩, 解得26k b =-⎧⎨=⎩, ∴直线BD 的解析式为y =﹣2x+6,则点M 的坐标为(x ,﹣2x+6),∴S =(3+6﹣2x)•x•12=﹣(x ﹣94)2+8116, ∴当x =94时,S 有最大值,最大值为8116. (3)存在,如图所示,设点P 的坐标为(t ,0),则点G(t ,﹣34t+3),H(t ,﹣t 2+2t+3), ∴HG =|﹣t 2+2t+3﹣(﹣34t+3)|=|t 2﹣114t| CG 223(33)4t t +-+-54t , ∵△CGH 沿GH 翻折,G 的对应点为点F ,F 落在y 轴上,而HG ∥y 轴,∴HG ∥CF ,HG =HF ,CG =CF ,∠GHC =∠CHF ,∴∠FCH =∠CHG ,∴∠FCH =∠FHC ,∴∠GCH =∠GHC ,∴CG =HG ,∴|t 2﹣114t|=54t , 当t 2﹣114t =54t 时, 解得t 1=0(舍),t 2=4,此时点P(4,0).当t 2﹣114t =﹣54t 时,解得t1=0(舍),t2=32,此时点P(32,0).综上,点P的坐标为(4,0)或(32,0).【点睛】此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CG =HG为解题关键.23、(1)200名;折线图见解析;(2)1210人.【解析】(1)由“其他”的人数和所占百分数,求出全部调查人数;先由“体育”所占百分数和全部调查人数求出体育的人数,进一步求出阅读的人数,补全折线统计图;(2)利用样本估计总体的方法计算即可解答.【详解】(1)调查学生总人数为40÷20%=200(人),体育人数为:200×30%=60(人),阅读人数为:200﹣(60+30+20+40)=200﹣150=50(人).补全折线统计图如下:.(2)2200×5060200=1210(人).答:估计该校学生中爱好阅读和爱好体育的人数大约是1210人.【点睛】本题考查了统计知识的应用,试题以图表为载体,要求学生能从中提取信息来解题,与实际生活息息相关,符合新课标的理念.24、(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形,理由详见解析;(3)492.【解析】(1)利用三角形的中位线得出PM=12CE,PN=12BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=12BD,PN=12BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.【详解】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=12 BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=12 CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=12BD,PM=12CE,∴PM =PN ,∴△PMN 是等腰三角形,同(1)的方法得,PM ∥CE ,∴∠DPM =∠DCE ,同(1)的方法得,PN ∥BD ,∴∠PNC =∠DBC ,∵∠DPN =∠DCB +∠PNC =∠DCB +∠DBC ,∴∠MPN =∠DPM +∠DPN =∠DCE +∠DCB +∠DBC=∠BCE +∠DBC =∠ACB +∠ACE +∠DBC=∠ACB +∠ABD +∠DBC =∠ACB +∠ABC ,∵∠BAC =90°,∴∠ACB +∠ABC =90°,∴∠MPN =90°,∴△PMN 是等腰直角三角形,(3)方法1、如图2,同(2)的方法得,△PMN 是等腰直角三角形, ∴MN 最大时,△PMN 的面积最大,∴DE ∥BC 且DE 在顶点A 上面,∴MN 最大=AM +AN ,连接AM ,AN ,在△ADE 中,AD =AE =4,∠DAE =90°,∴AM =,在Rt △ABC 中,AB =AC =10,AN =,∴MN 最大==,∴S △PMN 最大=12PM 2=12×12MN 2=14×()2=492. 方法2、由(2)知,△PMN 是等腰直角三角形,PM =PN =12BD , ∴PM 最大时,△PMN 面积最大,∴点D 在BA 的延长线上,∴BD =AB +AD =14,∴PM =7,∴S△PMN最大=12PM2=12×72=492【点睛】本题考查旋转中的三角形,关键在于对三角形的所有知识点熟练掌握.。
2021年浙江省金华市中考数学试卷及详细答案2021年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分) 1.(3分)在0,1,﹣,﹣1四个数中,最小的数是() A.0B.1C.D.﹣12.(3分)计算(﹣a)3÷a结果正确的是() A.a2 B.﹣a2 C.﹣a3 D.﹣a43.(3分)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠4 4.(3分)若分式A.3的值为0,则x的值为()B.﹣3 C.3或﹣3 D.05.(3分)一个几何体的三视图如图所示,该几何体是()A.直三棱柱 B.长方体 C.圆锥 D.立方体6.(3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()第1页(共30页)A. B. C. D.7.(3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30) B.(8,10) C.(9,10) D.(10,10)8.(3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A. B. C. D.9.(3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E 在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55° B.60° C.65° D.70°10.(3分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()第2页(共30页)A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多 C.每月上网时间为35h时,选择B方式最省钱 D.每月上网时间超过70h时,选择C方式最省钱二、填空题(本题有6小题,每小题4分,共24分) 11.(4分)化简(x ﹣1)(x+1)的结果是.12.(4分)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.13.(4分)如图是我国2013~2021年国内生产总值增长速度统计图,则这5年增长速度的众数是.14.(4分)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是.15.(4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰第3页(共30页)图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.16.(4分)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为 cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为 cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.(6分)计算:+(﹣2021)0﹣4sin45°+|﹣2|.18.(6分)解不等式组:19.(6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:第4页(共30页)(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20.(8分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.22.(10分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当第5页(共30页)t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.(10分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.(12分)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.第6页(共30页)②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.第7页(共30页)2021年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分) 1.(3分)在0,1,﹣,﹣1四个数中,最小的数是() A.0B.1C.D.﹣1【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选:D.【点评】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小. 2.(3分)计算(﹣a)3÷a结果正确的是() A.a2 B.﹣a2 C.﹣a3 D.﹣a4【解答】解:(﹣a)3÷a=﹣a3÷a=﹣a31=﹣a2,﹣故选:B.【点评】此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.3.(3分)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠4【解答】解:∠B的同位角可以是:∠4.故选:D.【点评】此题主要考查了同位角的定义,正确把握定义是解题关键.第8页(共30页)4.(3分)若分式A.3的值为0,则x的值为()B.﹣3 C.3或﹣3 D.0【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.【点评】本题考查了分式值为0的条件,具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.(3分)一个几何体的三视图如图所示,该几何体是()A.直三棱柱 B.长方体 C.圆锥 D.立方体【解答】解:观察三视图可知,该几何体是直三棱柱.故选:A.【点评】本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.6.(3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A. B. C. D.第9页(共30页)【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为 =,即转动圆盘一次,指针停在黄区域的概率是,故选:B.【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.7.(3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30) B.(8,10) C.(9,10) D.(10,10)【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9, OA=OD ﹣AD=40﹣30=10,∴P(9,10);故选:C.第10页(共30页)【点评】此题考查了坐标确定位置,根据题意确定出CD=9,AD=10是解本题的关键.8.(3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A. B. C. D.,【解答】解:在Rt△ABC中,AB=在Rt△ACD中,AD=∴AB:AD=故选:B.:, =,【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.9.(3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E 在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55° B.60° C.65° D.70°【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,第11页(共30页)∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答. 10.(3分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多 C.每月上网时间为35h时,选择B方式最省钱 D.每月上网时间超过70h时,选择C方式最省钱【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,yA=kx+b,第12页(共30页)。
2021-2022中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1.下面运算结果为6a 的是( ) A .33a a + B .82a a ÷C .23•a aD .()32a -2.一、单选题在某校“我的中国梦”演讲比赛中,有7名学生参加了决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这7名学生成绩的( ) A .平均数B .众数C .中位数D .方差3.如图,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( ).A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少C .线段EF 的长不变D .线段EF 的长不能确定4.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系如下表: t 0 1 2 3 4 5 6 7 … h8141820201814…下列结论:①足球距离地面的最大高度为20m ;②足球飞行路线的对称轴是直线92t =;③足球被踢出9s 时落地;④足球被踢出1.5s 时,距离地面的高度是11m. 其中正确结论的个数是( ) A .1B .2C .3D .45.如图,两个一次函数图象的交点坐标为(2,4),则关于x ,y 的方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为( )A .2,4x y =⎧⎨=⎩B .4,2x y =⎧⎨=⎩C .4,x y =-⎧⎨=⎩D .3,x y =⎧⎨=⎩6.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( ) A .5.6×10﹣1B .5.6×10﹣2C .5.6×10﹣3D .0.56×10﹣17.如图,在ABC 中,点D 、E 、F 分别在边AB 、BC 、CA 上,且DE CA ,DFBA .下列四种说法: ①四边形AEDF 是平行四边形;②如果90BAC ∠=,那么四边形AEDF 是矩形;③如果AD 平分BAC ∠,那么四边形AEDF 是菱形;④如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形. 其中,正确的有( ) 个A .1B .2C .3D .48.如图,AB 是定长线段,圆心O 是AB 的中点,AE 、BF 为切线,E 、F 为切点,满足AE=BF ,在EF 上取动点G ,国点G 作切线交AE 、BF 的延长线于点D 、C ,当点G 运动时,设AD=y ,BC=x ,则y 与x 所满足的函数关系式为( )A .正比例函数y=kx (k 为常数,k≠0,x >0)B .一次函数y=kx+b (k ,b 为常数,kb≠0,x >0)C .反比例函数y=kx(k 为常数,k≠0,x >0) D .二次函数y=ax 2+bx+c (a ,b ,c 为常数,a≠0,x >0)9.随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为( ) A .70.2110⨯B .62.110⨯C .52110⨯D .72.110⨯10.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数( )的概率最大. A .3B .4C .5D .6二、填空题(共7小题,每小题3分,满分21分) 11.2(2)-=__________12.当﹣4≤x≤2时,函数y=﹣(x+3)2+2的取值范围为_____________. 13.27的立方根为 .14.如图,已知CD 是Rt △ABC 的斜边上的高,其中AD=9cm ,BD=4cm ,那么CD 等于_______cm.15.如图,a ∥b ,∠1=110°,∠3=40°,则∠2=_____°.16.将一张长方形纸片折叠成如图所示的形状,若∠DBC=56°,则∠1=_____°.17.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是___. 三、解答题(共7小题,满分69分)18.(10分)某景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a 折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b 折,设游客为x 人,门票费用为y 元,非节假日门票费用y 1(元)及节假日门票费用y 2(元)与游客x (人)之间的函数关系如图所示. (1)a= ,b= ; (2)确定y 2与x 之间的函数关系式:(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?19.(5分)如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC.求证:∠1=∠2;连结BE、DE,判断四边形BCDE的形状,并说明理由.20.(8分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.对冬奥会了解程度的统计表对冬奥会的了解程度百分比A非常了解10%B比较了解15%C基本了解35%D不了解n%(1)n=;(2)扇形统计图中,D部分扇形所对应的圆心角是;(3)请补全条形统计图;(4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平.21.(10分)如图,在三个小桶中装有数量相同的小球(每个小桶中至少有三个小球),第一次变化:从左边小桶中拿出两个小球放入中间小桶中;第二次变化:从右边小桶中拿出一个小球放入中间小桶中;第三次变化:从中间小桶中拿出一些小球放入右边小桶中,使右边小桶中小球个数是最初的两倍.(1)若每个小桶中原有3个小球,则第一次变化后,中间小桶中小球个数是左边小桶中小球个数的____倍;(2)若每个小桶中原有a个小球,则第二次变化后中间小桶中有_____个小球(用a表示);(3)求第三次变化后中间小桶中有多少个小球?22.(10分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.求证:DE是⊙O的切线;若AD=16,DE=10,求BC的长.23.(12分)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y (本)与每本纪念册的售价x (元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.求出y 与x 的函数关系式;当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?设该文具店每周销售这种纪念册所获得的利润为w 元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少? 24.(14分)某蔬菜加工公司先后两次收购某时令蔬菜200吨,第一批蔬菜价格为2000元/吨,因蔬菜大量上市,第二批收购时价格变为500元/吨,这两批蔬菜共用去16万元. (1)求两批次购蔬菜各购进多少吨?(2)公司收购后对蔬菜进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润800元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1、B 【解析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断. 【详解】A .3332a a a += ,此选项不符合题意;B .826a a a ÷=,此选项符合题意;C .235a a a ⋅=,此选项不符合题意;D .236()a a -=-,此选项不符合题意;故选:B . 【点睛】本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方. 2、C 【解析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.【详解】由于总共有7个人,且他们的成绩各不相同,第4的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少.故选C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.3、C【解析】因为R不动,所以AR不变.根据三角形中位线定理可得EF= 12AR,因此线段EF的长不变.【详解】如图,连接AR,∵E、F分别是AP、RP的中点,∴EF为△APR的中位线,∴EF= 12AR,为定值.∴线段EF的长不改变.故选:C.【点睛】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.4、B【解析】试题解析:由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,y=11.25,故④错误,∴正确的有②③,故选B.5、A【解析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案. 【详解】解:∵直线y 1=k 1x+b 1与y 2=k 2x+b 2的交点坐标为(2,4), ∴二元一次方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为2,4.x y =⎧⎨=⎩ 故选A. 【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解. 6、B 【解析】0.056用科学记数法表示为:0.056=-25.610⨯,故选B. 7、D 【解析】先由两组对边分别平行的四边形为平行四边形,根据DE ∥CA ,DF ∥BA ,得出AEDF 为平行四边形,得出①正确;当∠BAC=90°,根据推出的平行四边形AEDF ,利用有一个角为直角的平行四边形为矩形可得出②正确;若AD 平分∠BAC ,得到一对角相等,再根据两直线平行内错角相等又得到一对角相等,等量代换可得∠EAD=∠EDA ,利用等角对等边可得一组邻边相等,根据邻边相等的平行四边形为菱形可得出③正确;由AB=AC ,AD ⊥BC ,根据等腰三角形的三线合一可得AD 平分∠BAC ,同理可得四边形AEDF 是菱形,④正确,进而得到正确说法的个数. 【详解】解:∵DE ∥CA ,DF ∥BA ,∴四边形AEDF 是平行四边形,选项①正确; 若∠BAC=90°,∴平行四边形AEDF 为矩形,选项②正确; 若AD 平分∠BAC , ∴∠EAD=∠FAD ,又DE ∥CA ,∴∠EDA=∠FAD , ∴∠EAD=∠EDA , ∴AE=DE ,∴平行四边形AEDF 为菱形,选项③正确; 若AB=AC ,AD ⊥BC ,∴AD 平分∠BAC ,同理可得平行四边形AEDF 为菱形,选项④正确, 则其中正确的个数有4个. 故选D . 【点睛】此题考查了平行四边形的定义,菱形、矩形的判定,涉及的知识有:平行线的性质,角平分线的定义,以及等腰三角形的判定与性质,熟练掌握平行四边形、矩形及菱形的判定与性质是解本题的关键. 8、C 【解析】延长AD ,BC 交于点Q ,连接OE ,OF ,OD ,OC ,OQ ,由AE 与BF 为圆的切线,利用切线的性质得到AE 与EO 垂直,BF 与OF 垂直,由AE=BF ,OE=OF ,利用HL 得到直角三角形AOE 与直角BOF 全等,利用全等三角形的对应角相等得到∠A=∠B ,利用等角对等边可得出三角形QAB 为等腰三角形,由O 为底边AB 的中点,利用三线合一得到QO 垂直于AB ,得到一对直角相等,再由∠FQO 与∠OQB 为公共角,利用两对对应角相等的两三角形相似得到三角形FQO 与三角形OQB 相似,同理得到三角形EQO 与三角形OAQ 相似,由相似三角形的对应角相等得到∠QOE=∠QOF=∠A=∠B ,再由切线长定理得到OD 与OC 分别为∠EOG 与∠FOG 的平分线,得到∠DOC 为∠EOF 的一半,即∠DOC=∠A=∠B ,又∠GCO=∠FCO ,得到三角形DOC 与三角形OBC 相似,同理三角形DOC 与三角形DAO 相似,进而确定出三角形OBC 与三角形DAO 相似,由相似得比例,将AD=x ,BC=y 代入,并将AO 与OB 换为AB 的一半,可得出x 与y 的乘积为定值,即y 与x 成反比例函数,即可得到正确的选项. 【详解】延长AD ,BC 交于点Q ,连接OE ,OF ,OD ,OC ,OQ ,∵AE ,BF 为圆O 的切线, ∴OE ⊥AE ,OF ⊥FB , ∴∠AEO=∠BFO=90°, 在Rt △AEO 和Rt △BFO 中, ∵{AE BFOE OF= ,∴Rt△AEO≌Rt△BFO(HL),∴∠A=∠B,∴△QAB为等腰三角形,又∵O为AB的中点,即AO=BO,∴QO⊥AB,∴∠QOB=∠QFO=90°,又∵∠OQF=∠BQO,∴△QOF∽△QBO,∴∠B=∠QOF,同理可以得到∠A=∠QOE,∴∠QOF=∠QOE,根据切线长定理得:OD平分∠EOG,OC平分∠GOF,∴∠DOC=12∠EOF=∠A=∠B,又∵∠GCO=∠FCO,∴△DOC∽△OBC,同理可以得到△DOC∽△DAO,∴△DAO∽△OBC,∴AD AO OB BC,∴AD•BC=AO•OB=14AB2,即xy=14AB2为定值,设k=14AB2,得到y=kx,则y与x满足的函数关系式为反比例函数y=kx(k为常数,k≠0,x>0).故选C.【点睛】本题属于圆的综合题,涉及的知识有:相似三角形的判定与性质,切线长定理,直角三角形全等的判定与性质,反比例函数的性质,以及等腰三角形的性质,做此题是注意灵活运用所学知识.9、B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】210万=2100000,2100000=2.1×106,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10、C【解析】解:甲和乙盒中1个小球任意摸出一球编号为1、2、3、1的概率各为,其中得到的编号相加后得到的值为{2,3,1,5,6,7,8}和为2的只有1+1;和为3的有1+2;2+1;和为1的有1+3;2+2;3+1;和为5的有1+1;2+3;3+2;1+1;和为6的有2+1;1+2;和为7的有3+1;1+3;和为8的有1+1.故p(5)最大,故选C.二、填空题(共7小题,每小题3分,满分21分)11、2;【解析】试题解析:先求-2的平方42().-2=4=212、-23≤y≤2【解析】先根据a=-1判断出抛物线的开口向下,故有最大值,可知对称轴x=-3,再根据-4≤x≤2,可知当x=-3时y最大,把x=2时y最小代入即可得出结论.【详解】解:∵a=-1,∴抛物线的开口向下,故有最大值,∵对称轴x=-3,∴当x=-3时y最大为2,当x=2时y最小为-23,∴函数y的取值范围为-23≤y≤2,故答案为:-23≤y≤2.【点睛】本题考查二次函数的性质,掌握抛物线的开口方向、对称轴以及增减性是解题关键.13、1【解析】找到立方等于27的数即可.解:∵11=27,∴27的立方根是1,故答案为1.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算14、1【解析】利用△ACD∽△CBD,对应线段成比例就可以求出.【详解】∵CD⊥AB,∠ACB=90°,∴△ACD∽△CBD,∴CD BD AD CD=,∴49CDCD=,∴CD=1.【点睛】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定方法是关键.15、1【解析】试题解析:如图,∵a∥b,∠3=40°,∴∠4=∠3=40°.∵∠1=∠2+∠4=110°,∴∠2=110°-∠4=110°-40°=1°.故答案为:1.16、62【解析】根据折叠的性质得出∠2=∠ABD,利用平角的定义解答即可.【详解】解:如图所示:由折叠可得:∠2=∠ABD,∵∠DBC=56°,∴∠2+∠ABD+56°=180°,解得:∠2=62°,∵AE//BC,∴∠1=∠2=62°,故答案为62.【点睛】本题考查了折叠变换的知识以及平行线的性质的运用,根据折叠的性质得出∠2=∠ABD是关键.17、59.【解析】根据题意,画出树状图,然后根据树状图和概率公式求概率即可.【详解】解:画树状图得:共有9种等可能的结果,至少有一辆汽车向左转的有5种情况,∴至少有一辆汽车向左转的概率是:59.故答案为:59.【点睛】此题考查的是求概率问题,掌握树状图的画法和概率公式是解决此题的关键.三、解答题(共7小题,满分69分)18、(1)a=6,b=8;(2)()28001064160(10)x xyx x⎧≤≤=⎨+>⎩;(3)A团有20人,B团有30人.【解析】(1)根据函数图像,用购票款数除以定价的款数,计算即可求得a的值;用11人到20人的购票款数除以定价的款数,计算即可解得b的值;(2)分0≤x≤10与x>10,利用待定系数法确定函数关系式求得y2的函数关系式即可;(3)设A团有n人,表示出B团的人数为(50-n),然后分0≤x≤10与x>10两种情况,根据(2)中的函数关系式列出方程求解即可.【详解】(1)由y1图像上点(10,480),得到10人的费用为480元,∴a=480106 800⨯=;由y2图像上点(10,480)和(20,1440),得到20人中后10人的费用为640元,∴b=640108 800⨯=;(2)0≤x≤10时,设y2=k2x,把(10, 800)代入得10k2=800, 解得k2=80,∴y2=80x,x>10,设y2=kx+b,把(10, 800)和(20,1440)代入得10800201440k b k b +=⎧⎨+=⎩解得64160k b =⎧⎨=⎩∴y 2=64x+160∴()28001064160(10)x x y x x ⎧≤≤=⎨+>⎩(3)设B 团有n 人,则A 团的人数为(50-n )当0≤n≤10时80n+48(50-n )=3040,解得n=20(不符合题意舍去)当n >10时801064n 104850n 3040⨯+-+-=()(),解得n=30.则50-n=20人,则A 团有20人,B 团有30人.【点睛】此题主要考查一次函数的综合运用,解题的关键是熟知待定系数法确定函数关系式.19、(1)证明见解析;(2)四边形BCDE 是菱形,理由见解析.【解析】(1)证明△ADC ≌△ABC 后利用全等三角形的对应角相等证得结论.(2)首先判定四边形BCDE 是平行四边形,然后利用对角线垂直的平行四边形是菱形判定菱形即可.【详解】解:(1)证明:∵在△ADC 和△ABC 中,∴△ADC ≌△ABC (SSS ).∴∠1=∠2.(2)四边形BCDE 是菱形,理由如下:如答图,∵∠1=∠2,DC=BC ,∴AC 垂直平分BD.∵OE=OC ,∴四边形DEBC 是平行四边形.∵AC ⊥BD ,∴四边形DEBC 是菱形.【点睛】考点:1.全等三角形的判定和性质;2. 线段垂直平分线的性质;3.菱形的判定.20、(1)40;(2)144°;(3)作图见解析;(4)游戏规则不公平.【解析】(1)根据统计图可以求出这次调查的n的值;(2)根据统计图可以求得扇形统计图中D部分扇形所对应的圆心角的度数;(3)根据题意可以求得调查为D的人数,从而可以将条形统计图补充完整;(4)根据题意可以写出树状图,从而可以解答本题.【详解】解:(1)n%=1﹣10%﹣15%﹣35%=40%,故答案为40;(2)扇形统计图中D部分扇形所对应的圆心角是:360°×40%=144°,故答案为144°;(3)调查的结果为D等级的人数为:400×40%=160,故补全的条形统计图如右图所示,(4)由题意可得,树状图如右图所示,P(奇数)82, 123 ==P(偶数)41, 123 ==故游戏规则不公平.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.键21、(1)5;(2)(a+3);(3)第三次变化后中间小桶中有2个小球.【解析】(1)(2)根据材料中的变化方法解答;(3)设原来每个捅中各有a个小球,根据第三次变化方法列出方程并解答.【详解】解:(1)依题意得:(3+2)÷(3﹣2)=5故答案是:5;(2)依题意得:a+2+1=a+3;故答案是:(a+3)(3)设原来每个捅中各有a个小球,第三次从中间桶拿出x个球,依题意得:a﹣1+x=2ax=a+1所以a+3﹣x=a+3﹣(a+1)=2答:第三次变化后中间小桶中有2个小球.【点睛】考查了一元一次方程的应用和列代数式,解题的关键是找到描述语,列出等量关系,得到方程并解答.22、(1)证明见解析;(2)15.【解析】(1)先连接OD,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可.(2)首先证明AC=2DE=20,在Rt△ADC中,DC=12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题.【详解】(1)证明:连结OD,∵∠ACB=90°,∴∠A+∠B=90°,又∵OD=OB,∴∠B=∠BDO,∵∠ADE=∠A,∴∠ADE+∠BDO=90°,∴∠ODE=90°.∴DE是⊙O的切线;(2)连结CD,∵∠ADE=∠A,∴AE=DE.∵BC是⊙O的直径,∠ACB=90°.∴EC是⊙O的切线.∴DE=EC.∴AE=EC,又∵DE=10,∴AC=2DE=20,在Rt△ADC中,22201612-=设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴22+=.12915【点睛】考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活综合运用所学知识解决问题. 23、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.【解析】(1)待定系数法列方程组求一次函数解析式.(2)列一元二次方程求解.(3)总利润=单件利润⨯销售量:w=(x-20)(-2x+80),得到二次函数,先配方,在定义域上求最值.【详解】(1)设y与x的函数关系式为y=kx+b.把(22,36)与(24,32)代入,得22362432.k b k b +=⎧⎨+=⎩解得280.k b =-⎧⎨=⎩ ∴y =-2x +80(20≤x≤28).(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x 元,根据题意,得 (x -20)y =150,即(x -20)(-2x +80)=150.解得x 1=25,x 2=35(舍去).答:每本纪念册的销售单价是25元.(3)由题意,可得w =(x -20)(-2x +80)=-2(x -30)2+200.∵售价不低于20元且不高于28元,当x <30时,y 随x 的增大而增大,∴当x =28时,w 最大=-2×(28-30)2+200=192(元).答:该纪念册销售单价定为28元时,能使文具店销售该纪念册所获利润最大,最大利润是192元.24、(1)第一次购进40吨,第二次购进160吨;(2)为获得最大利润,精加工数量应为150吨,最大利润是1.【解析】(1)设第一批购进蒜薹a 吨,第二批购进蒜薹b 吨.构建方程组即可解决问题.(2)设精加工x 吨,利润为w 元,则粗加工(100-x )吨.利润w=800x+400(200﹣x )=400x+80000,再由x≤3(100-x ),解得x≤150,即可解决问题.【详解】(1)设第一次购进a 吨,第二次购进b 吨,2002000500160000a b a b +=⎧⎨+=⎩, 解得40160a b =⎧⎨=⎩, 答:第一次购进40吨,第二次购进160吨;(2)设精加工x 吨,利润为w 元,w=800x+400(200﹣x )=400x+80000,∵x≤3(200﹣x ),解得,x≤150,∴当x=150时,w 取得最大值,此时w=1,答:为获得最大利润,精加工数量应为150吨,最大利润是1.【点睛】本题考查了二元一次方程组的应用与一次函数的应用,解题的关键是熟练的掌握二元一次方程组的应用与一次函数的应用.。
2021年九年级中考模拟考试数学试题一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1.下列各数中,最小的数是()A.3B.﹣2C.﹣D.02.据统计,2021年第一季度全球手机出货量达到3.4亿部,将数据3.4亿用科学记数法表示为()A.3.4×108B.3.4×1010C.0.34×109D.34×1073.下列图形中,不能经过折叠围成正方体的是()A.B.C.D.4.下列计算正确的是()A.a+b=ab B.3a2+2a2=5a4C.(﹣a3b)2=a6b2D.a2b3c÷(﹣ab2)=﹣ab5.下列说法中,错误的是()A.明天会下雨是随机事件B.某发行量较大的彩票中奖概率是,那么购买1001张彩票一定会中奖C.要了解某市初中生每天的睡眠时间,应该采用抽样调查的方式进行D.乘客乘坐飞机前的安检应采取全面调查的方式进行6.已知y是x的一次函数,下表给出5组自变量x及其对应的函数y的值.x…﹣2﹣1012…y…﹣3﹣1136…其中只有1个函数值计算有误,则这个错误的函数值是()A.﹣1B.1C.3D.67.如图,点A、C在∠FBD的两条边BF、BD上,BE平分∠FBD,CE平分∠ACD,连接AE,若∠BEC=35°,则∠FAE的度数为()A.35°B.45°C.55°D.65°8.如图,一次函数y=﹣x+2的图象与坐标轴的交点为A和B,下列说法中正确的是()A.点(2,﹣1)在直线AB上B.y随x的增大而增大C.当x>0时,y<2D.△AOB的面积是29.如图,菱形OABC的边OA在x轴上,点B坐标为(9,3),分别以点B、C为圆心,以大于BC 的长为半径画弧,两弧交于点D、E,作直线DE,交x轴于点F,则点F的坐标是()A.(7.5,0)B.(6.5,0)C.(7,0)D.(8,0)10.如图,矩形ABCD中,AB=8cm,BC=4cm,动点E和F同时从点A出发,点E以每秒2cm的速度沿A→D的方向运动,到达点D时停止,点F以每秒4cm的速度沿A→B→C→D的方向运动,到达点D时停止.设点F运动x(秒)时,△AEF的面积为y(cm2),则y关于x的函数的图象大致为()A.B.C.D.二、填空题(每小题3分,共15分)11.写出一个比﹣3大且比2小的负无理数.12.有4张全新的扑克牌,其中黑桃、红桃各2张,它们的背面都一样,将它们洗匀后,背面朝上放到桌面上,从中任意摸出2张牌,摸出的花色不一样的概率是.13.已知关于x的一元二次方程mx2+x﹣3=0有两个不相等的实数根,则m的取值范围是.14.如图,半圆O的直径AB=4cm,=,点C是上的一个动点(不与点B,G重合),CD ⊥OG于点D,CE⊥OB于点E,点E与点F关于点O中心对称,连接DE、DF,则△DEF面积的最大值为cm2.15.如图,正方形ABCD的边长为3,点G在边AD上,GD=1,GH⊥BC于点H,点E是边AB 上一动点(不与点A,B重合),EF⊥CD于点F,交GH于点Q,点O、P分别是EH和GQ的中点,连接OP,则线段OP的长度为.三、解答题(本大题共8个小题,满分75分)16.(1)化简:(a﹣2)2﹣(a+1)(a﹣6);(2)计算:2sin45°﹣20210﹣+|﹣1|.17.为了解某校七年级男生的身高情况,某数学活动小组进行了抽样和分析,过程如下:[收集数据]随机抽取了七年级若干名男生,测得他们的身高(单位:cm),记录如下:152 153 154 155 155 155 156 156 157 157 158 160 160 160161 161 162 162 162 163 163 163 163 164 164 164 165 165165 166 167 168 169 169 170 170 172 172 175 175[整理数据]整理以上数据,得到如下尚不完整的频数分布表和直方图:调查结果频数分布表组别身高(单位:cm)频数频率A150≤x<155a0.075B155≤x<16080.2C160≤x<165150.375D165≤x<1700.2E170≤x<17560.15 [分析数据]根据以上频数分布表和直方图,即可对数据进行针对性的分析.根据以上信息解答下列问题:(1)此次抽样调查的样本容量是,统计表中a=.(2)所抽取的样本中,男生身高的中位数所在的组别是.(3)请把频数分布直方图补充完整.(4)若该校七年级有男生400人,根据调查数据估计身高不低于165cm的大约有多少人?18.某数学兴趣小组进行了一次有趣的数学探究:如图①所示,在钝角∠AOB的边OB上任取一点C,过点C作CE∥OA,以点C为圆心,CO的长为半径画弧,交射线CE于点D,在上任取一点P,作射线OP,交射线CE于点F,当点P在上移动时,点F也随之移动,是否存在某个时刻,∠AOF恰好等于∠AOB呢?经过试验、猜想、推理验证,他们发现:当PF与OC满足某种数量关系时,∠AOF=∠AOB.请你根据以上信息,把如下不完整的“图②”和“已知”补充完整,并写出“证明”过程.已知:如图②,点C在钝角∠AOB的边OB上,CE∥OA,以点C为圆心、CO的长为半径画弧,交射线CE于点D,点P在上,射线OP交CE于点F,(填PF与OC的数量关系).求证:∠AOF=∠AOB.19.钓鱼岛是我国固有领土,2021年4月26日,中华人民共和国自然资源部在其官网上公布《钓鱼岛及其附属岛屿地形地貌调查报告》,报告公布了钓鱼岛及其附属岛屿的高分辨率海岛地形数据.如图所示,点A是岛上最西端“西钓角”,点B是岛上最东端“东钓角”,AB长约3641米,点D是岛上的小黄鱼岛,且A、B、D三点共线.某日中国海监一艘执法船巡航到点C处时,恰好看到正北方的小黄鱼岛D,并测得∠ACD=70°,∠BCD=45°.根据以上数据,请求出此时执法船距离小黄鱼岛D的距离CD的值.(参考数据:tan70°≈2.75,sin70°≈0.94,cos70°≈0.34,结果精确到1米.)20.如图,已知二次函数y=x2﹣2mx﹣2+m2的顶点为P,矩形OABC的边OA落在x轴上,点B的坐标是(6,2).(1)求点P的坐标,并说明随着m值的变化,点P的运动轨迹是什么?(2)若该二次函数的图象与矩形OABC的边恰好有2个交点,请直接写出此时m的取值范围.21.某水果批发店销售粑粑柑和苹果,均按整箱出售,粑粑柑比苹果每箱贵30元.某天粑粑柑销售额为1800元,苹果销售额为3600元,该日苹果销售量恰好是粑粑柑销售量的3倍.(1)求粑粑柑、苹果每箱各是多少元?(2)某单位决定去该水果批发店购买粑粑柑、苹果共30箱,恰逢批发店对售价进行调整,苹果单价提高了5%,粑粑柑按九折销售,本次购买预算总费用不超过2100元,那么可最多购买多少箱粑粑柑?22.研究函数y=+3的图象和性质,可以通过列表、描点、连线画出函数图象,然后结合函数图象进行分析.探究过程如下:(1)函数y=+3的自变量x的取值范围是.(2)y与x的几组对应值如表:x…﹣3﹣2﹣101 1.5 2.534567…y… 2.8 2.75m 2.52154 3.5n 3.25 3.2…根据表格中的数据,在同一平面直角坐标系中描点,并用平滑的曲线进行连线,画出图象的另外一支,并写出m+n﹣2=.(3)观察图象可知,函数图象既是中心对称图形,又是轴对称图形,它的对称中心的坐标是,它的对称轴的解析式是.(4)当x满足时,y随x的增大而减小.(5)结合函数图象填空:当关于x的方程+3=k(x﹣2)+3有两个不相等的实数根时,实数k的取值范围是;关于x的方程+3=k(x﹣2)+3无实数根时,实数k的取值范围是.23.已知点M是矩形ABCD的边AB上一个动点,过点M作MG⊥CD于点G,交对角线AC于点E,连接BE,过点E作EF⊥BE,交射线DC于点F.(1)如图1,若AB=AD,则FG与DG的数量关系是;(2)如图2.若AB=4,AD=3,①当点M在边AB上移动时,FG与DG的数量关系是否保持不变?若不变,请仅就图2求出它们之间的数量关系;若变化,请说明理由.②当时,请直接写出AM的最大值和最小值.参考答案一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
中考全真模拟测试数学试卷一、选择题:1. 我市南水北调配套工程建设进展顺利,工程运行调度有序.截止2015年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过“存水”增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率.将812000000用科学记数法表示应为A. 812×106B. 81.2×107C. 8.12×108D. 8.12×1092. 下列运算正确的是()A. 3a2+5a2=8a4B. a6•a2=a12C. (a+b)2=a2+b2D. (a2+1)0=13. 如图所示的标志中,是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个4. 为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是()A. 15mB. 17mC. 20mD. 28m5. 如图,已知AB∥CD,∠A=40°,∠D=45°,则∠1的度数是( )A. 80°B. 85°C. 90°D. 95°6. 估计7+1的值( ) A. 在1和2之间B. 在2和3之间C. 3和4之间D. 在4和5之间7. 在平面直角坐标系中,点(-1,2)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限8. 已知一次函数y =kx -k ,y 随x 的增大而减小,则该函数的图像不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9. 计算8-2的结果是( )A. 6B. 6C. 2D. 210. 一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是( )A . 415B. 13C. 25D. 35 11. 如图,1l ∥2l ∥3l ,两条直线与这三条平行线分别交于点A 、B 、C 和D 、E 、F .已知32AB BC ,则DE DF 的值为( )A. 32B. 23C. 25D. 3512. 如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD 最大面积是( )A. 60 m2B. 63 m2C. 64 m2D. 66 m2二、填空题:13. 分解因式:x3y﹣2x2y+xy=______.14. 函数y=12 -x的自变量x的取值范围是_____.15. 化简221(1)11x x-÷+-的结果是.16. 某直角三角形三条边的平方和为200,则这个直角三角形的斜边长为.17. 如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为.18. 已知⊙O的半径为5,AB是⊙O的直径,D是AB延长线上一点,DC是⊙O的切线,C是切点,连接AC,若∠CAB=30°,则BD的长为____.三、计算题:19. 解方程组:3(1)4(4)05(1)3(5)x yy x---=⎧⎨-=+⎩20. 解不等式组2102323xx x+>⎧⎪-+⎨≥⎪⎩.四、解答题:21. 如图,四边形ABCD中,90,1,3A ABC AD BC︒∠=∠===,E是边CD中点,连接BE并延长与AD的延长线相较于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.22. 如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.23. 为了更好的治理西流湖水质,保护环境,市治污公司决定购买10 台污水处理设备.现有A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:A 型B 型价格(万元/台) a b处理污水量(吨/月)240 200经调查:购买一台A 型设备比购买一台B 型设备多2 万元,购买2 台A 型设备比购买3 台B 型设备少6 万元.(1)求a,b 值;(2)经预算:市治污公司购买污水处理设备的资金不超过105 万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于2040 吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.24. 对于某一函数给出如下定义:若存在实数p,当其自变量值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为 .答案与解析一、选择题:1. 我市南水北调配套工程建设进展顺利,工程运行调度有序.截止2015年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过“存水”增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率.将812000000用科学记数法表示应为A. 812×106B. 81.2×107C. 8.12×108D. 8.12×109【答案】C【解析】试题解析:将812000000用科学记数法表示为:8.12×108.故选C.考点:科学记数法—表示较大的数.2. 下列运算正确的是()A. 3a2+5a2=8a4B. a6•a2=a12C. (a+b)2=a2+b2D. (a2+1)0=1【答案】D【解析】试题分析:A、原式合并同类项得到结果,即可做出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用完全平方公式展开得到结果,即可做出判断;D、原式利用零指数幂法则计算得到结果,即可做出判断.解:A、原式=8a2,故A选项错误;B、原式=a8,故B选项错误;C、原式=a2+b2+2ab,故C选项错误;D、原式=1,故D选项正确.故选D.点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及零指数幂,熟练掌握公式及法则是解本题的关键.3. 如图所示的标志中,是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【详解】试题分析:四个标志中是轴对称图形的有:,所以共有3个.故应选C.考点:轴对称图形4. 为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是()A. 15mB. 17mC. 20mD. 28m【答案】D【解析】试题分析:根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得16﹣12<AB<16+12,再解即可.解:根据三角形的三边关系可得:16﹣12<AB<16+12,即4<AB<28,故选D.考点:三角形三边关系.5. 如图,已知AB∥CD,∠A=40°,∠D=45°,则∠1的度数是( )A. 80°B. 85°C. 90°D. 95°【答案】B【解析】试题分析:∵AB∥CD,∴∠A=∠C=40°,∵∠1=∠D+∠C,∵∠D=45°,∴∠1=∠D+∠C=45°+40°=85°,故选B.考点:平行线的性质.6. 7+1的值()A. 在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间【答案】C【解析】∵7,∴7,7在在3和4之间.故选C.7. 在平面直角坐标系中,点(-1,2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵点(-1,2)的横坐标为负数,纵坐标为正数,∴点(-1,2)在第二象限.故选B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8. 已知一次函数y=kx-k,y随x的增大而减小,则该函数的图像不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】解:∵一次函数y=kx﹣k的图象y随x的增大而减小,∴k<0.即该函数图象经过第二、四象限,∵k<0,∴﹣k>0,即该函数图象与y轴交于正半轴.综上所述:该函数图象经过第一、二、四象限,不经过第三象限.故选C.点睛:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.9. 的结果是( )A. 6 C. 2【答案】D【解析】-==D.考点:二次根式的加减法.10. 一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是()A.415B.13C.25D.35【答案】D【解析】1231305-=,故选D.11. 如图,1l∥2l∥3l,两条直线与这三条平行线分别交于点A、B、C和D、E、F.已知32ABBC=,则DEDF的值为()A. 32B.23C.25D.35【答案】D 【解析】试题分析:∵1l∥2l∥3l,32ABBC=,∴DEDF=ABAC=332+=35,故选D.考点:平行线分线段成比例.12. 如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD最大面积是()A. 60 m2B. 63 m2C. 64 m2D. 66 m2【答案】C【解析】试题分析:设BC=xm,表示出AB,矩形面积为ym2,表示出y与x的关系式为y=(16﹣x)x=﹣x2+16x=﹣(x﹣8)2+64,,利用二次函数性质即可求出求当x=8m时,y max=64m2,即所围成矩形ABCD的最大面积是64m2.故答案选C.考点:二次函数的应用.二、填空题:13. 分解因式:x3y﹣2x2y+xy=______.【答案】xy(x﹣1)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy(x2-2x+1)=xy(x-1)2.故答案为:xy (x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 14. 函数y=12-x x 的自变量x 的取值范围是_____. 【答案】x≤12且x≠0 【解析】【详解】根据题意得x≠0且1﹣2x≥0,所以12x ≤且0x ≠. 故答案为12x ≤且0x ≠. 15. 化简221(1)11x x -÷+-的结果是 . 【答案】(x-1)2.【解析】试题解析:原式=11x x -+•(x+1)(x-1) =(x-1)2.考点:分式的混合运算.16. 某直角三角形三条边的平方和为200,则这个直角三角形的斜边长为 .【答案】10.【解析】解:∵一个直角三角形的三边长的平方和为200,∴斜边长的平方为100,则斜边长为:10.故答案为10. 17. 如图,△ABC 中,AB=AC=10,BC=8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为 .【答案】14.【解析】试题解析:∵AB=AC ,AD 平分∠BAC ,BC=8,∴AD⊥BC,CD=BD=12BC=4,∵点E为AC的中点,∴DE=CE=12AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.18. 已知⊙O的半径为5,AB是⊙O的直径,D是AB延长线上一点,DC是⊙O的切线,C是切点,连接AC,若∠CAB=30°,则BD的长为____.【答案】5.【解析】解:连接OC,BC.∵AB是圆O的直径,DC是圆O的切线,C是切点,∴∠ACB=∠OCD=90°.∵∠CAB=30°,∴∠COD=2∠A=60°,∴OD=2OC=10,∴BD=OD-OB=10-5=5.故答案为5.三、计算题:19. 解方程组:3(1)4(4)0 5(1)3(5)x yy x---=⎧⎨-=+⎩【答案】x=5,y=7.【解析】试题分析:先把组中的方程化简后,再求方程组的解.试题解析:解:原方程化简得:3413 5320x yy x-=-⎧⎨-=⎩①②①+②,得:y=7,把y=7代入①,得:x=5,所以原方程组的解为:57 xy=⎧⎨=⎩.20. 解不等式组210 23 23xx x+>⎧⎪-+⎨≥⎪⎩.【答案】﹣0.5<x≤0.【解析】【分析】先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【详解】解:2102323xx x+>⎧⎪⎨-+≥⎪⎩①②由①得:x>﹣0.5,由②得:x≤0,则不等式组的解集是﹣0.5<x≤0.【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.四、解答题:21. 如图,四边形ABCD中,90,1,3A ABC AD BC︒∠=∠===,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.(1)求证:四边形BDFC平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.【答案】(1)见解析;(2)2或35【解析】【分析】(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;(2)由等腰三角形的性质,分三种情况:①BD=BC,②BD=CD,③BC=CD,分别求四边形的面积.【详解】解:(1)证明:∵∠A=∠ABC=90°∴AF∥BC∴∠CBE=∠DFE,∠BCE=∠FDE∵E是边CD的中点∴CE=DE∴△BCE≌△FDE(AAS)∴BE=EF∴四边形BDFC是平行四边形(2)若△BCD是等腰三角形①若BD=BC=3 在Rt△ABD中,AB=229122BD AD-=-=∴四边形BDFC的面积为S=22×3=62;②若BC=DC=3 过点C作CG⊥AF于G,则四边形AGCB是矩形,所以,AG=BC=3,所以,DG=AG-AD=3-1=2,在Rt△CDG中,由勾股定理得,2222325CG CD DG=-=-=∴四边形BDFC的面积为S=35③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾,此时不成立;综上所述,四边形BDFC的面积是2或35【点睛】本题考查了平行四边形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,(1)确定出全等三角形是解题的关键,(2)难点在于分情况讨论.22. 如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.【答案】(1)详见解析;(2)详见解析;(3)6 5 .【解析】(1)证明:连接CE,如图1所示:∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.(2)证明:连接OE,如图2所示:∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3.∵OE∥AC,∴△FCG∽△FOE,∴CG FCOE FO=,即2323CG=+,解得:CG=65.点睛:本题利用了等腰三角形三线合一定理,三角形中位线的判定,切割线定理,以及勾股定理,还有平行线分线段成比例定理,切线的判定等知识.23. 为了更好的治理西流湖水质,保护环境,市治污公司决定购买10 台污水处理设备.现有A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:A 型B 型价格(万元/台) a b处理污水量(吨/月)240 200经调查:购买一台A 型设备比购买一台B 型设备多2 万元,购买2 台A 型设备比购买3 台B 型设备少6 万元.(1)求a,b 的值;(2)经预算:市治污公司购买污水处理设备的资金不超过105 万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于2040 吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.【答案】(1)1210ab==⎧⎨⎩;(2)①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台. ;(3)为了节约资金,应选购A型设备1台,B型设备9台.【解析】【分析】(1)根据“购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元”即可列出方程组,继而进行求解;(2)可设购买污水处理设备A型设备x台,B型设备(10-x)台,则有12x+10(10-x)≤105,解之确定x 的值,即可确定方案;(3)因为每月要求处理流溪河两岸的污水量不低于2040吨,所以有240x+200(10-x)≥2040,解之即可由x的值确定方案,然后进行比较,作出选择.【详解】(1)根据题意得:2326a bb a-=-=⎧⎨⎩,∴1210ab==⎧⎨⎩;(2)设购买污水处理设备A型设备x台,B型设备(10−x)台,则:12x+10(10−x)⩽105,∴x⩽2.5,∵x取非负整数,∴x=0,1,2,∴有三种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.(3)由题意:240x+200(10−x)⩾2040,∴x⩾1,又∵x⩽2.5,x取非负整数,∴x为1,2.当x=1时,购买资金为:12×1+10×9=102(万元),当x=2时,购买资金为:12×2+10×8=104(万元),∴为了节约资金,应选购A型设备1台,B型设备9台.【点睛】此题考查一元一次不等式的应用,二元一次方程组的应用,解题关键在于理解题意列出方程.24. 对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q取值范围;(3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为 .【答案】详见解析.【解析】试题分析:(1)根据定义分别求解即可求得答案;(2)①首先由函数y=2x2﹣bx=x,求得x(2x﹣b﹣1)=0,然后由其不变长度为零,求得答案;②由①,利用1≤b≤3,可求得其不变长度q的取值范围;(3)由记函数y=x2﹣2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,可得函数G的图象关于x=m对称,然后根据定义分别求得函数的不变值,再分类讨论即可求得答案.试题解析:解:(1)∵函数y=x﹣1,令y=x,则x﹣1=x,无解;∴函数y=x﹣1没有不变值;∵y=x-1 =1x,令y=x,则1xx=,解得:x=±1,∴函数1yx=的不变值为±1,q=1﹣(﹣1)=2.∵函数y=x2,令y=x,则x=x2,解得:x1=0,x2=1,∴函数y=x2的不变值为:0或1,q=1﹣0=1;(2)①函数y=2x2﹣bx,令y=x,则x=2x2﹣bx,整理得:x(2x﹣b﹣1)=0.∵q=0,∴x=0且2x﹣b﹣1=0,解得:b=﹣1;②由①知:x(2x﹣b﹣1)=0,∴x=0或2x﹣b﹣1=0,解得:x 1=0,x 2=12b +.∵1≤b ≤3,∴1≤x 2≤2,∴1﹣0≤q ≤2﹣0,∴1≤q ≤2; (3)∵记函数y =x 2﹣2x (x ≥m )的图象为G 1,将G 1沿x =m 翻折后得到的函数图象记为G 2,∴函数G 的图象关于x =m 对称,∴G :y =22)22()(2(2)()m x x x x m m x x m -⎧-≥⎨--<⎩ .∵当x 2﹣2x =x 时,x 3=0,x 4=3; 当(2m ﹣x )2﹣2(2m ﹣x )=x 时,△=1+8m ,当△<0,即m <﹣18时,q =x 4﹣x 3=3;当△≥0,即m ≥﹣18时,x 5x 6 ①当﹣18≤m ≤0时,x 3=0,x 4=3,∴x 6<0,∴x 4﹣x 6>3(不符合题意,舍去); ②∵当x 5=x 4时,m =1,当x 6=x 3时,m =3;当0<m <1时,x 3=0(舍去),x 4=3,此时0<x 5<x 4,x 6<0,q =x 4﹣x 6>3(舍去);当1≤m ≤3时,x 3=0(舍去),x 4=3,此时0<x 5<x 4,x 6>0,q =x 4﹣x 6<3;当m >3时,x 3=0(舍去),x 4=3(舍去),此时x 5>3,x 6<0,q =x 5﹣x 6>3(舍去);综上所述:m 的取值范围为1≤m ≤3或m <﹣18. 点睛:本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性.注意掌握分类讨论思想的应用是解答此题的关键.。
2021年浙江省中考数学试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.菱形 ABCD 的对角线 AC = 10,BD= 6,则tan 2A 等于( ) A .45 B .35 C .33434D . 以上都不对 2.一个扇形的半径等于一个圆的半径的 2倍,且面积相等,则这个扇形的圆心角是( )A .45°B .60°C .90°D .180°3.如图,A 是半径为5的⊙O 内的一点,且 OA=3,过点A 且长小于8的弦有( )A .0 条B .1 条C .2 条D .4 条4.△DEF 由△ABC 平移得到的,点A (-1,-4)的对应点为D (1,-l ),则点B (1,1)的对应点E ,点C (-1,4)的对应点F 的坐标分别为( )A .(2,2),(3,4)B .(3,4),(1,7)C .(-2,2),(1,7)D .(3,4),(2,-2)5.把图形(1)进行平移,能得到的图形是( )6.按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为656,则满足条件的x 的不同值最多有 ( )A .2个B .3个C .4个D .5个 7.下列各分式中与11y x +-的值相等的分式是( ) A . 11y x -- B . 11y x --- C . 11y x +-- D . 11y x-+8.下面有一组按规律排列的数:1,2,4,8,16,32,…则第 2007 个数应是( )A .20052B .20062C .20072D .200829.如图足球是由32块黑白相间的牛皮缝制而成的,黑皮可看做正五边形,白皮可看做正六边形,设白皮有x 块,则黑皮有(32-x )块,每块白皮有六条边,共6x 条边,因每块黑皮有三条边和白皮连在一起,故黑皮有3x 条边,要求出白皮黑皮的块数,列出的方程正确的是( )A .3x=32-xB .3x=5(32-x )C .6x=32-xD .5x=3(32-x )二、填空题10.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小 (填 “相同”、“不一定相同”、“不相同”之一).11.“百城馆”中一滑梯的倾斜角α= 60°,则该滑梯的坡比为 .12.如图,小亮从A 点出发前进10m ,向右转15,再前进10m ,又向右转15,…,这样一直走下去,他第一次回到出发点A 时,一共走了 m .13.在矩形ABCD 中,对角线AC 与BD 所夹的钝角为l20°,AC=8 cm ,则矩形较长的一组对边距离为 ,较长的一组对边长为 .14. 8855x x x x --=--成立,则x 的取值范围是 . 15.已知:25,27a b b c +=-=,则代数式222a ac c ++的值是 .16.指出下列事件是必然事件,不可能事件,还是不确定事件?在 5 张卡片上各写有 0,2,4,6,8 中的一个数,从中抽取一张.(1)为奇数 ;(2)为偶数 ;(3)为 4 的倍数: .17.国家规定存款利息的纳税办法是:利息税=利息×20,银行一年定期储蓄的年利率为 1. 98,今年小刚取出一年到期的本金及利息时,缴纳了 3. 96 元利息税,则小刚一年前存入银行的钱为 .18. 如果将中午12:00记为 0,12:00以后为正,以时为单位,那么上午 8:00应表示为 .19.在数轴上,与表示-1 的点的距离为 2 个单位长度的点有 个,是 .三、解答题20.九年级1班将竞选出正、副班长各1名,现有甲、乙两位男生和丙、丁两位女生参加竞选.(1)男生当选班长的概率是 ;(2)请用列表或画树状图的方法求出两位女生同时..当选正、副班长的概率.21.如图所示,四边形ABCD是平行四边形,E,F分别在AD,CB的延长线上,且DE=BF,连结FE分别交AB,CD于点H,G.写出图中的一对全等三角形(不再添加辅助线)是.并给予证明.(说明:写出证明过程中的重要依据)22.已知 c 为实数,并且方程230+-=一个根,求方x x c-+=一个根的相反数是方程230x x c程230x x c+-=的根和 c的值.23.如图,在△ABC中,AB = AC,∠BAC =28°,分别以AB、,AC为边作等腰直角三角形ABD 和等腰直角三角形 ACE,使∠BAD= ∠CAE =90°.(1)求∠DBC的度数;(2)分别连按BE、CD. 试说明CD=BE.24.如图,△ABC和△DBC都是直角三角形,∠A=∠D=90°,AB=DC.说明:△EBC是等腰三角形.25.如图,CD⊥AB,EF⊥AB,∠1 =∠2,试说明∠AGD =∠ACB.26.有两个可以自由转动的均匀转盘A、B,分别被分成 4等份、3等份,并在每份内均标有数字,如图所示. 小颖和小刚同学用这两个转盘做游戏,游戏规则如下:①分别转动转盘A与B;②两个转盘停止后,将两个指针所指扇形内的数字相加;③如和为0,小颖获胜;否则小刚获胜.(1)用列表(或树状图)法求小颖获胜的概率;(2)你认为这个游戏对双方公平吗?请说明理由.27.如图,在△ABC中,已知∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求∠ABE、∠ACF和∠BHC的度数.28.有一种电动车,只有一个电瓶,充一次电最多只能行驶7 h ,李老师骑此电动车上班,上班途中他把车速固定在40 km /h ,回家途中他把车速固定在30 km /h ,问李老师家离他所在的学校最多有多远,他才能安然返回?(否则电不足)29.计算: (1)2[92(52)]⨯--(精确到 0.01)(2)3243552π-+-(精确到 0.01)30.如图所示,长方形ABCD 与长方形BEFG 等长等宽,如将长方形BEFG 向右平移,距离为EF ,长方形ABCD 向右平移距离为3个BC ,则恰好构成新长方形AEPQ ,若AEPQ 周长为56,求长方形AEPQ 的面积.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.A4.B5.C6.C7.C8.B9.B二、填空题10.相同11.3:112.24013.4 cm,43 cm14.58x<≤15.416.(1)不可能事件;(2)必然事件;(3)不确定事件17.1000元18.-419.2,-3 和+1三、解答题20.解:(1)12;(2)树状图为:所以,两位女生同时当选正、副班长的概率是21126=.(列表方法求解略)21.略22.10x=,23x=-,0c= 23.(1)在△ABC中,AB=AC,∠BAC=28°,∴∠ABC=12×(180°-28°)=76°.∵△ADB为等腰直角三角形,∴AD=AB,∠DBA=45°,∴∠DBC=∠DBA+∠ABC=45°+76°=121°.(2)∵△ABD和△ACE都是等腰直角三角形,AB=AD,AC=AE,∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠BAE.又∵AB=AC,∴AD=AB=AC=AE,∴△CAD≌△BAE,∴CD=BE.24.说明Rt△ABC≌△Rt△DCF25.∵CD⊥AB,EF⊥AB,∴CD∥EF,∴∠2=∠3.∵∠l=∠2,∴∠1=∠3,∴DG∥BC,∴∠AGD=∠ACB.26.(1)列表略,求得小颖获胜概率为 P=14;(2)这个游戏不公平,因为小颖获胜的概率为 P=14,而小刚获胜的概率为P=34,二者不相等,所以不公平27.∠ABE=30°,∠ACF=30°,∠BHC=120°.28.l2O km29.(1)17.06 (2)6.92在此输入试卷标题,也可以从WORD文件复制粘贴30.192。
丽水中考试卷(数学)说明:本卷共有1大题,10小题,共30分一、选择题(本题有10小题,没小题3分,共30分)1.下列四个数中,与-2的和为0的数是()A.-2B.2C.0D.1 2 -2.计算2133-⨯的结果是()A.3 B.-3 C.2 D.-2 3.下列图形中,属于立体图形的是()4. 11a b+的运算结果正确的是()A.1a b+B.2a b+C.a bab+D. a b+5.某校全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如右表所示,这下列说法正确的是()A.七年级的各概率最高 B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少6.下列一元二次方程没有实数根的是()A. 2210x x++= B. 220x x++=C. 210x-= D. 2210x x--=7.如图,ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,这△OBC的周长为()A. 13B. 17C. 20D. 268.在直角坐标系中,点M ,N 在同一个正比例函数图象上的是( )A. ()()2,3,4,6M N --B. ()()2,3,4,6M N -C. ()()2,3,4,6M N ---D. ()()2,3,4,6M N -9.用直尺和圆规作Rt △ABC 斜边AB 上的高线CD ,以下四个作图中,作法错误的是( )10.已知:如图,○O 是等腰Rt △ABC 的外接圆,点D 是AC 上的一点,BD 交AC 于点E ,若BC =4,AD =45,这AE 的长是( )A. 3B. 2C. 1D. 1.2卷2说明:本卷共有2大题,14小题,共90分二、填空题(本题有6小题,每小题4分,共24分)11.分解因式:am -3a = .12.如图,在△ABC 中,∠A =53°,直线MN ∥BC ,且分别与AB ,AC 相交于点D ,E ,若∠AEN =133°,则∠B 的度数为 .13.箱子里放有2个黑球和2个红球,它们除颜色外其余都相同.现从箱子里随机摸出两个球,恰好为1个黑球和1个红球的概念是 .14.已知2210x x +-=,则2362x x +-= .15.如图,在菱形ABCD 中,过点B 作BE ⊥AD ,BF ⊥CD ,垂足分别为点E ,F ,延长BD 至点G ,使得DG =BD ,连结EG ,FG ,若AE =DE ,则EG AB= .16.如图,一次函数y =-x +b 与反比例函数()40y x x=>的图象交于A ,B 两点,与x 轴,y 轴分别交于C ,D 两点,连结OA ,OB ,过点A 作AE ⊥x 轴于点E ,交OB 于点F ,设点A 的横坐标为m(1)b = (用含m 的代数式表示) .(2)若4OAF EFBC S S +=△四边形,则m 的值是 .三、解答题(本题有8个小题,第17~19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分,各小题都必须写出解答过程)17.(本题6分)计算:()0328--+18.(本题6分)解不等式()35223x x -<+.19.(本题6分)数学拓展课程(玩转学具)课堂中,小陆同学发现,一副三角板中,含45°的三角板的斜边与含30°的三角板的长直角边相等,于是,小陆同学提出一个问题:如图,将一副三角板直角顶点重合拼在一起,点B,C,E 在同一直线上,若BC=2,求AF的长.请你运用所学的数学知识解决这个问题.20.(本题8分)为了帮助九年级学生做好体育考试项目的选考工作,某校统计了本县上届九年级毕业生体育考试各个项目参加的男、女生人数及平均成绩,并绘制成如下两个统计图,请结合统计图信息解决问题.(1)“掷实心球”项目男、女生总人数是“跳绳”项目男、女生总人数的2倍.求“跳绳”项目的女生人数.(2)若一个考试项目的男、女生中平均成绩不小于9分为“优秀”,试判断该县上届毕业生的考试项目中达到“优秀”的有哪些项目,并说明理由;(3)请结合统计图信息和实际情况,给该校九年级学生体育考试项目的选择提出合理化建议.21.(本题8分)2016年3月27日“丽水半程马拉松竞赛”在莲都举行,某运动员从起点万地广场西门出发,途径紫金大桥,沿比赛路线跑回终点万地广场西门.设该运动员离开起点的路程s(千米)与跑步时间t(分钟)之间的函数关系如图所示.其中从起点到紫金大桥的平均速度是0.3千米/分钟.用时35分钟,根据图象提供的信息,解答下列问题:(1)求图中a的值;(2)组委会在距离起点2.1千米处设立一个拍摄点C,该运动员从第一次过点C 到第二次过点C 所用的时间为68分钟.①求AB 所在直线的函数解析式;②该运动员跑完赛程用时多少分钟?22.(本题10分)如图,AB 是以BC 为直径的半圆O 的切线,D 为半圆上一点,AD =AB ,AD ,BC 的延长线相交于点E .(1)求证:AD 是半圆O 的切线;(2)连结CD .求证:∠A =2∠CDE ;(3)若∠CDE =27°,OB =2,求BD 的长.23.(本题10分)如图1,地面BD 上两根等长立柱AB ,CD 之间悬挂一根近似成抛物线2143105y x x =-+的绳子. (1)求绳子最低点离地面的距离;(2)因实际需要,在离AB 为3米的位置处用一根立柱MN 撑起绳子(如图2),使左边抛物线F 1的最低点距MN 为1米,离地面1.8米,求MN 的长;(3)将立柱MN 的长度提升为3米,通过调整MN 的位置,使抛物线F 1对应函数的二次项系数始终为14.设MN 离AB 的距离为m ,抛物线F 2的顶点离地面距离为k ,但2≤k ≤2.5时,求m 的取值范围.24.(本题12分)如图,矩形ABCD 中,点E 为BC 上一点,F 为DE 的中点,且∠BFC =90°.(1)但E 为BC 中点时,求证:△BCF ≌△DEC ;(2)但BE -2EC 时,求CD BD的值; (3)设CE =1,BE =n ,作点C 关于DE 的对称点'C ,连结'FC 若点'C 到AF的距离是210,求n 的值.。
2021年浙江省金华市中考数学第三次模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.用长为5cm,6cm,7cm的三条线段围成三角形的事件是()A.随机事件B.必然事件C.不可能事件D.以上都不是2.如图,△ABC 中,AC=8,AB = 12,BC = 10,E 是AC 中点,∠AED =∠B,则△ADE 与△ACB 的周长之比为()A.1:2 B.1:3 C.2:3 D.2:53.下列所给的边长相同的正多边形的组合中,不能镶嵌平面的是()A.正三角形与正方形组合B.正三角形与正六边形组合C.正方形与正六边形组合D.正三角形、正方形、正六边形组合4.一种牛奶包装盒标明“净重300g,蛋白质含量≥2.9%”.那么其蛋白质含量为()A.2.9%及以上 B.8.7g C.8.7g及以上D.不足8.7g5.为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次,鱼共200条,有10条做了记号,则估计湖里有()条鱼A.400条 B.500条 C.800条 D.1000条6.下列图形中是四棱柱的侧面展开图的是()A.B.C.D.7.三角形的一个外角小于与它相邻的内角,这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.属于哪一类不能确定8.如图,OAB △绕点O 逆时针旋转80到OCD △的位置,已知45AOB ∠=,则AOD ∠等于( )A .55B .45C .40D .35 9.化简(-2x )3·y 4÷12x 3y 2的结果是( ) A .61y 2 B .-61y 2 C .-32y 2 D .-32xy 2 10.81的平方根是( )A . 9B . 9±C .3D .3± 11.下列式子中正确的是( ) A .x-(y-z )=x-y-z B .-(x-y+z ) =x-y-zC .x+2y-2z=x-2(y+z )D .-a+c+d-b=-(a+b )+(c+d )二、填空题12.如图是一束平行的阳光从教室的窗户射入的平面示意图,光线与地面所成角30°,在教室地面的影长 MN= 23m ,若窗户的下檐到教室地面的距离 BC= lm ,则窗户的上檐到地面的距离 AC 为 m .13.如图,在半径为5的⊙O 中,直径AB 与弦CD 垂直,垂足为M ,若4OM =,则CD = .14.一学生推铅球时,铅球行进高度 y(m)与水平距离 x(m)的函数图象如图所示,则铅球推出的距离为 m .15.在□ABCD 中,∠A :∠B :∠C=2:3:2,则∠D= .16.如图,求∠A+∠B+∠C+∠D+∠E 的度数是 .17.(158= ;310= . 18.如果一个三角形的三条高都在三角形的内部,那么这个三角形是 三角形(按角分类).19.一个袋中装有两个红球,一个白球.第一次摸出一个球,放回搅匀,再任意摸出一个,则两次都摸到白球的概率为 .20.答1在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是_______.21.如图,在△ABC 中,AD ,AE 分别是BC 边上的中线和高,且BD=4cm ,AE=•3cm ,则△ABC 的面积是________cm 2.22.把下列各式分解因式:(1)22x y -= ;294a -+= ;(2)22()x y z +-= ;22()a b c --= .23.如图所示,在△ABC 中,AD 是角平分线,已知∠B=66°,∠C=38°,那么∠ADB= ,∠ADC= .24.上海浦东磁悬浮铁路全长30 km ,单程运行时间约8 min ,那么磁悬浮列车的平均速度用科学记数法表示约为 m /min .三、解答题25.在梯形ABCD 中,AB ∥CD ,090A ∠=,AB=2,BC=3,CD=1,E 是AD 中点,试判断EC 与EB 的位置关系,并写出推理过程.26.如图,在矩形ABCD 中,AB=2BC ,在CD 上取一点E .使AE=AB ,求∠EBC 的度数.27.为了了解用电量的多少,某家庭在6月初连续几天观察电表的读数,显示如下表:日期1日2日3日4日5日6日7日8日度数(千瓦时)114117121126132135140142则请你估计这个家庭六月份的总用电量是千瓦时.28.如图,已知从△ABC到△DEF是一个相似变换,OD与OA的长度之长为1:3.(1)DE与AB的长度之比是多少?(2)已知△ABC的周长是24cm,面积是36cm2,分别求△DEF的周长和面积.29.已知 a、 b 521024a a b--+,求a和b 的值.30.计算:(1)11 (4)(3)24-+-;(2)1(3)(0.3) 3+-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.C4.C5.D6.A7.C8.D9.C10.D11.D二、填空题12.313.614.1015.108°16.180°17.(12)18.锐角19.120.9221.5622.(1)()()+++-()()a b c a b cx y z x y z-++-x y x y+-+;(2)()()+-(32)(32)a a23.76°,l04°24.3.75×103三、解答题25.⊥.EC EB延长CE、BA相交于点F,证明△DCE≌△AFE,得CE=FE,DC=AF,∴BF=BC=3,∴BE⊥CE26.15°27.120度28.(1)1:3;(2)8cm,4cm2 29.a= 5 ,b= -430.(1)374(2)1330。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是( ) A. 14-B. -4C.14D. 42.如图是由4个相同的小正方体组成的一个立体图形,其主视图是( )A. B. C. D.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为( ) A. 38×104B. 3.8×104C. 3.8×105D. 0.38×1064.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<6.下列图形,既是轴对称图形又是中心对称图形的是( ) A 正三角形B. 正五边形C. 等腰直角三角形D. 矩形7.化简()22x 的结果是( ) A. x 4B. 2x 2C. 4x 2D. 4x8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A.16B.13C.12D.239.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A.103B. 4C. 4.5D. 510.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c += C. 1bc a +=D. 以上都不是二、填空题(本题共6小题,每小题3分,共18分)11.如图,EABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.12.如图,∠AOE =∠BOE =15°,EF ∥OB ,EC ⊥OB 于C ,若EC =1,则OF =_____.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况: 捐书(本) 3 4 5 7 10 人数 5710117该班学生平均每人捐书______本.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:1332)182+18.化简: 2212(1)244x x xx x x +--÷--+ 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?22.如图,函数12y x=的图象与函数kyx=(x>0)的图象相交于点P(4,m).(1)求m,k的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.23.如图,△ABC 中,AB =AC ,以AC 为直径的⊙O 交BC 于点D ,点E 为AC 延长线上一点,且DE 是⊙O 的切线.(1)求证:∠CDE =12∠BAC ; (2)若AB =3BD ,CE =4,求⊙O 的半径.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围. 25.阅读下面材料,完成()()13-题. 数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.” 小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE数量关系.”老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出ABCH的值.”(1)求证:CAD EAB ∠=∠; (2)求ADAE的值(用含k 的式子表示); (3)如图2,若,DH AH =则ABCH的值为 (用含k 的式子表示). 26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -). (1)b=__________(用含m 的代数式表示); (2)求△ABC 的面积; (3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.答案与解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是()A.14B. -4C.14D. 4【答案】B【解析】【分析】根据相反数的定义即可解答.【详解】∵符号相反,绝对值相等的两个数互为相反数,∴4的相反数是﹣4;故选B.【点睛】本题考查了相反数的定义,熟知只有符号不同的两个数互为相反数是解决问题的关键.2.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A. B. C. D.【答案】A【解析】【分析】根据三视图的概念即可快速作答.【详解】解:立体图形的主视图,即正前方观察到的平面图,即选项A符合题意;故答案为A.【点睛】本题考查了三视图的概念及正确识别主视图,解题的关键在于良好的空间想象能力.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A. 38×104B. 3.8×104C. 3.8×105D. 0.38×106【答案】C 【解析】 【分析】对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.【详解】380000=3.8×105. 故选C.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 【答案】A 【解析】【详解】点N 绕着点O 旋转180°,恰好关于原点对称,点(1,2)N --的中心对称点为(1,2),故选A .5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<【答案】C 【解析】 【分析】分别求出每一个不等式的解集,再确定出解集的公共部分即可得解. 【详解】解不等式12220x -<,得:4x >-, 解不等式360x -≤,得:2x ≤, 则不等式组的解集为42x -<≤, 故选C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 6.下列图形,既是轴对称图形又是中心对称图形的是( )A. 正三角形B. 正五边形C. 等腰直角三角形D. 矩形【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念逐一进行分析判断即可得.【详解】A.正三角形是轴对称图形,不是中心对称图形;B.正五边形是轴对称图形,不是中心对称图形;C.等腰直角三角形是轴对称图形,不是中心对称图形;D.矩形是轴对称图形,也是中心对称图形,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.化简()22x的结果是()A. x4B. 2x2C. 4x2D. 4x【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A. 16B.13C.12D.23【答案】A【解析】【分析】直接利用概率公式计算可得.【详解】解:从中任意抽取1张,是“红桃”的概率为16,故选A.【点睛】本题主要考查概率公式,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.9.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A. 103B. 4C. 4.5D. 5【答案】D【解析】【分析】设FC ′=x ,则FD=9-x ,根据矩形的性质结合BC=6、点C ′为AD 的中点,即可得出C ′D 的长度,在Rt △FC ′D 中,利用勾股定理即可找出关于x 的一元一次方程,解之即可得出结论.【详解】设FC′=x ,则FD=9﹣x ,∵BC=6,四边形ABCD 为矩形,点C′为AD 的中点,∴AD=BC=6,C′D=3,在Rt △FC′D 中,∠D=90°,FC′=x ,FD=9﹣x ,C′D=3,∴FC′2=FD 2+C′D 2,即x 2=(9﹣x )2+32,解得:x=5,故选D .【点睛】本题考查了矩形的性质以及勾股定理,在Rt △FC′D 中,利用勾股定理找出关于FC′的长度的一元二次方程是解题的关键.10.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c +=C. 1bc a +=D. 以上都不是【答案】A【解析】【分析】 根据题意可知,本题考察二次函数图像与系数的关系,根据图像与坐标轴的交点,运用两边相等求出交点坐标,代入坐标进行求解.【详解】∵OA OC =∴点A 、C 的坐标为(-c ,0),(0,c)∴把点A 的坐标代入2y ax bx c =++得∴2=0ac bc c -+∴()10c ac b -+=∵0c ≠∴10ac b -+=∴1ac b +=故选A【点睛】本题考察二次函数图像与系数关系,解题关键是根据图像得出系数取值范围,再代入点的坐标进行解决. 二、填空题(本题共6小题,每小题3分,共18分)11.如图,E 为ABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.【答案】60【解析】【分析】利用平行线的性质,即可得到∠CED=∠C=50°,再根据三角形内角和定理,即可得到∠B 的度数.【详解】解:∵ED ∥BC ,∴∠CED=∠C=50°,又∵∠BAC=70°,∴△ABC中,∠B=180°-50°-70°=60°,故答案为60.【点睛】本题主要考查了平行线的性质,解题时注意运用两直线平行,内错角相等.12.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于C,若EC=1,则OF=_____.【答案】2【解析】【分析】作EH⊥OA于H,根据角平分线的性质求出EH,根据直角三角形的性质求出EF,根据等腰三角形的性质解答即可.【详解】作EH⊥OA于H.∵∠AOE=∠BOE=15°,EC⊥OB,EH⊥OA,∴EH=EC=1,∠AOB=30°.∵EF∥OB,∴∠EFH=∠AOB=30°,∠FEO=∠BOE,∴EF=2EH=2,∠FEO=∠FOE,∴OF=EF=2.故答案2.【点睛】本题考查了等腰三角形的判定、角平分线的性质、平行线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况:捐书(本) 3 4 5 7 10人数 5 7 10 11 7该班学生平均每人捐书______本.【答案】6【解析】【分析】利用加权平均数公式进行求解即可得. 【详解】该班学生平均每人捐书3547510711107640⨯+⨯+⨯+⨯+⨯=(本), 故答案为6.【点睛】本题考查了加权平均数,熟练掌握加权平均数的计算公式是解题的关键.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.【答案】46483538x y x y +=⎧⎨+=⎩【解析】【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别得出方程得出答案.【详解】解:设马每匹x 两,牛每头y 两,根据题意可列方程组为: 46483538x y x y +=⎧⎨+=⎩ 故答案是:46483538x y x y +=⎧⎨+=⎩【点睛】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)【答案】262【解析】【分析】作AE BC ⊥于E ,根据正切的定义求出AE ,根据等腰直角三角形的性质求出BE ,结合图形计算即可.【详解】作AE BC ⊥于E ,则四边形ADCE 为矩形,62EC AD ∴==,在Rt AEC ∆中,tan EC EAC AE ∠=, 则62200tan 0.31EC AE EAC =≈=∠, 在Rt AEB ∆中,45BAE ∠=,200BE AE ∴==,20032262()BC m ∴=+=,则该建筑的高度BC 为262m ,故答案为262.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.【答案】175【解析】试题解析:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m 米/秒,则(m -2.5)×(180-30)=75,解得:m =3米/秒,则乙的速度为3米/秒, 乙到终点时所用的时间为:15003=500(秒), 此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500-1325=175(米).【点睛】本题考查了一次函数的应用,读懂题目信息,理解并得到乙先到达终点,然后求出甲、乙两人所用的时间是解题的关键.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:2)+【答案】-1.【解析】【分析】先利用平方差公式简便运算乘法,同时化简二次根式,再合并同类二次根式即可.【详解】解:2)+=3-4+=-1.【点睛】本题考查的是二次根式的混合运算,二次根式的化简,掌握利用平方差公式进行简便运算是解题的关键.18.化简: 2212(1)244x x x x x x +--÷--+ 【答案】3x . 【解析】【分析】先通分,计算括号内的减法,把除法转化为乘法,约分后得到结论. 【详解】解:原式=212(2)122()22(2)2x x x x x x x x x x x x+--+-+--÷=•----323.2x x x x-=•=- 【点睛】本题考查的是分式的化简,考查了分式的加减法,分式的除法,掌握以上运算是解题的关键. 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .【答案】见解析.【解析】【分析】欲证明∠F =∠C ,只要证明△ABC ≌△DEF(SSS)即可.【详解】证明:DA BE =,DE AB ∴=,在ABC ∆和DEF ∆中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,()ABC DEF SSS ∴∆≅∆,C F ∴∠=∠.【点睛】本题主要考查全等三角形的判定与性质.20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.【答案】(1)①5,3;②65,70;(2)130人.【解析】【分析】(1)①根据数据统计出a、b;②根据中位数和众数的定义求出c,d即可;(2)先求出样本用样本达到平均水平及以上的学生的概率,然后用九年级学生数×样本达到平均水平及以上的学生的概率即可.【详解】解:()1①经统计:该组数据处于30≤t<60的数据有5个, 处于90≤t<120的数据有3个,∴a=5;b=3故答案为:5;3②将这组数据从小到大排序,位于第10个的数据是60,第11个的数据是70∴中位数为(60+70)÷2=65这组数据中出现次数最多的是70 ∴众数为70 ∴6570,c d==故答案为:65;70.()132********⨯=(人),答:估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数为130人.【点睛】本题考查中位数、众数、平均数、样本估计总体的思想等知识,掌握中位数、众数、平均数等基本知识是解答本题的关键.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?【答案】小路的宽应为1m .【解析】【分析】设小路的宽应为x 米,那么草坪的总长度和总宽度应该为(16-2x ),(9-x );那么根据题意得出方程,解方程即可.【详解】解:设小路的宽应为x 米,根据题意得:(162)(9)112x x --=,解得:11x =,216x =.∵169>,∴16x =不符合题意,舍去,∴1x =.答:小路的宽应为1米.【点睛】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键. 22.如图,函数12y x =的图象与函数k y x=(x >0)的图象相交于点P (4,m ). (1)求m ,k 的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.【答案】(1)m=2,k=8;(2)103.【解析】【分析】(1)将点P(4,m)代入y=x,求出m=2,再将点P(4,2)代入kyx=即可求出k的值;(2) 分别求出A、B两点的坐标,即可得到线段AB的长.【详解】(1)∵函数12y x=的图象过点P(4,m),∴m=2,∴P(4,2),∵函数kyx=(x>0)的图象过点P,∴k=4×2=8;(2)将y=3代入12y x=,得x=6,∴点A(6,3).将y=3代入8yx=,得x=83,∴点B(83,3).∴AB=6﹣83=103.【点睛】本题主要考查了利用待定系数法求函数解析式以及函数图象上点的坐标特征,解题时注意:点在图象上,点的坐标就一定满足函数的解析式.23.如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且DE是⊙O 的切线.(1)求证:∠CDE=12∠BAC;(2)若AB=3BD,CE=4,求⊙O的半径.【答案】(1)见解析;(2)14.【解析】【分析】(1)根据圆周角定理得出∠ADC=90°,按照等腰三角形的性质和已知的2倍角关系,证明∠ODE为直角即可得到答案;(2)通过证得△CDE∽△DAE,根据相似三角形的性质即可求得.【详解】(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,-∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=12∠BAC,∵DE是⊙O的切线;∴OD⊥DE∴∠ODE=90°∴∠ADC=∠ODE∴∠CDE=∠ADO ∵OA=OD,∴∠CAD=∠ADO,∴∠CDE=∠CAD,∠CAD=12∠BAC,∴∠CDE=12∠BAC.(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD2222,AC DC x-=∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴CE DC DE DE AD AE∴==,即43422DE DE xx==+∴DE=82,,x=283,∴AC=3x=28,∴⊙O的半径为14.【点睛】本题考查了圆的切线的判定定理、圆周角定理、等腰三角形的性质、三角形相似的判定和性质,解题的关键是作出辅助线构造直角三角形或等腰三角形.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.【答案】(1)55t BC =;(2)222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【解析】【分析】(1)先根据直线112y x =+求得点A 、B 的坐标,利用勾股定理求得AB 的长,进而可求得5555sin ABO cos ABO ∠=∠=,由翻折知DB DC t ==,12BH CH BC ==,最后根据255BH cos ABO BD ∠==求得55t BH =,即可求得BC 的长; (2)分类讨论:当203t <≤时,当2534t <≤时,当524t <≤时,分别画出相应图形,然后利用相似三角形的性质分别表示出对应的底和高,进而可得S 关于t 的函数解析式即可. 【详解】解:()1∵直线112y x =+与y 轴,x 轴分别相交于点A B 、, ∴点()()012,0A B -,,,∴由勾股定理得22125AB =+=∴在直角AOB 中,525,55sin ABO cos ABO ∠=∠=, 由翻折知:DB DC t ==,12BH CH BC ==, 255BH cos ABO BD∠==, 255t BH ∴=, 455t BC ∴=, ()2当203t <≤时, 过点C 做CG BO ⊥于点G ,45CG t ∴=, 55CG sin ABO BC∴∠==, 45GC t ∴=, 14225S t t ∴=⨯⨯ 245t = 当2534t <≤时, 设OA 交CE 于点F ,45CD BD t GC t ===,, ∴由勾股定理得35GD t =,37255GE t t t ∴=-=, 382255GO t t t =--=-, 78 23255OE EG OG t t t ∴=-=-+=-, //OF CG ,EOFCGE ∴, OF OE CG OG∴=, ()4327OF t ∴=-, 12OFE S OE OF =⋅ ()()14323227t t =⋅-⋅- 222(73)t -= , DCE OFE S S S =-∴2622483577t t =-+-, 当524t <≤时, 设CD 交OA 于点P ,//,OP CG,DOP DGC ∴OP OD CG DG∴=, 2OD t =-,()423OP OP t ∴==-,12S OD OP =⋅⋅∴ 2288333t t =-+, ∴综上所述,222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【点睛】本题考查了一次函数的图像与性质,解直角三角形、相似三角形的判定及性质,根据点D 的位置画出相应的图形然后运用分类讨论思想以及相似三角形的性质是解决本题的关键.25.阅读下面材料,完成()()13-题.数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.”小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE 的数量关系.” 老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出AB CH的值.”(1)求证:CAD EAB ∠=∠;(2)求AD AE的值(用含k 的式子表示); (3)如图2,若,DH AH =则AB CH 的值为 (用含k 的式子表示). 【答案】(1)证明见解析;(2)3AD AE k =;(3)2115AB k CH ++= 【解析】【分析】(1)由BA BC =可知BAC BCA ∠=∠,再通过180ACD DAE ∠+∠=以及平角为180°,可以得到CAD EAB ∠=∠;(2)方法一:过点C 做ACM ABE ∠=∠,交AD 于点M ,通过AEB AMC 可知AC AM CM AB AE BE ==,通过DCM AFE 可知DM CM AE EF =,通过比例关系可推导出AD AE的值;方法二:过点B 做//BN AC 交AE 延长线于点N ,通过AHC DHA 和ACD ABN 相似得到的比例关系即可可推导出AD AE的值; (3)同方法二辅助线,通过证明AHC DHA ,AFE NBE ,然后由对应边成比例即可推导出结论.【详解】()1BA BC =,BAC BCA ∴∠=∠180,ACD DAE ∠+∠=180,ACD ACB ∠+∠=∴∠=∠ADE ACB,∴∠=∠DAE BAC,∴∠=∠DAC BAE,()2方法一:∠=∠,交AD于点M 过点C做ACM ABE∠=∠,DAC BAE∴AEB AMCAC AM CM∴==AB AE BE=AB kAC1∴=AM AEk1=CM BEk=2BE EF2∴=CM FEk∠=∠+∠AEF EAB ABE∠=∠+∠DMC MAC ACM∴∠=∠DMC AEFACB D DAC∠=∠+∠∠=∠+∠DAE DAC FAEDAE ACB∠=∠∴∠=∠D FAE∴DCM AFEDM CM∴=AE EF2∴=DM AEk3∴=+=AD AM DM AEkAD3∴=AE k方法二:BN AC交AE延长线于点,N 过点B做//,∴∠=∠N FAE∠=∠,AFE EBN∴,AFE NBEAE EF∴=NE BE=BE EF2,∴=NE EA2,NA EA∴=3,∠=∠+∠ACB D DAC,DAE DAC FAE∠=∠+∠,DAE ACB∠=∠,∴∠=∠,D FAE,DAC BAE ∴∠=∠ ACD ABN ∴ AC AD AB AN ∴= ,AB kAC = ,AN kAD ∴= 3,AE kAC ∴= 3AD AE k ∴= ()3同方法二辅助线,D CAH ∠=∠ ,AHC DHA ∠=∠ AHC DHA ∴ 2AH HC DH ∴=⋅ 23AH AC DH AD == 23AD AC ∴= AB kAC = 32AD AB k ∴= 3AD AE k =12AE AB ∴= 设2AH a AB BC b ===,13,2DH a AE b ∴== 2NE AE =NE b ∴=EH AH AE EN NH =-=-322NH b a ∴=- 2AH HC DH =⋅43CH a ∴= 53CD a ∴= ∴由方法二相似得53BN ak = ADHNBH ' AD DH NB NH∴= 33253232b a k ak b a ∴=- 222912200b ab a k ∴--=(123a b -∴=(舍),(223ab +=12AB CH +∴= 【点睛】本题考查了相似三角形的判定和性质,正确作出辅助线是解题的关键.26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -).(1)b=__________(用含m 的代数式表示);(2)求△ABC 的面积;(3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.【答案】(1)b=-2m-2;(2)24;(3)m =. 【解析】【分析】(1)根据A(m-2,n), B (m+4,n )纵坐标一致,结合对称轴即可求解;(2)先用含m 的代数式表示c ,再带入A 点坐标即可求出n=3,最后利用铅锤法即可求出△ABC 的面积; (3)先用只含m 的代数式表示二次函数解析式,再结合带取值范围的二次函数最值求法分类讨论即可.【详解】(1)∵2y x bx c =++过点A(m-2,n), B (m+4,n ), ∴对称轴2422b m m x -++=-= ∴22b m =--(2)∵22b m =--∴2(22)y x m x c =-++把C (m ,53n -)代入2(22)y x m x c =-++ ∴2523c m m n =+-∴225(22)23y x m x m m n =-+++-把A(m-2,n)代入225(22)23y x m x m m n =-+++-得583n n =-∴n=3∴A(m-2,3), B (m+4,3),C (m ,5-)∴AB=6C 点到x 轴的距离为:3﹣(-5)=8,∴S △ABC=12×6×8=24 (3)∵n=3∴22(22)25y x m x m m =-+++-∴2(1)6y x m =---∴当1x m =+时-6y =最小∵6y m -≤≤ ∴由函数增减性知11222m m m ≤+≤+ 即1m ≥-∴当10m -≤<时 由函数增减性知12x m =时,y m =最大 ∴21(1)62m m m =---∴m =±当0m ≥时由函数增减性知22x m =+时,y m =最大∴2(221)6m m m =+---∴1m =(舍)2m =∴12m -+=【点睛】本题考查二次函数综合运用,当参数比较多时可以带入解析式,利用解方程消元法消去多余的参数,在最后一问中对于带取值范围的二次函数最值需要根据对称轴与取值范围的关系确定范围内的最值.。
2021年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.实数−12,−√5,2,﹣3中,为负整数的是()A.−12B.−√5C.2D.﹣32.1a +2a=()A.3B.32a C.2a2D.3a3.太阳与地球的平均距离大约是150000000千米,其中数150000000用科学记数法表示为()A.1.5×108B.15×107C.1.5×107D.0.15×1094.一个不等式的解在数轴上表示如图,则这个不等式可以是()A.x+2>0B.x﹣2<0C.2x≥4D.2﹣x<05.某同学的作业如下框,其中※处填的依据是()如图,已知直线l1,l2,l3,l4.若∠1=∠2,则∠3=∠4.请完成下面的说理过程.解:已知∠1=∠2,根据(内错角相等,两直线平行),得l1∥l2.再根据(※),得∠3=∠4.A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,同旁内角互补6.将如图所示的直棱柱展开,下列各示意图中不可能是它的表面展开图的是()A .B .C .D .7.如图是一架人字梯,已知AB =AC =2米,AC 与地面BC 的夹角为α,则两梯脚之间的距离BC 为( )A .4cos α米B .4sin α米C .4tan α米D .4cosα米8.已知点A (x 1,y 1),B (x 2,y 2)在反比例函数y =−12x 的图象上.若x 1<0<x 2,则( ) A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<09.某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是( )A .先打九五折,再打九五折B .先提价50%,再打六折C .先提价30%,再降价30%D .先提价25%,再降价25%10.如图,在Rt △ABC 中,∠ACB =90°,以该三角形的三条边为边向形外作正方形,正方形的顶点E ,F ,G ,H ,M ,N 都在同一个圆上.记该圆面积为S 1,△ABC 面积为S 2,则S 1S 2的值是( )A .5π2B .3πC .5πD .11π2二、填空题(本题有6小题,每小题4分,共24分)11.(4分)二次根式√x −3中,字母x 的取值范围是 . 12.(4分)已知{x =2y =m是方程3x +2y =10的一个解,则m 的值是 .13.(4分)某单位组织抽奖活动,共准备了150张奖券,设一等奖5个,二等奖20个,三等奖80个.已知每张奖券获奖的可能性相同,则1张奖券中一等奖的概率是 .14.(4分)如图,菱形ABCD 的边长为6cm ,∠BAD =60°,将该菱形沿AC 方向平移2√3cm 得到四边形A ′B ′C ′D ′,A ′D ′交CD 于点E ,则点E 到AC 的距离为 cm .15.(4分)如图,在平面直角坐标系中,有一只用七巧板拼成的“猫”,三角形①的边BC 及四边形②的边CD 都在x 轴上,“猫”耳尖E 在y 轴上.若“猫”尾巴尖A 的横坐标是1,则“猫”爪尖F 的坐标是 .16.(4分)如图1是一种利用镜面反射,放大微小变化的装置.木条BC 上的点P 处安装一平面镜,BC 与刻度尺边MN 的交点为D ,从A 点发出的光束经平面镜P 反射后,在MN 上形成一个光点E .已知AB ⊥BC ,MN ⊥BC ,AB =6.5,BP =4,PD =8. (1)ED 的长为 .(2)将木条BC绕点B按顺时针方向旋转一定角度得到BC′(如图2),点P的对应点为P′,BC′与MN的交点为D′,从A点发出的光束经平面镜P′反射后,在MN上的光点为E′.若DD′=5,则EE′的长为.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣1)2021+√8−4sin45°+|﹣2|.18.(6分)已知x=16,求(3x﹣1)2+(1+3x)(1﹣3x)的值.19.(6分)已知:如图,矩形ABCD的对角线AC,BD相交于点O,∠BOC=120°,AB =2.(1)求矩形对角线的长.(2)过O作OE⊥AD于点E,连结BE.记∠ABE=α,求tanα的值.20.(8分)小聪、小明准备代表班级参加学校“党史知识”竞赛,班主任对这两名同学测试了6次,获得如图测试成绩折线统计图.根据图中信息,解答下列问题:(1)要评价每位同学成绩的平均水平,你选择什么统计量?求这个统计量.(2)求小聪成绩的方差.(3)现求得小明成绩的方差为S小明2=3(单位:平方分).根据折线统计图及上面两小题的计算,你认为哪位同学的成绩较好?请简述理由.21.(8分)某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A 在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线(第一象限部分)的函数表达式为y=−16(x﹣5)2+6.(1)求雕塑高OA.(2)求落水点C,D之间的距离.(3)若需要在OD上的点E处竖立雕塑EF,OE=10m,EF=1.8m,EF⊥OD.问:顶部F是否会碰到水柱?请通过计算说明.22.(10分)在扇形AOB中,半径OA=6,点P在OA上,连结PB,将△OBP沿PB折叠得到△O′BP.(1)如图1,若∠O=75°,且BO′与AB̂所在的圆相切于点B.①求∠APO′的度数.②求AP的长.(2)如图2,BO′与AB̂相交于点D,若点D为AB̂的中点,且PD∥OB,求AB̂的长.23.(10分)背景:点A在反比例函数y=kx(k>0)的图象上,AB⊥x轴于点B,AC⊥y轴于点C,分别在射线AC,BO上取点D,E,使得四边形ABED为正方形.如图1,点A 在第一象限内,当AC=4时,小李测得CD=3.探究:通过改变点A的位置,小李发现点D,A的横坐标之间存在函数关系.请帮助小李解决下列问题.(1)求k的值.(2)设点A,D的横坐标分别为x,z,将z关于x的函数称为“Z函数”.如图2,小李画出了x>0时“Z函数”的图象.①求这个“Z函数”的表达式.②补画x<0时“Z函数”的图象,并写出这个函数的性质(两条即可).③过点(3,2)作一直线,与这个“Z函数”图象仅有一个交点,求该交点的横坐标.24.(12分)在平面直角坐标系中,点A的坐标为(−√73,0),点B在直线l:y=38x上,过点B作AB的垂线,过原点O作直线l的垂线,两垂线相交于点C.(1)如图,点B,C分别在第三、二象限内,BC与AO相交于点D.①若BA=BO,求证:CD=CO.②若∠CBO=45°,求四边形ABOC的面积.(2)是否存在点B,使得以A,B,C为顶点的三角形与△BCO相似?若存在,求OB 的长;若不存在,请说明理由.2021年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.实数−12,−√5,2,﹣3中,为负整数的是()A.−12B.−√5C.2D.﹣3【分析】根据实数的分类即可做出判断.【解答】解:A选项是负分数,不符合题意;B选项是无理数,不符合题意;C选项是正整数,不符合题意;D选项是负整数,符合题意;故选:D.【点评】本题考查了实数的分类,属于简单题,注意整数包括正整数,负整数和0.2.1a +2a=()A.3B.32a C.2a2D.3a【分析】根据同分母的分式的加减法法则计算即可.【解答】解:1a +2a=1+2a=3a,故选:D.【点评】本题考查了分式的加减法,属于简单题,可以类比小学的分数计算法则,熟练掌握分式的加减法法则.3.太阳与地球的平均距离大约是150000000千米,其中数150000000用科学记数法表示为()A.1.5×108B.15×107C.1.5×107D.0.15×109【分析】对于大于10的数,可以写成a×10n的形式,其中1≤a<10,n为正整数,n的值比原数的位数少1.【解答】解:150 000 000=1.5×108,故选:A.【点评】本题考查了科学记数法,解题的关键是确定a和n的值.4.一个不等式的解在数轴上表示如图,则这个不等式可以是()A.x+2>0B.x﹣2<0C.2x≥4D.2﹣x<0【分析】解不等式,可得不等式的解集,根据不等式的解集在数轴上的表示方法,可得答案.【解答】解:A、x>﹣2,故A错误;B、x<2,故B正确;C、x≥2,故C错误;D、x>2,故D错误.故选:B.【点评】本题考查了在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.某同学的作业如下框,其中※处填的依据是()如图,已知直线l1,l2,l3,l4.若∠1=∠2,则∠3=∠4.请完成下面的说理过程.解:已知∠1=∠2,根据(内错角相等,两直线平行),得l1∥l2.再根据(※),得∠3=∠4.A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,同旁内角互补【分析】先证l1∥l2,再由平行线的性质即可得出结论.【解答】解:已知∠1=∠2,根据内错角相等,两直线平行,得l1∥l2,再根据两直线平行,同位角相等,得∠3=∠4.故选:C.【点评】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.6.将如图所示的直棱柱展开,下列各示意图中不可能是它的表面展开图的是()A.B.C.D.【分析】直三棱柱的表面展开图的特点,由三个长方形的侧面和上下两个等边三角形的底面组成.【解答】解:选项A、B、C均可能是该直棱柱展开图,而选项D中的两个底面会重叠,不可能是它的表面展开图,故选:D.【点评】考查了几何体的展开图,动手折叠一下,有助于空间想象力的培养.7.如图是一架人字梯,已知AB=AC=2米,AC与地面BC的夹角为α,则两梯脚之间的距离BC为()A.4cosα米B.4sinα米C.4tanα米D.4cosα米【分析】直接利用等腰三角形的性质得出BD=DC,再利用锐角三角函数关系得出DC的长,即可得出答案。
人教版数学中考模拟测试卷第I 卷(选择题)一、单选题(1——10每小题3分11——16每小题2分共42分)1. 在2-,0,1,1-这四个数中,最大的数是( )A. 2-B. 0C. 1D. 1-2. 中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,该舰的满载排水量为6.75×104吨,这个用科学记数法表示的数据的原数为( )A. 6750吨B. 67500吨C. 675000吨D. 6750000吨 3. 从数据43-,333.,9-,π,3-中任取一个数,则该数为无理数的概率为( ) A. 15 B. 25 C. 35 D. 454. 李老师给同学们出了一道单项式与多项式相乘的题目:﹣3x 2(2x ﹣[]+1)=﹣6x 3+6x 2y ﹣3x 2,那么“[]”里应当是( )A. ﹣yB. ﹣2yC. 2yD. 2xy5. 下面是几位同学做的几道题,222(1)()a b a b +=+ 0(2)21a = 2 (3) (3)3±=± 3412 (4) a a a ⋅= 532(5)a a a ÷=其中做对了( )道A. 1B. 2C. 3D. 46. 小明的妈妈春节前去市场买了3公斤葡萄和2公斤苹果,花了8元钱,春节后,再去市场买这两种水果,由于葡萄每公斤提价5角钱,苹果每公斤降价3角钱,买7公斤葡萄和5公斤苹果共花了21元,则春节后购物时,(葡萄,苹果)每公斤的价格分别是多少元( )A. (2.5,0.7)B. (2,1)C. (2,1.3)D. (2.5,1) 7. 一个几何体由若干个大小相同的小正方体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是( )A 4 B. 5 C. 6 D. 78. 下列因式分解中,正确的是( )A. 2()ax ax x ax a -=-B. ()2222221a b ab c b b a ac ++=++C. 222()x y x y -=-D. 256(2)(3)x x x x --=-- 9. 函数m y x=-与(0)y mx m m =-≠在同一平面直角坐标系中的大致图像是( ) A. B. C. D. 10. 如图,码头A 在码头B 的正西方向,甲,乙两船分别从A ,B 两个码头同时出发,且甲的速度是乙的速度的2倍,乙的航向是正北方向,为了使甲乙两船能够相遇,则甲的航向应该是( )A. 北偏东30B. 北偏东60C. 北偏东45D. 北偏西60 11. 如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A . 甲B. 乙C. 丙D. 丁 12. 如图,已知点()A 0,6,()B 4,6,且点B 在双曲线k y (k 0)x=>上,在AB 的延长线上取一点C ,过点C 的直线交双曲线于点D ,交x 轴正半轴于点E ,且CD DE =,则线段CE 长度的取值范围是( )A. 6CE 8≤<B. 8CE 10≤≤C. 6CE 10≤<D. 6CE273≤< 13. 如图,已知AB ∥DE ,∠ABC=70°,∠CDE=140°,则∠BCD 的值为( )A. 20°B. 30°C. 40°D. 70°14. 如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A. ①②④B. ①②⑤C. ②③④D. ③④⑤ 15. 如图,点A ,B 为反比例函数y=k x 在第一象限上的两点,AC ⊥y 轴于点C ,BD ⊥x 轴于点D ,若B 点的横坐标是A 点横坐标的一半,且图中阴影部分的面积为k ﹣2,则k 的值为( )A . 43B. 83C. 143D. 16316. 如图,线段 AB 的长为 4,C 为 AB 上一个动点,分别以 AC 、BC 为斜边在 AB 的同侧作两个等腰直角三角形ACD 和BCE,连结DE,则DE 长的最小值是( )A. 2B. 2C. 22D. 4第II卷(非选择题)二、填空题(每空3分共12分)17. 如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b>ax+3的解集为_____.18. 在纸上剪下一个圆和一个扇形纸片,使它们恰好围成一个圆锥(如图所示),如果扇形的圆心角为90°,扇形的半径为4,那么所围成的圆锥的高为_____.19. 如图,已知直线l:y=﹣x+4,在直线l上取点B1,过B1分别向x轴,y轴作垂线,交x轴于A1,交y 轴于C1,使四边形OA1B1C1为正方形;在直线l上取点B2,过B2分别向x轴,A1B1作垂线,交x轴于A2,交A1B1于C2,使四边形A1A2B2C2为正方形;按此方法在直线l上顺次取点B3,B4,…,B n,依次作正方形A2A3B3C3,A3A4B4C4,…,A n﹣1A n B n∁n,则A3的坐标为____,B5的坐标为_____.20. 李华同学准备化简:(3x2-5x-3)-(x2+2x□6),算式中“□”是“+,-,×,÷”中的某一种运算符号.(1)如果“□”是“×”,请你化简:(3x2-5x-3)-(x2+2x×6);(2)当x=1时,(3x2-5x-3)-(x2+2x□6)的结果是-2,请你通过计算说明“□”所代表的运算符号.21. 如图,从左向右依次摆放序号分别为1,2,3,…,n的小桶,其中任意相邻的四个小桶所放置的小球个数之和相等.尝试求x+y的值;应用若n=22,则这些小桶内所放置的小球个数之和是多少?发现用含k(k为正整数)的代数式表示装有“4个球”的小桶序号.22. 在某项比赛中,已知不同小组的甲、乙两队的五次预选赛成绩(每次比赛的成绩为0分,10分,20分三种情况)分别如下列不完整的统计表及条形统计图所示.甲队五次预选赛成绩统计表比赛场次 1 2 3 4 5成绩(分)20 0 20 x 20乙队五次预选赛成绩条形统计图已知甲、乙两队五次预选赛成绩的众数相同,平均数也相同.(1)求出乙第四次预选赛的成绩;(2)求甲队成绩平均数及x的值;(3)从甲、乙两队前3次比赛中随机各选择一场比赛的成绩进行比较,求选择到的甲队成绩优于乙队成绩的概率.23. 如图,已知射线OC为∠AOB的平分线,且OA=OB,点P是射线OC上的任意一点,连接AP、BP.(1)求证:△AOP≌△BOP;(2)若∠AOB=50°,且点P是△AOB的外心,求∠APB的度数;(3)若∠AOB=50°,且△OAP为钝角三角形,直接写出∠OAP的取值范围.24. 如图①,长为120 km的某段线路AB上有甲、乙两车,分别从南站A和北站B同时出发相向而行,到达B,A后立刻返回到出发站停止,速度均为40 km/h,设甲车,乙车距南站A的路程分别为y甲,y乙(km),行驶时间为t(h).(1)图②已画出y甲与t的函数图象,其中a=____,b=____,c=____;(2)分别写出0≤t≤3及3<t≤6时,y乙与时间t之间的函数关系式;(3)在图②中补画y乙与t之间的函数图象,并观察图象计算出在整个行驶过程中两车相遇的次数.25. 如图,抛物线P:y1=a(x+2)2-3与抛物线Q:y2=12(x-t)2+1在同一个坐标系中(其中a、t均为常数,且t>0),已知抛物线P过点A(1,3),过点A作直线l∥x轴,交抛物线P于点B.(1)a=________,点B的坐标是________;(2)当抛物线Q经过点A时.①求抛物线Q的解析式;②设直线l与抛物线Q的另一交点记作C,求ACAB的值;(3)若抛物线Q与线段AB总有唯一的交点,直接写出t的取值范围.26. 如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连结PM ,以点P 为圆心,PM 长为半径作⊙P .(1)当BP = 时,△MBP ~△DCP ;(2)当⊙P 与正方形ABCD 的边相切时,求BP 的长;(3)设⊙P 的半径为x ,请直接写出正方形ABCD 中恰好有两个顶点在圆内的x 的取值范围.答案与解析第I卷(选择题)一、单选题(1——10每小题3分11——16每小题2分共42分)1. 在2-,0,1,1-这四个数中,最大的数是()A. 2-B. 0C. 1D. 1-【答案】A【解析】【分析】先化简绝对值,再根据有理数的大小比较法则即可得.-=【详解】22有理数的大小比较法则:正数大于0,负数小于0,正数大于负数,负数绝对值大的反而小>>>-则2101->>>-即2101-因此,这四个数中,最大的数是2故选:A.【点睛】本题考查了化简绝对值、有理数的大小比较法则,掌握有理数的大小比较法则是解题关键.2. 中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,该舰的满载排水量为6.75×104吨,这个用科学记数法表示的数据的原数为()A. 6750吨B. 67500吨C. 675000吨D. 6750000吨【答案】B【解析】【分析】科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.若科学记数法表示较小的数a×10﹣n,还原为原来的数,需要把a的小数点向左移动n位得到原数.【详解】6.75×104吨,这个用科学记数法表示的数据的原数为67500吨.故选B.【点睛】本题考查了科学记数法﹣原数,把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.3. 从数据43-,333.,9-,π, ) A. 15 B. 25 C. 35 D. 45【答案】B【解析】【分析】根据概率=无理数个数与总情况数之比解答即可.【详解】解:无理数有π, ,所以取到无理数概率是25, 故选:B .【点睛】此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.4. 李老师给同学们出了一道单项式与多项式相乘的题目:﹣3x 2(2x ﹣[]+1)=﹣6x 3+6x 2y ﹣3x 2,那么“[]”里应当是( )A. ﹣yB. ﹣2yC. 2yD. 2xy 【答案】B【解析】【分析】 根据题意列出算式,计算即可得到结果.【详解】解:根据题意得:(﹣6x 3+6x 2y ﹣3x 2)÷(﹣3x 2)﹣2x ﹣1=2x ﹣2y+1﹣2x ﹣1=﹣2y , 故选B .【点睛】此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.5. 下面是几位同学做的几道题,222(1)()a b a b +=+ 0(2)21a = 3=± 3412 (4) a a a ⋅= 532(5)a a a ÷= 其中做对了( )道 A. 1 B. 2 C. 3D. 4【答案】A 【解析】 【分析】 利用完全平方公式;零指数幂;算术平方根;同底数幂相乘;同底数幂相除的运算法则进行计算即可解答. 【详解】解:222(1)()2a b a ab b +=++,故该选项错误;0(2)22a =,故该选项错误; 2(3) (3)3±=,故该选项错误;347(4) a a a ⋅=,故该选项错误;532(5)a a a ÷=,故该选项正确;故选:A .【点睛】本题考查了完全平方公式;零指数幂;算术平方根;同底数幂相乘;同底数幂相除的运算法则,熟练掌握并准确计算是解题的关键.6. 小明的妈妈春节前去市场买了3公斤葡萄和2公斤苹果,花了8元钱,春节后,再去市场买这两种水果,由于葡萄每公斤提价5角钱,苹果每公斤降价3角钱,买7公斤葡萄和5公斤苹果共花了21元,则春节后购物时,(葡萄,苹果)每公斤的价格分别是多少元( )A. (2.5,0.7)B. (2,1)C. (2,1.3)D. (2.5,1)【答案】A【解析】【分析】等量关系为:3×春节前葡萄的价格+2×春节前苹果的价格=8;7×春节后葡萄的价格+5×春节后苹果的价格=21,把相关数值代入计算即可.【详解】解:设春节后购物时,(葡萄,苹果)每公斤的价格分别是x 元,y 元. ()()30.520.387521,x y x y ⎧-++=⎨+=⎩解得 2.50.7.x y =⎧⎨=⎩故选A .【点睛】考查二元一次方程组的应用;根据总价得到两个等量关系是解决本题的关键.7. 一个几何体由若干个大小相同的小正方体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是( )A. 4B. 5C. 6D. 7【答案】B【解析】【分析】根据“俯视图打地基,主视图疯狂盖,左视图拆违章”的原则解答可得.【详解】解:几何体分布情况如下图所示:则小正方体的个数为2+1+1+1=5,故选B .【点睛】本题考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.8. 下列因式分解中,正确的是( )A. 2()ax ax x ax a -=-B. ()2222221a b ab c b b a ac ++=++C. 222()x y x y -=-D. 256(2)(3)x x x x --=--【答案】B【解析】【分析】分别利用提取公因式法以、公式法、十字相乘法分解因式,进而判断即可.【详解】解:A 、2(1)ax ax ax x -=-,故此选项错误; B 、()2222221a b ab c b b a ac ++=++正确; C 、22(+)()x y x y x y -=-,故此选项错误;D 、256(6)(+1)x x x x --=-,故此选项错误.故选:B .【点睛】此题主要考查了提取公因式法、公式法、十字相乘法分解因式,正确提取公因式、用对公式是解题关键.9. 函数m y x=-与(0)y mx m m =-≠在同一平面直角坐标系中的大致图像是( )A. B. C. D.【答案】A【解析】【分析】先根据反比例函数的性质判断出m的取值,再根据一次函数的性质判断出m取值,二者一致的即为正确答案.【详解】A、由双曲线在一、三象限,得m<0.由直线经过一、二、四象限得m<0.正确;B、由双曲线在二、四象限,得m>0.由直线经过一、四、三象限得m>0.错误;C、由双曲线在一、三象限,得m<0.由直线经过一、四、三象限得m>0.错误;D、由双曲线在二、四象限,得m>0.由直线经过二、三、四象限得m<0.错误.故选:A.【点睛】此题考查了反比例函数的图象性质和一次函数的图象性质,解题关键在于注意系数m的取值.10. 如图,码头A在码头B的正西方向,甲,乙两船分别从A,B两个码头同时出发,且甲的速度是乙的速度的2倍,乙的航向是正北方向,为了使甲乙两船能够相遇,则甲的航向应该是()A. 北偏东30B. 北偏东60C. 北偏东45D. 北偏西60【答案】B【解析】【分析】解直角三角形ABC可得∠CAB的度数,根据余角的定义,可得∠DAC的度数,根据方向角的表示方法,可得答案.【详解】作AD∥BC,如图,设BC=t,则AC=2t,∴sin∠CAB=CBAC=12,∴∠CAB=30°,∴∠DAC=60°,甲的航向应该是北偏东60°.故选B .【点睛】本题考查了解直角三角形和方向角,解直角三角形是解题的关键.11. 如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A. 甲B. 乙C. 丙D. 丁【答案】D【解析】 解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁.故选D .12. 如图,已知点()A 0,6,()B 4,6,且点B 在双曲线k y (k 0)x=>上,在AB 的延长线上取一点C ,过点C 的直线交双曲线于点D ,交x 轴正半轴于点E ,且CD DE =,则线段CE 长度的取值范围是( )A. 6CE 8≤<B. 8CE 10≤≤C. 6CE 10≤<D. 6CE 273≤<【答案】D【解析】【分析】过D作DF⊥OA于F,得到DF是梯形的中位线,根据反比例函数图形上点的坐标特征求出D的坐标,当O与E重合时,如图2,由DF=8,根据三角形的中位线的性质得到AC,根据勾股定理求得CE,当CE⊥x 轴时,CE=OA=6,于是求得结果.【详解】过D作DF⊥OA于F.∵点A(0,6),B(4,6),∴AB⊥y轴,AB=4,OA=6.∵CD=DE,∴AF=OF=3.∵点B在双曲线ykx=(k>0)上,∴k=4×6=24,∴反比例函数的解析式为:y24x=.∵过点C的直线交双曲线于点D,∴D点的纵坐标为3,代入y24x=得:324x=,解得:x=8,∴D(8,3).当O与E重合时,如图2.∵DF=8,∴AC=16.∵OA=6,∴CE22273AC OA=+=;当CE⊥x轴时,CE=OA=6,∴6≤CE≤273.故选D.【点睛】本题考查了是反比例函数与几何综合题,考查了在平面直角坐标系中确定点的坐标,梯形和三角形的中位线的性质,正确的作出辅助线是解题的关键.13. 如图,已知AB∥DE,∠ABC=70°,∠CDE=140°,则∠BCD的值为()A. 20°B. 30°C. 40°D. 70°【答案】B【解析】试题分析:延长ED 交BC 于F ,∵AB ∥DE ,∠ABC=70°,∴∠MFC=∠B=70°,∵∠CDE=140°,∴∠FDC=180°﹣140°=40°,∴∠C=∠MFC ﹣∠MDC=70°﹣40°=30°,故选B .考点:平行线的性质.14. 如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A. ①②④B. ①②⑤C. ②③④D. ③④⑤【答案】A【解析】【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴判定b 与0的关系以及2a+b=0;当x=﹣1时,y=a ﹣b+c ;然后由图象确定当x 取何值时,y >0.【详解】①∵对称轴在y 轴右侧,∴a 、b 异号,∴ab <0,故正确; ②∵对称轴1,2b x a=-= ∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a ,∵当x=﹣1时,y=a ﹣b+c <0,∴a ﹣(﹣2a )+c=3a+c <0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选A.【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).15. 如图,点A,B为反比例函数y=kx在第一象限上的两点,AC⊥y轴于点C,BD⊥x轴于点D,若B点的横坐标是A点横坐标的一半,且图中阴影部分的面积为k﹣2,则k的值为()A. 43B.83C.143D.163【答案】B 【解析】【分析】根据反比例函数图象上点的坐标特征,设B(t,kt),则AC=2CE=2t,可表示出A(2t,k2t),由点B和点A的纵坐标可知BD=2OC,然后根据三角形面积公式得到关于k的方程,解此方程即可.【详解】解:设B(t,kt ),∵AC ⊥y 轴于点C ,BD ⊥x 轴于点D ,B 点的横坐标是A 点横坐标的一半,∴AC =2CE =2t ,∴A (2t ,k 2t ), ∴BD =2OC=2BE ,在△OCM 和△BEM 中OCM MEB CMO EMB OC BE ==∠∠⎧⎪∠∠⎨⎪=⎩∴△OCM ≌△BEM ,∴CM =EM=1t 2, 同理可证:△ODN ≌△AEN ,∴EN =DN=k 4t, ∴阴影部分的面积=111t k 1k ME BE NE AE t k 222222t 24t ⨯+⨯=⨯⨯+⨯⨯=-. 解得:k=83故选B .【点睛】本题考查了反比例函数图象上点的坐标特征,全等三角形的性质与判定,由几何图形的性质将阴影部分的面积进行转化是解题的关键.16. 如图,线段 AB 的长为 4,C 为 AB 上一个动点,分别以 AC 、BC 为斜边在 AB 的同侧作两个等腰直角三角形 ACD 和 BCE , 连结 DE , 则 DE 长的最小值是( )2B. 2C. 2D. 4【答案】B【解析】【分析】 设AC=x ,BC=4-x ,根据等腰直角三角形性质,得出CD=22x ,CE=22(4-x ),根据勾股定理然后用配方法即可求解.【详解】解:设 AC=x ,BC=4﹣x ,∵△CDA ,△BCE 均为等腰直角三角形,∴CD=22x ,CE=22(4﹣x), ∵∠ACD=45°,∠BCE=45°,∴∠DCE=90°,∴DE ²=CD ²+CE ²=()()2222114482422x x x x x +-=-+=-+ ∵根据二次函数的最值,∴当 x 取 2 时 ,DE 取最小值 ,最小值为:2.故答案为B.【点睛】本题考查了二次函数最值及等腰直角三角形,难度不大,关键是掌握用配方法求二次函数最值.第II 卷(非选择题)二、填空题(每空3分共12分)17. 如图,已知函数y=x+b 和y=ax+3的图象交点为P ,则不等式x+b >ax+3的解集为_____.【答案】x >1【解析】试题分析:根据两直线的图象以及两直线的交点坐标来进行判断.试题解析:由图知:当直线y=x+b 的图象在直线y=ax+3的上方时,不等式x+b >ax+3成立;由于两直线的交点横坐标为:x=1,观察图象可知,当x >1时,x+b >ax+3;考点:一次函数与一元一次不等式.18. 在纸上剪下一个圆和一个扇形纸片,使它们恰好围成一个圆锥(如图所示),如果扇形的圆心角为90°,扇形的半径为4,那么所围成的圆锥的高为_____.【答案】15【解析】【详解】设圆锥的底面圆的半径为r,根据题意得2πr=904180π⨯,解得r=1,所以所围成的圆锥的高=2241=15-考点:圆锥的计算.19. 如图,已知直线l:y=﹣x+4,在直线l上取点B1,过B1分别向x轴,y轴作垂线,交x轴于A1,交y 轴于C1,使四边形OA1B1C1为正方形;在直线l上取点B2,过B2分别向x轴,A1B1作垂线,交x轴于A2,交A1B1于C2,使四边形A1A2B2C2为正方形;按此方法在直线l上顺次取点B3,B4,…,B n,依次作正方形A2A3B3C3,A3A4B4C4,…,A n﹣1A n B n∁n,则A3的坐标为____,B5的坐标为_____.【答案】(1). (72,0)(2). (318,18)【解析】【详解】解:当x=0,y=4,当y=0时,﹣x+4=0,x=4,∴OE=OF=4,∴△EOF是等腰直角三角形,∴∠C1EF=45°∴△B1C1E是等腰直角三角形,∴B1C1=EC1,∵四边形OA1B1C1为正方形,∴OC1=C1B1=EC1=2,∴B1(2,2),A1(2,0),同理可得:C2是A1B1的中点,∴B2(2+1=3,1),A2(3,0),B3(2+1+12=72,12),A3(72,0),B4(72+14=154,14),A4(154,0),B5(154+18=318,18).故答案为(72,0),(318,18).20. 李华同学准备化简:(3x2-5x-3)-(x2+2x□6),算式中“□”是“+,-,×,÷”中的某一种运算符号.(1)如果“□”是“×”,请你化简:(3x2-5x-3)-(x2+2x×6);(2)当x=1时,(3x2-5x-3)-(x2+2x□6)的结果是-2,请你通过计算说明“□”所代表的运算符号.【答案】(1)2x2-17x-3;(2)“□”代表“-”.【解析】【分析】(1)先算乘法、再去括号、最后合并即可;(2)将x=1代入原式进行运算即可确定“□”所代表的运算符号.【详解】解:(1)原式=(3x2-5x-3)-(x2+12x)=3x2-5x-3-x2-12x=2x2-17x-3;(2)当x=1时,原式=(3-5-3)-(1+2□6)=-2,整理得:1+2□6=-3,即“□”代表“-”.【点睛】本题考查了整式的加减以及有理数的混合运算,熟练掌握相关运算法则是解答本题的关键.21. 如图,从左向右依次摆放序号分别为1,2,3,…,n的小桶,其中任意相邻的四个小桶所放置的小球个数之和相等.尝试求x+y的值;应用若n=22,则这些小桶内所放置的小球个数之和是多少?发现用含k(k为正整数)的代数式表示装有“4个球”的小桶序号.【答案】尝试:x+y=9;应用:99;发现:装有“4个球”的小桶序号为4k-1.【解析】【分析】尝试:根据“任意相邻的四个小桶所放置的小球个数之和相等”列出等式即可得到x+y的值;应用:根据题意可分别求出x,y的值,可以发现以“6,3,4,5”为一组循环出现,故可求出n=22时,小桶内所放置的小球个数之和;发现:根据规律,用含有k的代数式表示即可.【详解】尝试:根据题意可得6+3+4+5=4+5+x+y,∴x+y=9;应用:∵6+3+4+5=3+4+5+x,又∵x+y=9,∴x=6,y=3,∴小桶内所放置的小球数每四个一循环,∵22÷4=5⋯⋯2,∴(6+3+4+5)×5+9=99发现:装有“4个球”的小桶序号分别为3=4×1-1,7=4×2-1,11=4×3-1…,∴装有“4个球”的小桶序号为4k-1.【点睛】题目考查了数字的变化规律,通过数字的变化,体会数字变化为学生们带来的快乐.题目整体较难,特别是(3)中的总结性,更能体现学生的解决问题能力.22. 在某项比赛中,已知不同小组的甲、乙两队的五次预选赛成绩(每次比赛的成绩为0分,10分,20分三种情况)分别如下列不完整的统计表及条形统计图所示.甲队五次预选赛成绩统计表比赛场次 1 2 3 4 5成绩(分)20 0 20 x 20乙队五次预选赛成绩条形统计图已知甲、乙两队五次预选赛成绩的众数相同,平均数也相同.(1)求出乙第四次预选赛的成绩;(2)求甲队成绩的平均数及x的值;(3)从甲、乙两队前3次比赛中随机各选择一场比赛的成绩进行比较,求选择到的甲队成绩优于乙队成绩的概率.【答案】(1)乙队第4场的成绩为20分;(2)甲队成绩的平均数为16分,x=20;(3)49.【解析】【分析】(1)根据已知条件可判断出乙队成绩的众数为20分,则可求出第四场成绩为20分;(2)先计算出乙的平均成绩,据此可得甲的平均成绩,再根据平均数的公式列出关于x的方程,即可求解;(3)列表得出所有等可能结果,从中找到甲队成绩优于乙队成绩结果出,利用概率求解即可.【详解】解:(1)∵甲、乙两队五次预选赛成绩的众数相同,且甲队成绩的众数为20分,∴乙队成绩的众数为20分,则乙队第4场的成绩为20分,补全条形统计图如解图:(2)∵乙队五次成绩的平均数为15×(10+10+20+20+20)=16(分),∴甲队成绩的平均数为16分,由15×(20+0+20+x+20)=16,解得x=20;(3)列表如下: 乙甲1010 20 20(20,10) (20,10) (20,20) 0(0,10) (0,10) (0,20) 20(20,10) (20,10) (20,20)由上表可知,共有9种等可能的结果,其中甲队成绩优于乙队成绩的结果有4种,∴P (选择到的甲队成绩优于乙队成绩)=49. 【点睛】本题考查了列表法和树状图法,利用列表法和树状图法展示所有等可能结果,再从中选出符合条件的结果进行计算,也考查了统计的有关概念.23. 如图,已知射线OC 为∠AOB 的平分线,且OA =OB ,点P 是射线OC 上的任意一点,连接AP 、BP . (1)求证:△AOP ≌△BOP ;(2)若∠AOB =50°,且点P 是△AOB 的外心,求∠APB 的度数;(3)若∠AOB =50°,且△OAP 为钝角三角形,直接写出∠OAP 的取值范围.【答案】(1)证明见解析;(2)∠APB =100°;(3)0°<∠OAP < 65°或90°<∠OAP<155°.【解析】【分析】(1)根据“SAS ”证明即可;(2)根据三角形外心定义得到PA =PB =PO ,根据等腰三角形性质和三角形的外角性质求出∠APC =50°,根据∠APO =∠BPO 即可求解;(3)根据题意得=155-APO OAP ∠︒∠,分OAP ∠为钝角和OPA ∠为钝角两种情况讨论即可.【详解】解:(1)∵OP 平分∠AOB ,∴∠AOP =∠BOP ,又∵OA =OB ,OP =OP ,∴△AOP ≌△BOP ;(2)∵∠AOB =50°,∴∠AOP =∠BOP =25°,∵点P 是△AOB 的外心,∴PA =PB =PO ,∴∠A =∠AOP =25°,∴∠APC =∠A +∠AOP =50°,∵△AOP ≌△BOP ,∴∠APO =∠BPO ,∴∠BPC =∠APC =50°,∴∠APB =100°;(3)∵∠AOB =50°, ∴1=252AOP AOB ∠∠=︒ ,∴18025=155OAP APO ∠+∠=︒-︒︒,∴=155-APO OAP ∠︒∠,如图1,当OAP ∠为钝角时,90°<∠OAP<155° ;如图2,当OPA ∠为钝角时,90°<∠OPA<155°,即90°<155-OAP ︒∠<155°,∴0°<∠OAP < 65°∴∠OAP 的取值范围为:90°<∠OAP<155°或0°<∠OAP < 65°.【点睛】本题考查了角平分线的定义,全等三角形判断,三角形的外心,等腰三角形性质,三角形分类等知识,熟悉相关知识点是解题关键.24. 如图①,长为120 km 的某段线路AB 上有甲、乙两车,分别从南站A 和北站B 同时出发相向而行,到达B ,A 后立刻返回到出发站停止,速度均为40 km/h ,设甲车,乙车距南站A 的路程分别为y 甲,y 乙(km ),行驶时间为t (h ).(1)图②已画出y 甲与t 的函数图象,其中a =____,b =____,c =____;(2)分别写出0≤t≤3及3<t≤6时,y 乙与时间t 之间的函数关系式;(3)在图②中补画y 乙与t 之间的函数图象,并观察图象计算出在整个行驶过程中两车相遇的次数.【答案】(1)120,3,6;(2)y 乙=40120(03)40120(36)t t t t -+⎧⎨-<⎩;(3)画图象见解析,整个行驶过程中两车相遇次数为2.【解析】【分析】(1)根据题意和函数图象可以得到a 、b 、c 的值;(2)根据题意和(1)中的答案可以分别求得当0≤t≤3及3<t≤6时,y 乙与时间t 之间的函数关系式; (3)根据题意可以画出相应的函数图象,根据函数图象可以得到在整个行驶过程中两车相遇的次数.【详解】解:(1)由题意和函数图象可得,a =120,b =120÷40=3,c =2×3=6;故答案为:120,3,6;(2)当0≤t≤3时,设y 乙与时间t 之间的函数关系式为:y 乙=kt +b ,2=⎧⎨+=⎩b 103k b 0,得40=-⎧⎨=⎩k b 120, 即当0≤t≤3时,y 乙与时间t 之间的函数关系式为:y 乙=-40t +120;当3<t≤6时,设y 乙与时间t 之间的函数关系式为:y 乙=mt +n ,36+=⎧⎨+=⎩m n 0m n 120,得40120=⎧⎨=-⎩m n , 即当3<t≤6时,y 乙与时间t 之间的函数关系式为:y 乙=40t -120;∴y 乙与时间t 之间的函数关系式为:y 乙=40120(03)40120(36)t t t t -+⎧⎨-<⎩; (3)y 乙与t 之间的函数图象如解图所示,由图象可知,两个函数图形有两个交点,故整个行驶过程中两车相遇次数为2.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.25. 如图,抛物线P :y 1=a (x +2)2-3与抛物线Q :y 2=12(x -t )2+1在同一个坐标系中(其中a 、t 均为常数,且t >0),已知抛物线P 过点A (1,3),过点A 作直线l ∥x 轴,交抛物线P 于点B . (1)a =________,点B 的坐标是________;(2)当抛物线Q 经过点A 时.①求抛物线Q 的解析式;②设直线l与抛物线Q的另一交点记作C,求ACAB的值;(3)若抛物线Q与线段AB总有唯一的交点,直接写出t的取值范围.【答案】(1)23;(-5,3);(2)①抛物线Q的解析式为:y2=12(x-3)2+1;②ACAB=23;(3)0<t 3.【解析】【分析】(1)先利用待定系数法求出抛物线P的解析式,即可得出结论;(2)①利用待定系数法求出抛物线Q的解析式,即可得出结论;②先求出AC,AB即可得出结论;(3)利用平移的特点和AB,AC的长即可得出结论.【详解】解:(1)∵抛物线P:y1=a(x+2)2-3过点A(1,3),∴9a-3=3,∴a=23,∴抛物线P:y1=23(x+2)2-3,∵l//x轴,∴点B的纵坐标为3,∴3=23(x+2)2-3,∴x1=1(点A的横坐标),x2=-5,∴B(-5,3).(2)①∵抛物线Q:y2=12(x-t)2+1过点A(1,3),∴12(1-t)2+1=3,∴t1=-1(舍去),t2=3,∴抛物线Q的解析式为:y2=12(x-3)2+1;∵l//x轴,∴点C的纵坐标为3,∴3=12(x-3)2+1,∴x1=1(点A的横坐标),x2=5,∴C(5,3),∴AC=5-1=4,由(1)知,B(-5,3),∴AB=1-(-5)=6,∴ACAB=46=23;(3)∵抛物线Q:y2=12(x-t)2+1∴抛物线Q的开口大小一定,顶点坐标的纵坐标是1也是定值,∴抛物线Q只是左右移动,当抛物线Q向右平移的过程中,点A在抛物线Q的左侧时,抛物线Q和线段AB有一个交点A,此时,t=3,由(2)知,AC=4,将抛物线Q向左平移4个单位时,和线段AB有两个交点,此段,-1<t≤3时,抛物线Q与线段AB有一个交点,再继续把抛物线Q向左移动,移动到点B在抛物线Q的左侧时,此时,此时,t=-3,同上,抛物线Q与线段AB有一个交点,-7≤t<-3,∵t>0,即:0<t≤3,抛物线Q与线段AB有一个交点.【点睛】此题是二次函数综合题,主要考查了待定系数法,交点坐标的求法,平移的性质,利用平移的性质得出t的范围是解本题的关键.26. 如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM 长为半径作⊙P.(1)当BP=时,△MBP~△DCP;(2)当⊙P与正方形ABCD的边相切时,求BP的长;(3)设⊙P的半径为x,请直接写出正方形ABCD中恰好有两个顶点在圆内的x的取值范围.【答案】(1)83;(2)3或43;(3)565x≤<【解析】【分析】(1)设BP=a,则PC=8-a,由△MBP~△DCP知MB BPDC CP=,代入计算可得;(2)分别求出⊙P与边CD相切时和⊙P与边AD相切时BP的长即可得;(3)①当PM=5时,⊙P经过点M,点C;②当⊙P经过点M、点D时,由PC2+DC2=BM2+PB2,可求得BP=7,继而知227465PM=+=.据此可得答案.【详解】(1)设BP=a,则PC=8-a,∵AB=8,M是AB中点,∴AM=BM=4,∵△MBP~△DCP,∴MB BPDC CP=,即488aa=-,解得83a=,故答案为:83.(2)如图1,当⊙P与边CD相切时,设PC=PM=x,在Rt△PBM中,∵PM2=BM2+PB2,。
2021年中考数学真题分类汇编:专题2整式及运算一、单选题1.(2021·浙江丽水市·中考真题)计算:()24a a -⋅的结果是( ) A .8aB .6aC .8aD .6a -【答案】B【分析】 根据乘方的意义消去负号,然后利用同底数幂的乘法计算即可.【详解】解:原式24246a a a a +=⋅==.故选B .【点睛】此题考查的是幂的运算性质,掌握同底数幂的乘法法则是解题关键.2.(2021·四川资阳市·中考真题)下列计算正确的是( )A .2242a a a +=B .23a a a ⋅=C .22(3)6a a =D .623+=a a a 【答案】B【分析】根据合并同类项,同底数幂的乘法,积的乘方法则进行计算作出判断.【详解】解:A . 2222a a a +=,故此选项不符合题意;B . 23a a a ⋅=,正确,故此选项符合题意;C . 22(3)9a a =,故此选项不符合题意;D . 62,a a 不是同类项,不能合并计算,故此选项不符合题意;故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,积的乘方计算,掌握计算法则准确计算是解题关键.3.(2021·四川自贡市·中考真题)已知23120x x --=,则代数式2395x x -++的值是( ) A .31B .31-C .41D .41-【答案】B【分析】根据题意,可先求出x 2-3x 的值,再化简()22395=3+53x x x x -++--,然后整体代入所求代数式求值即可.【详解】解:∵23120x x --=,∵23=12x x -,∵()223395=3+5=312+5=31x x x x -++---⨯-. 故选:B .【点睛】此题考查了代数式求值,此题的关键是代数式中的字母表示的数没有明确告知,而是隐含在题设中,得出23=12x x -,是解题的关键.4.(2021·四川乐山市·中考真题)某种商品m 千克的售价为n 元,那么这种商品8千克的售价为( ) A .8n m (元) B .8n m (元) C .8m n (元) D .8m n(元) 【答案】A【分析】先求出1千克售价,再计算8千克售价即可;【详解】∵m 千克的售价为n 元,∵1千克商品售价为n m, ∵8千克商品的售价为8n m (元); 故答案选A .【点睛】本题主要考查了列代数式,准确分析列式是解题的关键.5.(2021·四川泸州市·中考真题)关于x 的一元二次方程2220x mx m m ++-=的两实数根12,x x ,满足122x x =,则2212(2)(2)x x ++的值是( )A .8B .16C . 32D .16或40【答案】C【分析】 根据一元二次方程根与系数的关系,即韦达定理,先解得2m =或1m =-,再分别代入一元二次方程中,利用完全平方公式变形解题即可.【详解】解:一元二次方程2220x mx m m ++-=21,2,a b m c m m ===-2122c m x am x ==-= 220m m --=(2)(1)0m m ∴-+=2m ∴=或1m =-当2m =时,原一元二次方程为2420x x ++=12=24b m ax x +-=-=-, 22221212122)+2((2)(2)()+4=x x x x x x +∴++,221212122=()2x x x x x x ++-221212212212)+(2)(2)=)(2(4+4x x x x x x x x -∴+++22=2+2(4)424⨯--⨯+32=当1m =-时,原一元二次方程为2220x x +=-2(2)41240∆=--⨯⨯=-<原方程无解,不符合题意,舍去,故选:C .【点睛】本题考查一元二次方程根与系数的关系,韦达定理等知识,涉及解一元二次方程,是重要考点,难度较易,掌握相关知识是解题关键.6.(2021·四川泸州市·中考真题)已知1020a =,10050b =,则1322a b ++的值是( ) A .2B .52C .3D .92 【答案】C【分析】根据同底数幂的乘法31010010a b ⋅=,可求23a b +=再整体代入即可.【详解】解: ∵1020a =,10050b =,∵2310100102050100010a b a b +⋅==⨯==,∵23a b +=, ∵()()1311233332222a b a b ++=++=+=. 故选:C .【点睛】本题考查幂的乘方,同底数幂的乘法逆运算,代数式求值,掌握幂的乘方,同底数幂的乘法法则,与代数式值求法是解题关键.7.(2021·云南中考真题)按一定规律排列的单项式:23456,4,9,16,25a a a a a ,……,第n 个单项式是( ) A .21n n a +B .21n n a -C .1n n n a +D .()21n n a + 【答案】A【分析】根据题目中的单项式可以发现数字因数是从1开始的正整数的平方,字母的指数从1开始依次加1,然后即可写出第n 个单项式,本题得以解决.【详解】解:∵一列单项式:23456,4,9,16,25a a a a a ,...,∵第n 个单项式为21n n a +,故选:A .【点睛】本题考查数字的变化类、单项式,解答本题的关键是明确题意,发现单项式的变化特点,求出相应的单项式.8.(2021·浙江金华市·中考真题)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是( )A .先打九五折,再打九五折B .先提价50%,再打六折C .先提价30%,再降价30%D .先提价25%,再降价25%【答案】B【分析】设原件为x 元,根据调价方案逐一计算后,比较大小判断即可.【详解】设原件为x 元,∵先打九五折,再打九五折,∵调价后的价格为0.95x ×0.95=0.9025x 元,∵先提价50%,再打六折,∵调价后的价格为1.5x ×0.6=0.90x 元,∵先提价30%,再降价30%,∵调价后的价格为1.3x ×0.7=0.91x 元,∵先提价25%,再降价25%,∵调价后的价格为1.25x ×0.75=0.9375x 元,∵0.90x <0.9025x <0.91x <0.9375x故选B【点睛】本题考查了代数式,打折,有理数大小比较,准确列出符合题意的代数式,并能进行有理数大小的比较是解题的关键.9.(2021·浙江温州市·中考真题)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( )A .20a 元B .()2024a +元C .()17 3.6a +元D .()20 3.6a +元 【答案】D【分析】分两部分求水费,一部分是前面17立方米的水费,另一部分是剩下的3立方米的水费,最后相加即可.【详解】解:∵20立方米中,前17立方米单价为a 元,后面3立方米单价为(a +1.2)元,∵应缴水费为17a +3(a +1.2)=20a +3.6(元),故选:D .【点睛】本题考查的是阶梯水费的问题,解决本题的关键是理解其收费方式,能求出不同段的水费,本题较基础,重点考查了学生对该种计费方式的理解与计算方法等.10.(2021·甘肃武威市·中考真题)对于任意的有理数,a b ,如果满足2323a b a b ++=+,那么我们称这一对数,a b 为“相随数对”,记为(),a b .若(),m n 是“相随数对”,则()323[]21m m n ++-=( )A .2-B .1-C .2D .3 【答案】A【分析】先根据新定义,可得9m +4n =0,将整式()21]2[33m m n ++-去括号合并同类项化简得942m n +-,然后整体代入计算即可.【详解】解:∵(),m n 是“相随数对”, ∵2323m n m n ++=+, 整理得9m +4n =0,()323213642942[]2m m n m m n m n ++-=++-=+-=-.故选择A .【点睛】本题考查新定义相随数对,找出数对之间关系,整式加减计算求值,掌握新定义相随数对,找出数对之间关系,整式加减计算求值是解题关键.11.(2021·山东临沂市·中考真题)实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.下图为表示镭的放射规律的函数图象,据此可计算32mg 镭缩减为1mg 所用的时间大约是( )A .4860年B .6480年C .8100年D .9720年【答案】C【分析】 根据物质所剩的质量与时间的规律,可得答案.【详解】解:由图可知:1620年时,镭质量缩减为原来的12, 再经过1620年,即当3240年时,镭质量缩减为原来的21142=, 再经过1620×2=3240年,即当4860年时,镭质量缩减为原来的31182=, ...,∵再经过1620×4=6480年,即当8100年时,镭质量缩减为原来的511232=, 此时132132⨯=mg , 故选C .【点睛】本题考查了函数图象,规律型问题,利用函数图象的意义是解题关键.12.(2021·山东泰安市·中考真题)下列运算正确的是( )A .235235x x x +=B .()3326x x -=-C .()222x y x y +=+D .()()2322349x x x +-=- 【答案】D【分析】分别根据合并同类项法则、积的乘方运算法则、完全平方公式、平方差公式进行判断即可.【详解】解:A 、x 2和x 3不是同类项,不能合并,此选项错误;B 、()3328x x -=-,此选项错误;C 、()2222x y x xy y +=++,此选项错误;D 、()()23223(23)(23)49x x x x x +-=+-=-,此选项正确, 故选:D .【点睛】本题考查了同类项、积的乘方、完全平方公式、平方差公式,熟记公式,掌握运算法则是解答的关键. 13.(2021·江苏连云港市·中考真题)下列运算正确的是( )A .325a b ab +=B .22523a b -=C .277a a a +=D .()22112x x x -+-= 【答案】D【分析】根据同类项与合并同类项、全完平方差公式的展开即可得出答案.【详解】解:A ,3a 与2b 不是同类项,不能合并,故选项错误,不符合题意;B ,25a 与22b 不是同类项,不能合并得到常数值,故选项错误,不符合题意;C ,合并同类项后2787a a a a +=≠,故选项错误,不符合题意;D ,完全平方公式:()22211221x x x x x =-++-=-,故选项正确,符合题意;故选:D .【点睛】本题考查了代数式的运算,同类项合并及完全平方差公式,解题的关键是:掌握相关的运算法则. 14.(2021·安徽)计算23()x x ⋅-的结果是( )A .6xB .6x -C .5xD .5x -【答案】D【分析】利用同底数幂的乘法法则计算即可【详解】解:52233=-()x x x x +⋅-=-故选:D【点睛】本题考查同底数幂的乘法法则,正确使用同底数幂相乘,底数不变,指数相加是关键15.(2021·陕西中考真题)计算:()23a b-=( ) A .621a b B .62a b C .521a b D .32a b -【答案】A【分析】根据积的乘方,幂的乘方以及负整数指数幂运算法则计算即可.【详解】解:()23621a b a b -=, 故选:A .【点睛】本题考查积的乘方,幂的乘方以及负整数指数幂等知识点,熟记相关定义与运算法则是解答本题的关键. 16.(2021·湖南衡阳市·中考真题)下列运算结果为6a 的是( )A .23a a ⋅B .122a a ÷C .()23aD .2312a ⎛⎫ ⎪⎝⎭ 【答案】C【分析】根据同底数幂相乘、同底数幂相除、幂的乘方法则逐项计算即可.【详解】A 选项,23235a a a a +⋅==,不符合题意;B 选项,12210122=a a a a -=÷,不符合题意;C 选项,()23326=a a a ⨯=,符合题意;D 选项,22233611=1224a a a ⨯⎛⎫⋅= ⎪⎝⎭⎛⎫ ⎪⎝⎭,不符合题意. 故选:C .【点睛】本题考查同底数幂相乘、同底数幂相除、幂的乘方和积的乘方法则.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;积的乘方,等于把积的每一个因式的积的乘方,再把所得的幂相乘.17.(2021·浙江台州市·中考真题)已知(a +b )2=49,a 2+b 2=25,则ab =( )A .24B .48C .12D . 【答案】C【分析】利用完全平方公式计算即可.【详解】解:∵()222249a b a b ab +=++=,2225a b +=, ∵4925122ab -==, 故选:C .【点睛】本题考查整体法求代数式的值,掌握完全平方公式是解题的关键.18.(2021·浙江台州市·中考真题)将x 克含糖10%的糖水与y 克含糖30%的糖水混合,混合后的糖水含糖( )A .20%B .+100%2x y ⨯C .+3100%20x y ⨯D .+3 100%10+10x y x y ⨯ 【答案】D【分析】先求出两份糖水中糖的重量,再除以混合之后的糖水总重,即可求解.【详解】 解:混合之后糖的含量:10%30%3100%1010x y x y x y x y++=⨯++,故选:D .【点睛】本题考查列代数式,理解题意是解题的关键.19.(2021·江苏苏州市·中考真题)已知两个不等于0的实数a 、b 满足0a b +=,则b a a b+等于( ) A .2-B .1-C .1D .2 【答案】A【分析】先化简式子,再利用配方法变形即可得出结果.【详解】 解:∵22=b a b a a b ab++, ∵()2222==a b ab b a b a a b ab ab +-++, ∵两个不等于0的实数a 、b 满足0a b +=, ∵()22-2===-2a b ab b a ab a b ab ab+-+,故选:A .【点睛】本题考查分式的化简、配完全平方、灵活应用配方法是解题的关键.20.(2021·上海中考真题)下列单项式中,23a b 的同类项是( )A .32a bB .232a bC .2a bD .3ab 【答案】B【分析】比较对应字母的指数,分别相等就是同类项【详解】∵a 的指数是3,b 的指数是2,与23a b 中a 的指数是2,b 的指数是3不一致,∵32a b 不是23a b 的同类项,不符合题意;∵a 的指数是2,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3一致,∵232a b 是23a b 的同类项,符合题意;∵a 的指数是2,b 的指数是1,与23a b 中a 的指数是2,b 的指数是3不一致,∵2a b 不是23a b 的同类项,不符合题意;∵a 的指数是1,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3不一致,∵3ab 不是23a b 的同类项,不符合题意;故选B【点睛】本题考查了同类项,正确理解同类项的定义是解题的关键.21.(2021·四川广安市·中考真题)下列运算中,正确的是( )A .2510a a a ⋅=B .222()a b a b -=-C .()23636a a -=D .22232a b a b a b -+=- 【答案】D【分析】根据同底数幂的乘法,合并同类项,幂的乘方和积的乘方,完全平方公式分别判断即可.【详解】解:A 、257a a a ⋅=,故选项错误;B 、222()2a b a b ab -=+-,故选项错误;C 、()23639a a -=,故选项错误;D 、22232a b a b a b -+=-,故选项正确;故选D .【点睛】本题考查了同底数幂的乘法,合并同类项,幂的乘方和积的乘方,完全平方公式,解题的关键是掌握各自的运算法则.22.(2021·四川眉山市·中考真题)下列计算中,正确的是( )A .5315a a a ⨯=B .53a a a ÷=C .()423812a b a b -=D .()222a b a b +=+ 【答案】C【分析】 逐一分析各选项中的计算结果,利用计算公式进行计算即可得到正确选项.【详解】解:A 选项中,538a a a ⨯=;B 选项中,532a a a ÷=;C 选项正确;D 选项中,()2222a b a ab b +=++;故选:C .【点睛】本题综合考查了同底数幂的乘法计算、同底数幂的除法计算、幂的乘方运算、积的乘方运算、完全平方公式等内容,解决本题的关键是牢记对应法则和公式即可.23.(2021·湖南岳阳市·中考真题)下列运算结果正确的是( )A .32a a -=B .248a a a ⋅=C .()()2224a a a +-=-D .()22a a -=- 【答案】C【分析】逐一分析各选项,利用对应法则进行计算即可判断出正确选项.【详解】解:A 选项中:32a a a -=,因此错误;B 选项中:246·a a a =,因此错误;C 选项中:()()2224a a a +-=-,因此正确; D 选项中:()22a a -=,因此错误;故选:C .【点睛】本题考查了合并同类项、同底数幂的乘法、平方差公式、乘方的运算性质等内容,解决本题的关键是牢记相关运算法则和公式即可.24.(2021·浙江台州市·中考真题)下列运算中,正确的是( )A .a 2+a =a 3B .(-ab )2=-ab 2C .a 5÷a 2=a 3D .a 5・a 2=a 10 【答案】C【分析】根据合并同类项、积的乘方、同底数幂相除、同底数幂相乘的法则分别计算即可.【详解】解:A .2a 与a 不是同类项,不能合并,故该项错误;B .()222b a ab =-,故该项错误;C .523a a a ÷=,该项正确;D .527a a a ⋅=,该项错误;故选:C .【点睛】本题考查整式的运算,掌握合并同类项、积的乘方、同底数幂相除、同底数幂相乘的法则是解题的关键. 25.(2021·四川成都市·中考真题)下列计算正确的是( )A .321mn mn -=B .()22346m n m n =C .()34m m m -⋅=D .()222m n m n +=+ 【答案】B【分析】利用合并同类项法则可判定A ,利用积的乘方法则与幂的乘方法则可判定B ,利用同底数幂乘法法则可判定C ,利用完全平方公式可判定D .【详解】解:A . 321mn mn mn -=≠,故选项A 计算不正确;B. ()()()222232346m n m n m n =⋅=,故选项B 计算正确; C . ()3344m m m m m m -⋅=-⋅=-≠,故选项C 计算不正确;D . ()222222m n m mn n m n +=++≠+,故选项D 计算不正确.故选择B .【点睛】本题考查同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式,掌握同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式是解题关键.26.(2021·山东临沂市·中考真题)计算3325a a 的结果是( )A .610aB .910aC .37aD .67a【答案】A【分析】直接利用单项式乘以单项式运算法则计算得出答案.【详解】解:6332510a a a =⋅,故选:A .【点睛】此题主要考查了单项式乘以单项式,正确掌握相关运算法则是解题关键.27.(2021·浙江宁波市·中考真题)计算()3a a ⋅-的结果是( ) A .2aB .2a -C .4aD .4a -【答案】D【分析】 根据单项式乘以单项式和同底数幂的运算法则解答即可.【详解】解:原式4a =-.故选:D【点睛】本题考查了整式的乘法,属于基础题目,熟练掌握运算法则是关键.28.(2021·重庆中考真题)计算63a a ÷的结果是( )A .63aB .52aC .62aD .53a【答案】D【分析】根据单项式除以单项式法则、同底数幂除法法则解题.【详解】解:63a a ÷=53a ,故选:D .【点睛】本题考查同底数幂相除、单项式除以单项式等知识,是重要考点,难度较易,掌握相关知识是解题关键.二、填空题29.(2021·上海中考真题)计算:72=x x ÷_____________.【答案】5x【分析】根据同底数幂的除法法则计算即可【详解】∵72=x x ÷5x , 故答案为:5x .【点睛】本题考查了同底数幂的除法,熟练掌握运算的法则是解题的关键.30.(2021·天津中考真题)计算42a a a +-的结果等于_____.【答案】5a【分析】根据合并同类项的性质计算,即可得到答案.【详解】 ()424215a a a a a +-=+-=故答案为:5a .【点睛】本题考查了整式加减的知识;解题的关键是熟练掌握合并同类项的性质,从而完成求解.31.(2021·江苏扬州市·中考真题)计算:2220212020-=__________.【答案】4041【分析】利用平方差公式进行简便运算即可.【详解】解:2220212020-=()()2021202020212020+⨯-=40411⨯=4041故答案为:4041.【点睛】本题考查了平方差公式的应用,解题时注意运算顺序.32.(2021·浙江嘉兴市·中考真题)观察下列等式:22110=-,22321=-,22532=-,…按此规律,则第n 个等式为21n -=__________________.【答案】()221n n --. 【分析】第一个底数是从1开始连续的自然数的平方,减去从0开始连续的自然数的平方,与从1开始连续的奇数相同,由此规律得出答案即可.【详解】解:∵22110=-,22321=-,22532=-,…∵第n 个等式为:()22211n n n -=-- 故答案是:()221n n --. 【点睛】本题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题的关键. 33.(2021·四川遂宁市·中考真题)如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.【答案】20【分析】根据已知图形得出第n 个图形中黑色三角形的个数为1+2+3++n =()12n n +,列一元二次方程求解可得. 【详解】解:∵第1个图形中黑色三角形的个数1,第2个图形中黑色三角形的个数3=1+2,第3个图形中黑色三角形的个数6=1+2+3,第4个图形中黑色三角形的个数10=1+2+3+4,……∵第n 个图形中黑色三角形的个数为1+2+3+4+5++n =()12n n +,当共有210个小球时, ()12102n n +=,解得:20n =或21-(不合题意,舍去),∵第20个图形共有210个小球.故答案为:20.【点睛】本题考查了图形的变化规律,解一元二次方程,解题的关键是得出第n 个图形中黑色三角形的个数为1+2+3+……+n .34.(2021·湖南岳阳市·中考真题)已知1x x +=,则代数式1x x +=______. 【答案】0【分析】把1x x+=直接代入所求的代数式中,即可求得结果的值. 【详解】10x x+== 故答案为:0.【点睛】本题考查了求代数式的值,涉及二次根式的减法运算,整体代入法是解决本题的关键.35.(2021·江苏苏州市·中考真题)若21m n +=,则2366m mn n ++的值为______.【答案】3【分析】根据21m n +=,将式子2366m mn n ++进行变形,然后代入求出值即可.【详解】∵ 21m n +=,∵2366m mn n ++=3m (m +2n )+6n =3m +6n =3(m +2n )=3.故答案为:3.【点睛】本题考查了代数式的求值,解题的关键是利用已知代数式求值.36.(2021·江苏扬州市·中考真题)将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.【答案】1275【分析】首先得到前n个图形中每个图形中的黑色圆点的个数,得到第n个图形中的黑色圆点的个数为()12n n+,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第33个能被3整除的数所在组,为原数列中第50个数,代入计算即可.【详解】解:第∵个图形中的黑色圆点的个数为:1,第∵个图形中的黑色圆点的个数为:()1222+⨯=3,第∵个图形中的黑色圆点的个数为:()1332+⨯=6,第∵个图形中的黑色圆点的个数为:()1442+⨯=10,...第n个图形中的黑色圆点的个数为()12n n+,则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,...,其中每3个数中,都有2个能被3整除,33÷2=16...1,16×3+2=50,则第33个被3整除的数为原数列中第50个数,即50512⨯=1275,故答案为:1275.【点睛】此题考查了规律型:图形的变化类,关键是通过归纳与总结,得到其中的规律.37.(2021·陕西中考真题)幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a 的值为______.【答案】-2 【分析】先通过计算第一行数字之和得到各行、各列及各条对角线上的三个数字之和,再利用第二列三个数之和得到a 的值. 【详解】解:由表第一行可知,各行、各列及各条对角线上的三个数字之和均为1616--+=-, ∵626a -++=-, ∵2a =-, 故答案为:2-. 【点睛】本题考查了数字之间的关系,解决本题的关键是读懂题意,正确提取表中数据,找到它们之间的关系等,该题对学生的观察分析能力有一定的要求,同时也考查了学生对有理数的和差计算的基本功.38.(2021·甘肃武威市·中考真题)一组按规律排列的代数式:2335472,2,2,2a b a b a b a b +-+-,…,则第n 个式子是___________. 【答案】()12112n nn a b +-+-⋅【分析】根据已知的式子可以看出:每个式子的第一项中a 的次数是式子的序号;第二项中b 的次数是序号的2倍减1,而第二项的符号是第奇数项时是正号,第偶数项时是负号. 【详解】解:∵当n 为奇数时,()111n +-=;当n 为偶数时,()111n +-=-,∵第n 个式子是:()1211?2n n n a b +-+-.故答案为:()1211?2n nn a b +-+-【点睛】本题考查了多项式的知识点,认真观察式子的规律是解题的关键.39.(2021·重庆中考真题)某销售商五月份销售A 、B 、C 三种饮料的数量之比为3:2:4,A 、B 、C 三种饮料的单价之比为1:2:1.六月份该销售商加大了宣传力度,并根据季节对三种饮料的价格作了适当的调整,预计六月份三种饮料的销售总额将比五月份有所增加,A 饮料增加的销售占六月份销售总额的115,B 、C 饮料增加的销售额之比为2:1.六月份A 饮料单价上调20%且A 饮料的销售额与B 饮料的销售额之比为2:3,则A 饮料五月份的销售数量与六月份预计的销售数量之比为_____________. 【答案】910【分析】设销售A 饮料的数量为3x ,销售B 种饮料的数量2x, 销售C 种饮料的数量4x ,A 种饮料的单价y . B 、C 两种饮料的单价分别为2y 、y .六月份A 饮料单价上调20%,总销售额为m ,可求A 饮料销售额为3xy+115m ,B 饮料的销售额为91210xy m +,C 饮料销售额:171420xy m +,可求=15m xy ,六月份A 种预计的销售额4xy ,六月份预计的销售数量103x ,A 饮料五月份的销售数量与六月份预计的销售数量之比103:3x x 计算即可 【详解】解:某销售商五月份销售A 、B 、C 三种饮料的数量之比为3:2:4,设销售A 饮料的数量为3x ,销售B 种饮料的数量2x, 销售C 种饮料的数量4x , A 、B 、C 三种饮料的单价之比为1:2:1.,设A 种饮料的单价y . B 、C 两种饮料的单价分别为2y 、y . 六月份A 饮料单价上调20%后单价为(1+20%)y,总销售额为m , A 饮料增加的销售占六月份销售总额的115A 饮料销售额为3xy+115m , A 饮料的销售额与B 饮料的销售额之比为2:3, B 饮料的销售额为31913=215210xy m xy m ⎛⎫++ ⎪⎝⎭ B 饮料的销售额增加部分为3134215xy m xy ⎛⎫+- ⎪⎝⎭∵C 饮料增加的销售额为131342215xy m xy ⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦∵C 饮料销售额:13117134+42215420xy m xy xy xy m ⎡⎤⎛⎫+-=+ ⎪⎢⎥⎝⎭⎣⎦∵191171315210420xy m xy m xy m m +++++= ∵=15m xy六月份A 种预计的销售额1315415xy xy xy +⨯=, 六月份预计的销售数量()1041+20%y 3xy x ÷= ∵A 饮料五月份的销售数量与六月份预计的销售数量之比1093:9:10=310x x = 故答案为910【点睛】本题考查销售问题应用题,用字母表示数,列代数式,整式的加减法,单项式除以单项式,掌握销售额=销售单价×销售数量是解题关键40.(2021·四川凉山彝族自治州·中考真题)如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍,拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;……照这样拼图,则第n 个图形需要___________根火柴棍.【答案】2n +1 【分析】分别得到第一个、第二个、第三个图形需要的火柴棍,找到规律,再总结即可. 【详解】 解:由图可知:拼成第一个图形共需要3根火柴棍, 拼成第二个图形共需要3+2=5根火柴棍, 拼成第三个图形共需要3+2×2=7根火柴棍, ...拼成第n 个图形共需要3+2×(n -1)=2n +1根火柴棍, 故答案为:2n +1. 【点睛】此题考查图形的变化规律,找出图形之间的联系,得出运算规律解决问题.三、解答题41.(2021·湖南衡阳市·中考真题)计算:()()()()22224x y x y x y x x y ++-++-. 【答案】23x 【分析】利用完全平方公式,平方差公式,单项式乘以多项式的法则,计算合并同类项即可 【详解】解:()()()()22224x y x y x y x x y ++-++-222224x 444x y y x y x xy =+++-+-23x =.【点睛】本题考查了完全平方公式,平方差公式,单项式乘以多项式,合并同类项,熟练掌握公式,准确合并计算是解题的关键.42.(2021·浙江金华市·中考真题)已知16x =,求()()()2311313x x x -++-的值. 【答案】1 【分析】直接利用完全平方差公式展开及平方差公式展开后,合并同类项化简,再将16x =代入进去计算. 【详解】解:原式229611962x x x x =-++-=-+ 当16x =时,原式16216=-⨯+=. 故答案是:1. 【点睛】本题考查了代数式的化简求值,解题的关键是:先利用完全平方差公式,平方差公式,合并同类项运算法则化简,然后代值计算.43.(2021·浙江温州市·中考真题)(1)计算:()0438⨯-+-.(2)化简:()()215282a a a -++. 【答案】(1)-6;(2)22625a a -+. 【分析】(1)直接利用有理数乘法法则以及绝对值的性质、二次根式的性质、零指数幂的性质分别化简得出答案; (2)直接利用完全平方公式以及单项式乘以多项式运算法则计算再合并即可得出答案. 【详解】解:(1)()0438⨯-+-12831=-+-+6=-;(2)()()215282a a a -++ 2210254a a a a =-+++22625a a =-+.【点睛】此题主要考查了实数运算、整式的混合运算,正确掌握相关运算法则是解题关键.44.(2021·四川南充市·中考真题)先化简,再求值:2(21)(21)(23)x x x +---,其中1x =-. 【答案】1210x -,-22 【分析】利用平方差公式和完全平方公式,进行化简,再代入求值,即可求解. 【详解】解:原式=2241(4129)x x x ---+ =22414129x x x --+- =1210x -,当x =-1时,原式=()12110⨯--=-22. 【点睛】本题主要考查整式的化简求值,熟练掌握完全平方公式和平方差公式,是解题的关键. 45.(2021·浙江宁波市·中考真题)(1)计算:()()()2113a a a +-++. (2)解不等式组:21930x x +<⎧⎨-≤⎩①②.【答案】(1)610a +;(2)34x ≤<. 【分析】(1)根据平方差公式和完全平方公式进行多项式乘法,再将结果合并同类项即可; (2)先解出∵,得到4x <,再解出∵,得到3x ≥,由大小小大中间取得到解集. 【详解】解:(1)原式22169a a a =-+++610a =+.(2)解不等式∵,得4x <, 解不等式∵,得3x ≥,所以原不等式组的解是34x ≤<.本题主要考查了整式的混合运算和解不等式组,关键在于平方差公式、完全平方公式以及不等式基本性质的应用,特别注意不等式的基本性质3,不等号的方向要改变. 46.(2021·重庆中考真题)计算:(1)2(23)()a a b a b ++-;(2)22293211x x x x x x ⎛⎫--÷+ ⎪+++⎝⎭.【答案】(1)223++a ab b ;(2)-31x x + 【分析】(1)根据单项式乘以多项式以及完全平方公式计算即可; (2)利用分式的混合运算法则进行计算即可. 【详解】解:(1)2(23)()a a b a b ++-2222+3+2+=a ab a ab b - 22=3++a ab b(2)22293211x x x x x x ⎛⎫--÷+ ⎪+++⎝⎭()()()222+3-3+3=11+x x x x x x x ⎛⎫-÷ ⎪++⎝⎭()()()2+3-31=31x x x x x +++ -3=1x x + 【点睛】本题考查了整式的混合运算和分式的混合运算,熟练掌握运算法则是解题的关键. 47.(2021·浙江中考真题)计算:()()()211x x x x +++-. 【答案】21x + 【分析】利用单项式乘多项式、平方差公式直接求解即可.解:原式2221x x x =++-21x =+.【点睛】本题考查整式的乘法,掌握单项式乘多项式法则和平方差公式是解题的关键. 48.(2021·四川乐山市·中考真题)已知2612(1)(2)A B x x x x x --=----,求A 、B 的值. 【答案】A 的值为4,B 的值为-2 【分析】根据分式、整式加减运算,以及二元一次方程组的性质计算,即可得到答案. 【详解】(2)(1)12(1)(2)(1)(2)A B A x B x x x x x x x ---=+------, ∵(2)(1)26(1)(2)(1)(2)A xB x x x x x x -+--=----,∵(2)(1)26A x B x x -+-=-, 即()(2)26A B x A B x +-+=-.∵226A B A B +=⎧⎨+=⎩,解得:42A B =⎧⎨=-⎩∵A 的值为4,B 的值为2-. 【点睛】本题考查了分式、整式、二元一次方程组的知识;解题的关键是熟练掌握分式加减运算、整式加减运算、二元一次方程组的性质,从而完成求解.49.(2021·安徽)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列. [观察思考]当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推,[规律总结](1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加 块;(2)若一条这样的人行道一共有n (n 为正整数)块正方形地砖,则等腰直角三角形地砖的块数为 (用含n 的代数式表示). [问题解决](3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?【答案】(1)2 ;(2) 24n +;(3)1008块 【分析】(1)由图观察即可;(2)由每增加一块正方形地砖,即增加2块等腰直角三角形地砖,再结合题干中的条件正方形地砖只有1块时,等腰直角三角形地砖有6块,递推即可;(3)利用上一小题得到的公式建立方程,即可得到等腰直角三角形地砖剩余最少时需要正方形地砖的数量. 【详解】解:(1)由图可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖; 故答案为:2 ;(2)由(1)可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖; 当正方形地砖只有1块时,等腰直角三角形地砖有6块,即2+4; 所以当地砖有n 块时,等腰直角三角形地砖有(24n +)块; 故答案为:24n +;(3)令242021n += 则1008.5n = 当1008n =时,242020n += 此时,剩下一块等腰直角三角形地砖。
2021年浙江省丽水市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分) 1.(3分)实数﹣2的倒数是( ) A .2B .﹣2C .12D .−122.(3分)计算(﹣a )2•a 4的结果是( ) A .a 6B .﹣a 6C .a 8D .﹣a 83.(3分)如图是由5个相同的小立方体搭成的几何体,它的主视图是( )A .B .C .D .4.(3分)一个布袋里装有3个红球和5个黄球,它们除颜色外其余都相同.从中任意摸出一个球是红球的概率是( ) A .13B .15C .38D .585.(3分)若﹣3a >1,两边都除以﹣3,得( ) A .a <−13B .a >−13C .a <﹣3D .a >﹣36.(3分)用配方法解方程x 2+4x +1=0时,配方结果正确的是( ) A .(x ﹣2)2=5B .(x ﹣2)2=3C .(x +2)2=5D .(x +2)2=37.(3分)如图,AB 是⊙O 的直径,弦CD ⊥OA 于点E ,连结OC ,OD .若⊙O 的半径为m ,∠AOD =∠α,则下列结论一定成立的是( )A.OE=m•tanαB.CD=2m•sinαC.AE=m•cosαD.S△COD=12m2•sinα8.(3分)四盏灯笼的位置如图.已知A,B,C,D的坐标分别是(﹣1,b),(1,b),(2,b),(3.5,b),平移y轴右侧的一盏灯笼,使得y轴两侧的灯笼对称,则平移的方法可以是()A.将B向左平移4.5个单位B.将C向左平移4个单位C.将D向左平移5.5个单位D.将C向左平移3.5个单位9.(3分)一杠杆装置如图,杆的一端吊起一桶水,水桶对杆的拉力的作用点到支点的杆长固定不变.甲、乙、丙、丁四位同学分别在杆的另一端竖直向下施加压力F甲、F乙、F丙、F丁,将相同重量的水桶吊起同样的高度,若F乙<F丙<F甲<F丁,则这四位同学对杆的压力的作用点到支点的距离最远的是()A.甲同学B.乙同学C.丙同学D.丁同学10.(3分)如图,在Rt△ABC纸片中,∠ACB=90°,AC=4,BC=3,点D,E分别在AB,AC上,连结DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上,若FD平分∠EFB,则AD的长为()A .259B .258C .157D .207二、填空题(本题有6小题,每小题4分,共24分) 11.(4分)分解因式:x 2﹣4= .12.(4分)要使式子√x −3有意义,则x 可取的一个数是 .13.(4分)根据第七次全国人口普查,华东A ,B ,C ,D ,E ,F 六省60岁及以上人口占比情况如图所示,这六省60岁及以上人口占比的中位数是 .14.(4分)一个多边形过顶点剪去一个角后,所得多边形的内角和为720°,则原多边形的边数是 .15.(4分)小丽在“红色研学”活动中深受革命先烈事迹的鼓舞,用正方形纸片制作成图1的七巧板,设计拼成图2的“奔跑者”形象来激励自己.已知图1正方形纸片的边长为4,图2中FM =2EM ,则“奔跑者”两脚之间的跨度,即AB ,CD 之间的距离是 .16.(4分)数学活动课上,小云和小王在讨论张老师出示的一道代数式求值问题:已知实数a ,b 同时满足a 2+2a =b +2,b 2+2b =a +2,求代数式b a+ab的值.结合他们的对话,请解答下列问题: (1)当a =b 时,a 的值是 .(2)当a ≠b 时,代数式ba+ab 的值是 .三、解答题(本题有8小题,第17~19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分,各小题都必须写出解答过程) 17.(6分)计算:|﹣2021|+(﹣3)0−√4. 18.(6分)解方程组:{x =2y x −y =6.19.(6分)在创建“浙江省健康促进学校”的过程中,某数学兴趣小组针对视力情况随机抽取本校部分学生进行调查,并按照国家分类标准统计人数,绘制成两幅不完整的统计图表,请根据图表信息解答下列问题: 抽取的学生视力情况统计表 类别 检查结果 人数 A 正常 88 B 轻度近视 ▲ C 中度近视 59 D重度近视▲(1)求所抽取的学生总人数;(2)该校共有学生约1800人,请估算该校学生中,近视程度为中度和重度的总人数; (3)请结合上述统计数据,为该校做好近视防控,促进学生健康发展提出一条合理的建议.20.(8分)如图,在5×5的方格纸中,线段AB的端点均在格点上,请按要求画图.(1)如图1,画出一条线段AC,使AC=AB,C在格点上;(2)如图2,画出一条线段EF,使EF,AB互相平分,E,F均在格点上;(3)如图3,以A,B为顶点画出一个四边形,使其是中心对称图形,且顶点均在格点上.21.(8分)李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s(千米)与行驶时间t(小时)的关系如图所示(中途休息、加油的时间不计).当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s关于t的函数表达式;(3)当货车显示加油提醒后,问行驶时间t在怎样的范围内货车应进站加油?22.(10分)如图,在△ABC中,AC=BC,以BC为直径的半圆O交AB于点D,过点D作半圆O的切线,交AC于点E.(1)求证:∠ACB=2∠ADE;(2)若DE=3,AE=√3,求CD̂的长.23.(10分)如图,已知抛物线L:y=x2+bx+c经过点A(0,﹣5),B(5,0).(1)求b,c的值;(2)连结AB,交抛物线L的对称轴于点M.①求点M的坐标;②将抛物线L向左平移m(m>0)个单位得到抛物线L1.过点M作MN∥y轴,交抛物线L1于点N.P是抛物线L1上一点,横坐标为﹣1,过点P作PE∥x轴,交抛物线L于点E,点E在抛物线L对称轴的右侧.若PE+MN=10,求m的值.24.(12分)如图,在菱形ABCD中,∠ABC是锐角,E是BC边上的动点,将射线AE绕点A按逆时针方向旋转,交直线CD于点F.(1)当AE⊥BC,∠EAF=∠ABC时,①求证:AE=AF;②连结BD,EF,若EFBD =25,求S△AEFS菱形ABCD的值;(2)当∠EAF=12∠BAD时,延长BC交射线AF于点M,延长DC交射线AE于点N,连结AC,MN,若AB=4,AC=2,则当CE为何值时,△AMN是等腰三角形.2021年浙江省丽水市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分) 1.(3分)实数﹣2的倒数是( ) A .2B .﹣2C .12D .−12【解答】解:实数﹣2的倒数是:−12. 故选:D .2.(3分)计算(﹣a )2•a 4的结果是( ) A .a 6B .﹣a 6C .a 8D .﹣a 8【解答】解:原式=a 2•a 4=a 6, 故选:A .3.(3分)如图是由5个相同的小立方体搭成的几何体,它的主视图是( )A .B .C .D .【解答】解:从正面看底层是三个正方形,上层中间是一个正方形. 故选:B .4.(3分)一个布袋里装有3个红球和5个黄球,它们除颜色外其余都相同.从中任意摸出一个球是红球的概率是( ) A .13B .15C .38D .58【解答】解:∵布袋里装有3个红球和5个黄球,共有8个球,∴任意摸出一个球是红球的概率是38.故选:C .5.(3分)若﹣3a >1,两边都除以﹣3,得( ) A .a <−13B .a >−13C .a <﹣3D .a >﹣3【解答】解:∵﹣3a >1,∴不等式的两边都除以﹣3,得a <−13, 故选:A .6.(3分)用配方法解方程x 2+4x +1=0时,配方结果正确的是( ) A .(x ﹣2)2=5B .(x ﹣2)2=3C .(x +2)2=5D .(x +2)2=3【解答】解:方程x 2+4x +1=0, 整理得:x 2+4x =﹣1, 配方得:(x +2)2=3. 故选:D .7.(3分)如图,AB 是⊙O 的直径,弦CD ⊥OA 于点E ,连结OC ,OD .若⊙O 的半径为m ,∠AOD =∠α,则下列结论一定成立的是( )A .OE =m •tan αB .CD =2m •sin αC .AE =m •cos αD .S △COD =12m 2•sin α【解答】解:∵AB 是⊙O 的直径,CD ⊥OA , ∴CD =2DE ,∵⊙O 的半径为m ,∠AOD =∠α, ∴DE =OD •sin α=m •sin α, ∴CD =2DE =2m •sin α, 故选:B .8.(3分)四盏灯笼的位置如图.已知A,B,C,D的坐标分别是(﹣1,b),(1,b),(2,b),(3.5,b),平移y轴右侧的一盏灯笼,使得y轴两侧的灯笼对称,则平移的方法可以是()A.将B向左平移4.5个单位B.将C向左平移4个单位C.将D向左平移5.5个单位D.将C向左平移3.5个单位【解答】解:∵A,B,C,D这四个点的纵坐标都是b,∴这四个点在一条直线上,这条直线平行于x轴,∵A(﹣1,b),B(1,b),∴A,B关于y轴对称,只需要C,D对称即可,∵C(2,b),D(3.5,b),∴可以将点C(2,b)向左移动到(﹣3.5,b),移动5.5个单位,或可以将D(3.5,b)向左移动到(﹣2,b),移动5.5个单位,故选:C.9.(3分)一杠杆装置如图,杆的一端吊起一桶水,水桶对杆的拉力的作用点到支点的杆长固定不变.甲、乙、丙、丁四位同学分别在杆的另一端竖直向下施加压力F甲、F乙、F丙、F丁,将相同重量的水桶吊起同样的高度,若F乙<F丙<F甲<F丁,则这四位同学对杆的压力的作用点到支点的距离最远的是()A.甲同学B.乙同学C.丙同学D.丁同学【解答】解:根据杠杆平衡原理:阻力×阻力臂=动力×动力臂可得,∵阻力×阻力臂是个定值,即水桶的重力和水桶对杆的拉力的作用点到支点的杆长固定不变,∴动力越小,动力臂越大,即拉力越小,压力的作用点到支点的距离最远,∵F 乙最小,∴乙同学到支点的距离最远.故选:B .10.(3分)如图,在Rt △ABC 纸片中,∠ACB =90°,AC =4,BC =3,点D ,E 分别在AB ,AC 上,连结DE ,将△ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分∠EFB ,则AD 的长为( )A .259B .258C .157D .207【解答】解:作DH ⊥BC 于H ,在Rt △ABC 纸片中,∠ACB =90°,由勾股定理得:AB =√32+42=5,∵将△ADE 沿DE 翻折得△DEF ,∴AD =DF ,∠A =∠DFE ,∵FD 平分∠EFB ,∴∠DFE =∠DFH ,∴∠DFH =∠A ,设DH =3x ,在Rt △DHF 中,sin ∠DFH =sin ∠A =35,∴DF =5x ,∴BD =5﹣5x ,∵△BDH ∽△BAC ,∴BD AB =DH AC ,∴5−5x 5=3x 4,∴x =47,∴AD =5x =207.故选:D .二、填空题(本题有6小题,每小题4分,共24分)11.(4分)分解因式:x 2﹣4= (x +2)(x ﹣2) .【解答】解:x 2﹣4=(x +2)(x ﹣2).故答案为:(x +2)(x ﹣2).12.(4分)要使式子√x −3有意义,则x 可取的一个数是 4(答案不唯一) .【解答】解:要使式子√x −3有意义,必须x ﹣3≥0,解得:x ≥3,所以x 可取的一个数是4,故答案为:4(答案不唯一).13.(4分)根据第七次全国人口普查,华东A ,B ,C ,D ,E ,F 六省60岁及以上人口占比情况如图所示,这六省60岁及以上人口占比的中位数是 18.75% .【解答】解:把这些数从小大排列为:16.0%,16.9%,18.7%,18.8%,20.9%,21.8%, 则中位数是18.7%+18.8%2=18.75%.故答案为:18.75%.14.(4分)一个多边形过顶点剪去一个角后,所得多边形的内角和为720°,则原多边形的边数是 6或7 .【解答】解:设内角和为720°的多边形的边数是n ,则(n ﹣2)•180=720,解得:n =6.∵多边形过顶点截去一个角后边数不变或减少1,∴原多边形的边数为6或7,故答案为:6或7.15.(4分)小丽在“红色研学”活动中深受革命先烈事迹的鼓舞,用正方形纸片制作成图1的七巧板,设计拼成图2的“奔跑者”形象来激励自己.已知图1正方形纸片的边长为4,图2中FM =2EM ,则“奔跑者”两脚之间的跨度,即AB ,CD 之间的距离是 133 .【解答】解:如图2中,过点E 作EI ⊥FK 于I ,过点M 作MJ ⊥FK 于J .由题意,△ABM ,△EFK 都是等腰直角三角形,AB =BM =2,EK =EF =2√2,FK =4,FK 与CD 之间的距离为1,∵EI ⊥FK ,∴KI =IF ,∴EI =12FK =2,∵MJ ∥EI ,∴MJ EI =FM EF =23, ∴MJ =43,∵AB ∥CD ,∴AB 与CD 之间的距离=2+43+1=133, 故答案为:13316.(4分)数学活动课上,小云和小王在讨论张老师出示的一道代数式求值问题:已知实数a ,b 同时满足a 2+2a =b +2,b 2+2b =a +2,求代数式b a +a b 的值.结合他们的对话,请解答下列问题:(1)当a =b 时,a 的值是 ﹣2或1 .(2)当a ≠b 时,代数式b a +a b 的值是 7 . 【解答】解:(1)当a =b 时,a 2+2a =a +2,a 2+a ﹣2=0,(a +2)(a ﹣1)=0,解得:a =﹣2或1,故答案为:﹣2或1;(2)联立方程组{a 2+2a =b +2①b 2+2b =a +2②, 将①+②,得:a 2+b 2+2a +2b =b +a +4,整理,得:a 2+b 2+a +b =4③,将①﹣②,得:a 2﹣b 2+2a ﹣2b =b ﹣a ,整理,得:a 2﹣b 2+3a ﹣3b =0,(a +b )(a ﹣b )+3(a ﹣b )=0,(a ﹣b )(a +b +3)=0,又∵a ≠b ,∴a +b +3=0,即a +b =﹣3④,将④代入③,得a 2+b 2﹣3=4,即a 2+b 2=7,又∵(a +b )2=a 2+2ab +b 2=9∴ab =1,∴b a +a b =b 2+a 2ab =7,故答案为:7.三、解答题(本题有8小题,第17~19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分,各小题都必须写出解答过程)17.(6分)计算:|﹣2021|+(﹣3)0−√4.【解答】解:|﹣2021|+(﹣3)0−√4=2021+1﹣2=2020.18.(6分)解方程组:{x =2y x −y =6. 【解答】解:{x =2y ①x −y =6②, 把①代入②得:2y ﹣y =6,解得:y =6,把y =6代入①得:x =12,则方程组的解为{x =12y =6. 19.(6分)在创建“浙江省健康促进学校”的过程中,某数学兴趣小组针对视力情况随机抽取本校部分学生进行调查,并按照国家分类标准统计人数,绘制成两幅不完整的统计图表,请根据图表信息解答下列问题:抽取的学生视力情况统计表类别检查结果 人数 A正常 88 B轻度近视 ▲ C中度近视 59 D 重度近视 ▲(1)求所抽取的学生总人数;(2)该校共有学生约1800人,请估算该校学生中,近视程度为中度和重度的总人数;(3)请结合上述统计数据,为该校做好近视防控,促进学生健康发展提出一条合理的建议.【解答】解:(1)抽取的学生总人数是:88÷44%=200(人),答:所抽取的学生总人数为200人;(2)在抽取的200人样本中,轻度近视的人数为:200×11%=22(人),中度近视的人数为:59人,重度近视的人数为:200﹣88﹣22﹣59=31(人),∴中度和重度所占的比例为:59+31200×100%=45%,∴该校学生中,近视程度为中度和重度的总人数为:1800×45%=810(人),答:在该校1800人学生中,估计近视程度为中度和重度的总人数是810人;(3)答案不唯一,例如:通过多种形式向学生开展近视防控宣传工作,并通过家长会、家长微信群等做好家校沟通工作.20.(8分)如图,在5×5的方格纸中,线段AB 的端点均在格点上,请按要求画图.(1)如图1,画出一条线段AC ,使AC =AB ,C 在格点上;(2)如图2,画出一条线段EF ,使EF ,AB 互相平分,E ,F 均在格点上;(3)如图3,以A ,B 为顶点画出一个四边形,使其是中心对称图形,且顶点均在格点上.【解答】解:如图:(1)线段AC 即为所作,(2)线段EF 即为所作,(3)四边形ABHG 即为所作.21.(8分)李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s (千米)与行驶时间t (小时)的关系如图所示(中途休息、加油的时间不计).当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s 关于t 的函数表达式;(3)当货车显示加油提醒后,问行驶时间t 在怎样的范围内货车应进站加油?【解答】解:(1)由图象,得t =0时,s =880,∴工厂离目的地的路程为880千米,答:工厂离目的地的路程为880千米;(2)设s =kt +b (k ≠0),将(0,880)和(4,560)代入s =kt +b 得,{880=b 560=4k +b, 解得:{k =−80b =880, ∴s 关于t 的函数表达式:s =﹣80t +880(0≤t ≤11),答:s 关于t 的函数表达式:s =﹣80t +880(0≤t ≤11);(3)当邮箱中剩余油量为10升时,s =880﹣(60﹣10)÷0.1=380(千米),∴380=﹣80t +880,解得:t =254(小时), 当邮箱中剩余油量为0升时,s =880﹣60÷0.1=280(千米),∴280=﹣80t +880,解得:t =152(小时), ∵k =﹣80<0,∴s 随t 的增大而减小,∴t 的取值范围是254<t <152. 22.(10分)如图,在△ABC 中,AC =BC ,以BC 为直径的半圆O 交AB 于点D ,过点D作半圆O 的切线,交AC 于点E .(1)求证:∠ACB =2∠ADE ;(2)若DE =3,AE =√3,求CD̂的长.【解答】(1)证明:连接OD ,CD ,∵DE 是⊙O 的切线,∴∠ODE =90°,∴∠ODC +∠EDC =90°,∵BC 为⊙O 直径,∴∠BDC =90°,∴∠ADC =90°,∴∠ADE +∠EDC =90°,∴∠ADE =∠ODC ,∵AC =BC ,∴∠ACB =2∠DCE =2∠OCD ,∵OD =OC ,∴∠ODC =∠OCD ,∴∠ACB =2∠ADE ;(2)解:由(1)知,∠ADE +∠EDC =90°,∠ADE =∠DCE ,∴∠AED =90°,∵DE =3,AE =√3,∴AD =√32+(√3)2=2√3,tan A =√3,∴∠A =60°,∵AC =BC ,∴△ABC 是等边三角形,∴∠B =60°,BC =AB =2AD =4√3,∴∠COD =2∠B =120°,OC =2√3,∴CD ̂ 的长为nπr 180=120⋅π×2√3180=4√3π3.23.(10分)如图,已知抛物线L :y =x 2+bx +c 经过点A (0,﹣5),B (5,0).(1)求b ,c 的值;(2)连结AB ,交抛物线L 的对称轴于点M .①求点M 的坐标;②将抛物线L 向左平移m (m >0)个单位得到抛物线L 1.过点M 作MN ∥y 轴,交抛物线L 1于点N .P 是抛物线L 1上一点,横坐标为﹣1,过点P 作PE ∥x 轴,交抛物线L 于点E ,点E 在抛物线L 对称轴的右侧.若PE +MN =10,求m 的值.【解答】解:(1)∵抛物线y =x 2+bx +c 经过点A (0,﹣5)和点B (5,0),∴{c =−525+5b +c =0, 解得:{b =−4c =−5, ∴b ,c 的值分别为﹣4,﹣5.(2)①设直线AB 的解析式为y =kx +n (k ≠0),把A (0,﹣5),B (5,0)的坐标分别代入表达式,得{n =−55k +n =0, 解得{k =1n =−5, ∴直线AB 的函数表达式为y =x ﹣5.由(1)得,抛物线L 的对称轴是直线x =2,当x =2时,y =x ﹣5=﹣3,∴点M 的坐标是(2,﹣3);②设抛物线L 1的表达式为y =(x ﹣2+m )2﹣9,∵MN ∥y 轴,∴点N 的坐标是(2,m 2﹣9),∵点P 的横坐标为﹣1,∴P 点的坐标是(﹣1,m 2﹣6m ),设PE 交抛物线L 1于另一点Q ,∵抛物线L 1的对称轴是直线x =2﹣m ,PE ∥x 轴,∴根据抛物线的对称性,点Q 的坐标是(5﹣2m ,m 2﹣6m ),(Ⅰ)如图1,当点N 在点M 的下方,即0<m ≤√6时,∴PQ=5﹣2m﹣(﹣1)=6﹣2m,MN=﹣3﹣(m2﹣9)=6﹣m2,由平移的性质得,QE=m,∴PE=6﹣2m+m=6﹣m,∵PE+MN=10,∴6﹣m+6﹣m2=10,解得,m1=﹣2(舍去),m2=1,(Ⅱ)如图2,当点N在点M的上方,点Q在点P及右侧,即√6<m≤3时,PE=6﹣m,MN=m2﹣6,∵PE+MN=10,∴6﹣m+m2﹣6=10,解得,m1=1+√412(舍去),m2=1−√412(舍去).(Ⅲ)如图3,当点N在M上方,点Q在点P左侧,即m>3时,PE=m,MN=m2﹣6,∵PE+MN=10,∴m+m2﹣6=10,解得,m1=−1−√652(舍去),m2=−1+√652,综合以上可得m的值是1或−1+√652.24.(12分)如图,在菱形ABCD中,∠ABC是锐角,E是BC边上的动点,将射线AE绕点A按逆时针方向旋转,交直线CD于点F.(1)当AE⊥BC,∠EAF=∠ABC时,①求证:AE=AF;②连结BD,EF,若EFBD =25,求S△AEFS菱形ABCD的值;(2)当∠EAF=12∠BAD时,延长BC交射线AF于点M,延长DC交射线AE于点N,连结AC,MN,若AB=4,AC=2,则当CE为何值时,△AMN是等腰三角形.【解答】(1)①证明:∵四边形ABCD是菱形,∴AB=AD,∠ABC=∠ADC,AD∥BC,∵AE⊥BC,∴AE⊥AD,∴∠ABE+∠BAE=∠EAF+∠DAF=90°,∵∠EAF=∠ABC,∴∠BAE=∠DAF,∴△ABE≌△ADF(ASA),∴AE=AF;②解:连接AC,如图1所示:∵四边形ABCD是菱形,∴AB=BC=DC,AC⊥BD,由①知,△ABE≌△ADF,∴BE=DF,∴CE=CF,∵AE=AF,∴AC⊥EF,∴EF∥BD,∴△CEF∽△CBD,∴ECBC =EFBD=25,设EC=2a,则AB=BC=5a,BE=3a,∴AE=√AB2−BE2=√(5a)2−(3a)2=4a,∵AEAB =AFBC,∠EAF=∠ABC,∴△AEF∽△BAC,∴S△AEFS△BAC =(AEAB)2=(4a5a)2=1625,∴S△AEFS菱形ABCD =S△AEF2S△BAC=12×1625=825;(2)解:∵四边形ABCD是菱形,∴∠BAC=12∠BAD,∵∠EAF=12∠BAD,∴∠BAC=∠EAF,∴∠BAE=∠CAM,∵AB∥CD,∴∠BAE =∠ANC ,∴∠ANC =∠CAM ,同理:∠AMC =∠NAC ,∴△MAC ∽△ANC ,∴AC CN =AM NA ,△AMN 是等腰三角形有三种情况:①当AM =AN 时,如图2所示:∵∠ANC =∠CAM ,AM =AN ,∠AMC =∠NAC , ∴△ANC ≌△MAC (ASA ),∴CN =AC =2,∵AB ∥CN ,∴△CEN ∽△BEA ,∴CE BE =CN AB =24=12, ∵BC =AB =4,∴CE =13BC =43;②当NA =NM 时,如图3所示:则∠NMA =∠NAM ,∵AB =BC ,∴∠BAC =∠BCA ,∵∠BAC =∠EAF ,∴∠NMA =∠NAM =∠BAC =∠BCA ,∴△ANM ∽△ABC ,∴AM AN =AC AB =12, ∴AC CN =AM NA =12, ∴CN =2AC =4=AB ,∴△CEN ≌△BEA (AAS ),∴CE =BE =12BC =2;③当MA =MN 时,如图4所示:则∠MNA =∠MAN =∠BAC =∠BCA ,∴△AMN ∽△ABC ,∴AM AN =AB AC =42=2, ∴CN =12AC =1,∵△CEN ∽△BEA ,∴CE BE =CN AB =14, ∴CE =15BC =45;综上所述,当CE 为43或2或45时,△AMN 是等腰三角形.。
2021年中考数学模拟试卷一.选择题(共8小题,满分32分,每小题4分)1.(4分)若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为()A.B.1C..4D.32.(4分)如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2B.m≥3C.m<5D.m≤53.(4分)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.4.(4分)某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×305.(4分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个6.(4分)若点A(﹣1,m)、B(1,m)、C(2,m﹣1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.7.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b >0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A.1B.2C.3D.48.(4分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2020次运动后,动点P的坐标是()A.(2020,1)B.(2020,0)C.(2020,2)D.(2019,0)二.填空题(共5小题,满分25分,每小题5分)9.(5分)把多项式x2y﹣6xy+9y分解因式的结果是.10.(5分)已知+=3,求=.11.(5分)如图,在平面直角坐标系中,等边△OAB和菱形OCDE的边OA,OE都在x轴上,点C在OB边上,S△ABD=,反比例函数y=(x>0)的图象经过点B,则k的值为.12.(5分)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.13.(5分)已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为.三.解答题(共4小题,满分43分)14.(5分)计算:﹣2tan60°.15.(12分)如图,已知AB是⊙O的直径,CB⊥AB,D为圆上一点,且AD∥OC,连接CD,AC,BD,AC与BD交于点M.(1)求证:CD为⊙O的切线;(2)若CD=AD,求的值.16.(12分)五一假期某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,每辆42座比每辆60座客车租金便宜140元,租3辆42座和2辆60座客车租金共计1880元(1)求两种车租金每辆各多少元?(2)若学校同时租用这两种客车8辆(可以坐不满),总租金不超过3200元,有几种租车方案?请选择最节省的租车方案.17.(14分)如图,过点A(5,)的抛物线y=ax2+bx的对称轴是x=2,点B是抛物线与x轴的一个交点,点C在y轴上,点D是抛物线的顶点.(1)求a、b的值;(2)当△BCD是直角三角形时,求△OBC的面积;(3)设点P在直线OA下方且在抛物线y=ax2+bx上,点M、N在抛物线的对称轴上(点M在点N的上方),且MN=2,过点P作y轴的平行线交直线OA于点Q,当PQ最大时,请直接写出四边形BQMN的周长最小时点Q、M、N的坐标.2021年中考数学模拟试卷参考答案与试题解析一.选择题(共8小题,满分32分,每小题4分)1.(4分)若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为()A.B.1C..4D.3【分析】根据根与系数的关系即可求出答案.【解答】解:由题意可知:a、b是方程x2﹣4x+1=0的两个不同的实数根,∴由根与系数的关系可知:ab=1,a+b=4,∴a2+1=4a,b2+1=4b,∴原式=+===1,故选:B.2.(4分)如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2B.m≥3C.m<5D.m≤5【分析】若一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围.【解答】解:∵关于x的一元二次方程x2﹣x+m﹣1=0有实数根,a=1,b=﹣1,c=m﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×1×(m﹣1)≥0,解得m≤5.故选:D.3.(4分)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【分析】先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:A、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故A 错误.B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故B错误;C、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故D正确;故选:D.4.(4分)某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×30【分析】根据空白区域的面积=矩形空地的面积可得.【解答】解:设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)=×20×30,故选:B.5.(4分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b >0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个【分析】根据二次函数的性质即可求出答案.【解答】解:①由图象开口可知:a>0,c<0,∵>0,∴b<0,∴abc>0,故①正确;②由图象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故②正确;③抛物线与x轴交于点A(﹣1,0),B(2,0),∴抛物线的对称轴为:x=,∴<1,∴2a+b>0,故③正确;④由图象可知顶点坐标的纵坐标小于﹣2,故④错误;⑤由③可知抛物线的对称轴为x=,∴由图象可知:x<时,y随着x的增大而减小,故⑤正确;⑥由图象可知:x=1时,y<0,∴a+b+c<0,故⑥错误;故选:B.6.(4分)若点A(﹣1,m)、B(1,m)、C(2,m﹣1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.【分析】由点A(﹣1,m),B(1,m),C(2,m﹣1)在同一个函数图象上,可得A与B关于y轴对称,当x>0时,y随x的增大而减小,继而求得答案.【解答】解:∵点A(﹣1,m),B(1,m),∴A与B关于y轴对称,故A,D错误;∵B(1,m),C(2,m﹣1),∴当x>0时,y随x的增大而减小,故B正确,C错误.故选:B.7.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b >0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A.1B.2C.3D.4【分析】由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①∵抛物线对称轴是y轴的右侧,∴ab<0,∵与y轴交于负半轴,∴c<0,∴abc>0,故①正确;②∵a>0,x=﹣<1,∴﹣b<2a,∴2a+b>0,故②正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;④当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故选:D.8.(4分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2020次运动后,动点P的坐标是()A.(2020,1)B.(2020,0)C.(2020,2)D.(2019,0)【分析】分析点P的运动规律找到循环规律即可.【解答】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4,所以,前505次循环运动点P共向右运动505×4=2020个单位,且在x轴上,故点P坐标为(2020,0).故选:B.二.填空题(共5小题,满分25分,每小题5分)9.(5分)把多项式x2y﹣6xy+9y分解因式的结果是y(x﹣3)2.【分析】原式提取y,再利用完全平方公式分解即可.【解答】解:原式=y(x2﹣6x+9)=y(x﹣3)2,故答案为:y(x﹣3)210.(5分)已知+=3,求=﹣.【分析】由+=3知=3,即a+b=3ab,整体代入到原式,计算可得.【解答】解:∵+=3,∴=3,则a+b=3ab,所以原式====﹣,故答案为:﹣.11.(5分)如图,在平面直角坐标系中,等边△OAB和菱形OCDE的边OA,OE都在x轴上,点C在OB边上,S△ABD=,反比例函数y=(x>0)的图象经过点B,则k的值为.【分析】连接OD,由△OAB是等边三角形,得到∠AOB=60°,根据平行线的性质得到∠DEO=∠AOB=60°,推出△DEO是等边三角形,得到∠DOE=∠BAO=60°,得到OD∥AB,求得S△BDO=S△AOD,推出S△AOB=S△ABD=,过B作BH⊥OA于H,由等边三角形的性质得到OH=AH,求得S△OBH=,于是得到结论.【解答】解:连接OD,∵△OAB是等边三角形,∴∠AOB=60°,∵四边形OCDE是菱形,∴DE∥OB,∴∠DEO=∠AOB=60°,∴△DEO是等边三角形,∴∠DOE=∠BAO=60°,∴OD∥AB,∴S△BDO=S△AOD,∵S四边形ABDO=S△ADO+S△ABD=S△BDO+S△AOB,∴S△AOB=S△ABD=,过B作BH⊥OA于H,∴OH=AH,∴S△OBH=,∵反比例函数y=(x>0)的图象经过点B,∴k的值为,故答案为:.12.(5分)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加(4﹣4)m.【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=﹣2代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA=OB=AB=2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过将A点坐标(﹣2,0)代入抛物线解析式可得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降2米,通过抛物线在图上的观察可转化为:当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离,可以通过把y=﹣2代入抛物线解析式得出:﹣2=﹣0.5x2+2,解得:x=±2,所以水面宽度增加到4米,比原先的宽度当然是增加了(4﹣4)米,故答案为:4﹣4.13.(5分)已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为0<m<.【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【解答】解:把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣;由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m (m>0),设直线l与x轴、y轴分别交于点A、B,(如下图所示)当x=0时,y=m;当y=0时,x=m,∴A(m,0),B(0,m),即OA=m,OB=m;在Rt△OAB中,AB=,过点O作OD⊥AB于D,∵S△ABO=OD•AB=OA•OB,∴OD•m=×m×m,∵m>0,解得OD=m由直线与圆的位置关系可知<6,解得0<m<.故答案为:0<m<.三.解答题(共4小题,满分43分)14.(5分)计算:﹣2tan60°.【分析】原式利用二次根式性质,绝对值的代数意义,负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=2+5﹣2﹣2=3.15.(12分)如图,已知AB是⊙O的直径,CB⊥AB,D为圆上一点,且AD∥OC,连接CD,AC,BD,AC与BD交于点M.(1)求证:CD为⊙O的切线;(2)若CD=AD,求的值.【分析】(1)连接OD,设OC交BD于K.想办法证明△ODC≌△OBC(SSS)即可解决问题.(2)由CD=AD,可以假设AD=a,CD=a,设KC=b.由△CDK∽△COD,推出=,推出=整理得:2()2+()﹣4=0,解得=或(舍弃),由此即可解决问题.【解答】(1)证明:连接OD,设OC交BD于K.∵AB是直径,∴∠ADB=90°,∴AD⊥BD,∵OC∥AD,∴OC⊥BD,∴DK=KB,∴CD=CB,∵OD=OB,OC=OC,CD=CB,∴△ODC≌△OBC(SSS),∴∠ODC=∠OBC,∵CB⊥AB,∴∠OBC=90°,∴∠ODC=90°,∴OD⊥CD,∴CD是⊙O的切线.(2)解:∵CD=AD,∴可以假设AD=a,CD=a,设KC=b.∵DK=KB,AO=OB,∴OK=AD=a,∵∠DCK=∠DCO,∠CKD=∠CDO=90°,∴△CDK∽△COD,∴=,∴=整理得:2()2+()﹣4=0,解得=或(舍弃),∵CK∥AD,∴===.16.(12分)五一假期某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,每辆42座比每辆60座客车租金便宜140元,租3辆42座和2辆60座客车租金共计1880元(1)求两种车租金每辆各多少元?(2)若学校同时租用这两种客车8辆(可以坐不满),总租金不超过3200元,有几种租车方案?请选择最节省的租车方案.【分析】(1)设42座客车租金x元/辆,60座客车租金(x+140)元/辆,根据题意列出方程解答即可.(2)根据租用的8辆客车所载的总人数应大于等于师生的总人数和所需的费用应比单独租用车辆的费用少,列出不等式组进行求解,然后分类讨论.【解答】解:(1)设42座客车租金x元/辆,60座客车租金(x+140)元/辆,根据题意,得:3x+2(x+140)=1880,解得:x=320答:42座客车租金320元/辆,60座客车租金460元/辆;(2)设租42座客车m辆,则60座客车(8﹣m)辆,根据题意得:42m+60(8﹣m)≥385•,320m+460 (8﹣m)≤3200,解得:3≤m≤5∵m为整数,∴m的值可以是4、5,即有2种方案;设总费用为W,则W=320m+460 (8﹣m)=﹣140m+3680,∵W随m的增大而减小大,∴当m=5时,W取得最小值,最小值为2980,17.(14分)如图,过点A(5,)的抛物线y=ax2+bx的对称轴是x=2,点B是抛物线与x轴的一个交点,点C在y轴上,点D是抛物线的顶点.(1)求a、b的值;(2)当△BCD是直角三角形时,求△OBC的面积;(3)设点P在直线OA下方且在抛物线y=ax2+bx上,点M、N在抛物线的对称轴上(点M在点N的上方),且MN=2,过点P作y轴的平行线交直线OA于点Q,当PQ最大时,请直接写出四边形BQMN的周长最小时点Q、M、N的坐标.【分析】(1)把点A的坐标代入函数解析式,利用对称轴方程,联立方程组,解方程组求得a、b的值;(2)设点C的坐标是(0,m).由于没有指明直角△BCD中的直角,所以需要分类讨论:当∠CBD=90°、∠CDB=90°、∠BCD=90°时,利用勾股定理列出关于m的方程,通过解方程求得m的值;然后利用三角形的面积公式解答;(3)利用待定系数法确定直线OA解析式为.由抛物线上点的坐标特征和两点间的距离公式求得:,所以利用二次函数最值的求得推知:当PQ最大时,线段BQ为定长.又因为MN=2,所以要使四边形BQMN的周长最小,只需QM+BN最小.利用轴对称﹣最短路径问题得到点Q.最后利用方程思想解答.【解答】解:(1)∵过点的抛物线y=ax2+bx的对称轴是x=2,∴解之,得;(2)设点C的坐标是(0,m).由(1)可得抛物线,∴抛物线的顶点D的坐标是(2,﹣3),点B的坐标是(4,0).当∠CBD=90°时,有BC2+BD2=CD2.∴,解之,得,∴;当∠CDB=90°时,有CD2+BD2=BC2.∴,解之,得,∴;当∠BCD=90°时,有CD2+BC2=BD2.∴,此方程无解.综上所述,当△BDC为直角三角形时,△OBC的面积是或;(3)设直线y=kx过点,可得直线.由(1)可得抛物线,∴,∴当时,PQ最大,此时Q点坐标是.∴PQ最大时,线段BQ为定长.∵MN=2,∴要使四边形BQMN的周长最小,只需QM+BN最小.将点Q向下平移2个单位长度,得点,作点关于抛物线的对称轴的对称点,直线BQ2与对称轴的交点就是符合条件的点N,此时四边形BQMN的周长最小.设直线y=cx+d过点和点B(4,0),则解之,得∴直线过点Q2和点B.解方程组得∴点N的坐标为,∴点M的坐标为,所以点Q、M、N的坐标分别为,,.。
2021年浙江省丽水市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.-2的倒数是()A.-2 B.12-C.12D.2【答案】B 【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-12故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握2.计算:()24a a -⋅的结果是()A.8aB.6a C.8a - D.6a -【答案】B 【解析】【分析】根据乘方的意义消去负号,然后利用同底数幂的乘法计算即可.【详解】解:原式24246a a a a +=⋅==.故选B .【点睛】此题考查的是幂的运算性质,掌握同底数幂的乘法法则是解题关键.3.如图是由5个相同的小立方体搭成的几何体,它的主视图是()A. B. C. D.【答案】B 【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从正面看下面一层是三个正方形,上面一层中间是一个正方形.即:故选:B .【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.一个布袋里装有3个红球和5个黄球,它们除颜色外其余都相同从中任意摸出一个球是红球的概率是()A.13B.15C.38D.58【答案】C 【解析】【分析】先求出所有球数的总和,再用红球的数量除以球的总数即为摸到红球的概率.【详解】解:任意摸一个球,共有8种结果,任意摸出一个球是红球的有3种结果,因而从中任意摸出一个球是红球的概率是38.故选:C .【点睛】本题考查了等可能事件的概率,关键注意所有可能的结果是可数的,并且每种结果出现的可能性相同.5.若31a ->,两边都除以3-,得()A.13a <-B.13a >-C.3a <-D.3a >-【答案】A 【解析】【分析】利用不等式的性质即可解决问题.【详解】解:31a ->,两边都除以3-,得13a <-,故选:A .【点睛】本题考查了解简单不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.6.用配方法解方程2410x x ++=时,配方结果正确的是()A.2(2)5x -=B.2(2)3x -= C.2(2)5x += D.2(2)3x +=【答案】D 【解析】【分析】先把常数项移到方程的右边,方程两边同时加上一次项系数一半的平方,然后把方程左边利用完全平方公式写成平方形式即可.【详解】解:2410x x ++= ,241x x ∴+=-,24414x x ∴++=-+,2(2)3x ∴+=,故选:D .【点睛】本题考查利用配方法对一元二次方程求解,解题的关键是:熟练运用完全平方公式进行配方.7.如图,AB 是O 的直径,弦CD OA ⊥于点E ,连结,OC OD .若O 的半径为,m AOD α∠=∠,则下列结论一定成立的是()A.tan OE m α=⋅B.2sin CD m α=⋅C.cos AE m α=⋅ D.2sin COD S m α=⋅ 【答案】B 【解析】【分析】根据垂径定理、锐角三角函数的定义进行判断即可解答.【详解】解:∵AB 是O 的直径,弦CD OA ⊥于点E ,∴12DE CD =在Rt EDO ∆中,OD m =,AOD α∠=∠∴tan =DE OE α∴=tan 2tan DE CDOE αα=,故选项A 错误,不符合题意;又sin DEODα=∴sin DE OD α= ∴22sin CD DE m α== ,故选项B 正确,符合题意;又cos OE ODα=∴cos cos OE OD m αα== ∵AO DO m==∴cos AE AO OE m m α=-=- ,故选项C 错误,不符合题意;∵2sin CD m α= ,cos OE m α=∴2112sin cos sin cos 22COD S CD OE m m m αααα∆=⨯=⨯⨯= ,故选项D 错误,不符合题意;故选B .【点睛】本题考查了垂径定理,锐角三角函数的定义以及三角形面积公式的应用,解本题的关键是熟记垂径定理和锐角三角函数的定义.8.四盏灯笼的位置如图.已知A ,B ,C ,D 的坐标分别是(−1,b ),(1,b ),(2,b ),(3.5,b ),平移y 轴右侧的一盏灯笼,使得y 轴两侧的灯笼对称,则平移的方法可以是()A.将B 向左平移4.5个单位B.将C 向左平移4个单位C.将D 向左平移5.5个单位D.将C 向左平移3.5个单位【答案】C 【解析】【分析】直接利用利用关于y 轴对称点的性质得出答案.【详解】解:∵点A (−1,b )关于y 轴对称点为B (1,b ),C (2,b )关于y 轴对称点为(-2,b ),需要将点D (3.5,b )向左平移3.5+2=5.5个单位,故选:C .【点睛】本题主要考查了关于y 轴对称点的性质,正确记忆横纵坐标的关系是解题关键.9.一杠杆装置如图,杆的一端吊起一桶水,水桶对杆的拉力的作用点到支点的杆长固定不变.甲、乙、丙、丁四位同学分别在杆的另一端竖直向下施加压力 F F F F 丁乙甲丙、、、,将相同重量的水桶吊起同样的高度,若 F F F F <<<甲丁丙乙,则这四位同学对杆的压力的作用点到支点的距离最远的是()A.甲同学B.乙同学C.丙同学D.丁同学【答案】B 【解析】【分析】根据物理知识中的杠杆原理:动力×动力臂=阻力×阻力臂,力臂越大,用力越小,即可求解.【详解】解:由物理知识得,力臂越大,用力越小,根据题意,∵ F F F F <<<甲丁丙乙,且将相同重量的水桶吊起同样的高度,∴乙同学对杆的压力的作用点到支点的距离最远,故选:B .【点睛】本题考查反比例函数的应用,属于数学与物理学科的结合题型,立意新颖,掌握物理中的杠杆原理是解答的关键.10.如图,在Rt ABC △纸片中,90,4,3ACB AC BC ∠=︒==,点,D E 分别在,AB AC 上,连结DE ,将ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分EFB ∠,则AD 的长为()A.259B.258C.157D.207【答案】D 【解析】【分析】先根据勾股定理求出AB ,再根据折叠性质得出∠DAE=∠DFE ,AD=DF ,然后根据角平分线的定义证得∠BFD=∠DFE =∠DAE ,进而证得∠BDF=90°,证明Rt △ABC ∽Rt △FBD ,可求得AD 的长.【详解】解:∵90,4,3ACB AC BC ∠=︒==,∴AB ==,由折叠性质得:∠DAE=∠DFE ,AD=DF ,则BD =5﹣AD ,∵FD 平分EFB ∠,∴∠BFD =∠DFE=∠DAE ,∵∠DAE +∠B =90°,∴∠BDF +∠B =90°,即∠BDF =90°,∴Rt △ABC ∽Rt △FBD ,∴BD BC DF AC =即534AD AD -=,解得:AD =205,故选:D .【点睛】本题考查折叠性质、角平分线的定义、勾股定理、相似三角形的判定与性质、三角形的内角和定理,熟练掌握折叠性质和相似三角形的判定与性质是解答的关键.二、填空题(本题有6小题,每小题4分,共24分)11.分解因式:24m -=_____.【答案】(2)(2)m m +-【解析】【分析】直接根据平方差公式进行因式分解即可.【详解】24(2)(2)m m m -=+-,故填(2)(2)m m +-【点睛】本题考查利用平方差公式进行因式分解,解题关键在于熟练掌握平方差公式.12.有意义,则x可取的一个数是__________.x≥)【答案】如4等(答案不唯一,3【解析】【分析】根据二次根式的开方数是非负数求解即可.【详解】解:∵有意义,∴x﹣3≥0,∴x≥3,∴x可取x≥3的任意一个数,x≥.故答案为:如4等(答案不唯一,3【点睛】本题考查二次根式、解一元一次不等式,理解二次根式的开方数是非负数是解答的关键.A B C D E F六省60岁及以上人口占比情况如图所示,这六省6013.根据第七次全国人口普查,华东,,,,,岁及以上人口占比的中位数是__________.【答案】18.75%【解析】【分析】由图,将六省60岁及以上人口占比由小到大排列好,共有6个数,所以中位数等于中间两个数之和除以二.【详解】解:由图,将六省人口占比由小到大排列为:16.0,16.9,18.7,18.8,20.9,21.8,由中位数的定义得:人口占比的中位数为18.718.818.752+=,故答案为:18.75%.【点睛】本题考查了求解中位数,解题的关键是:将数由小到大排列,根据数的个数分为两类.当个数为奇数时,中位数等于最中间的数;当个数为偶数个时,中位数等于中间两个数之和除以2.14.一个多边形过顶点剪去一个角后,所得多边形的内角和为720︒,则原多边形的边数是__________.【答案】6或7【解析】【分析】求出新的多边形为6边形,则可推断原来的多边形可以是6边形,可以是7边形.【详解】解:由多边形内角和,可得(n -2)×180°=720°,∴n =6,∴新的多边形为6边形,∵过顶点剪去一个角,∴原来的多边形可以是6边形,也可以是7边形,故答案为6或7.【点睛】本题考查多边形的内角和;熟练掌握多边形的内角和与多边形的边数之间的关系是解题的关键.15.小丽在“红色研学”活动中深受革命先烈事迹的鼓舞,用正方形纸片制作成图1的七巧板,设计拼成图2的“奔跑者”形象来激励自己.已知图1正方形纸片的边长为4,图2中2FM EM =,则“奔跑者”两脚之间的跨度,即,AB CD 之间的距离是__________.【答案】133【解析】【分析】先根据图1求EQ 与CD 之间的距离,再求出BQ ,即可得到,AB CD 之间的距离=EQ 与CD 之间的距离+BQ .【详解】解:过点E 作EQ ⊥BM ,则//EQ CD根据图1图形EQ 与CD 之间的距离=1114+4=3222⨯⨯⨯由勾股定理得:2224EF =,解得:22EF =;221242AM ⎛⎫=⨯⨯ ⎪⎝⎭,解得:22AM =∵2FM EM=∴11==33EM FM AM ∵EQ ⊥BM ,90B ∠=︒∴//EQ AB ∴2242=333BQ BM ==⨯∴,AB CD 之间的距离=EQ 与CD 之间的距离+BQ 413=3+=33故答案为133.【点睛】本题考查了平行线间的距离、勾股定理、平行线所分得线段对应成比例相关知识点,能利用数形结合法找到需要的数据是解答此题的关键.16.数学活动课上,小云和小王在讨论张老师出示的一道代数式求值问题:已知实数,a b 同时满足2222,22a a b b b a +=++=+,求代数式b a a b+的值.结合他们的对话,请解答下列问题:(1)当a b =时,a 的值是__________.(2)当a b ¹时,代数式b a a b +的值是__________.【答案】(1).2-或1(2).7【解析】【分析】(1)将a b =代入222a a b +=+解方程求出a ,b 的值,再代入222b b a +=+进行验证即可;(2)当a b ¹时,求出30++=a b ,再把b a a b+通分变形,最后进行整体代入求值即可.【详解】解:已知222222a a b b b a ⎧+=+⎨+=+⎩①②,实数a ,b 同时满足①,②,①-②得,22330a b a b -+-=∴()(3)0a b a b -++=∴0a b -=或30++=a b ①+②得,22+=4a b a b--(1)当a b =时,将a b =代入222a a b +=+得,解得,11a =,22a =-∴11b =,22b =-把=1a b =代入222b b a +=+得,3=3,成立;把=2a b =-代入222b b a +=+得,0=0,成立;∴当a b =时,a 的值是1或-2故答案为:1或-2;(2)当a b ¹时,则30++=a b ,即=3a b +-∵22+=4a b a b--∴22+=7a b ∴222()=+2+9a b a ab b +=∴1ab =∴227=71b a a b a b ab ++==故答案为:7.【点睛】此题主要考查了用因式分解法解一元二次方程,完全平方公式以及求代数式的值和分式的运算等知识,熟练掌握运算法则和乘法公式是解答此题的关键.三、解答题(本题有8小题,第17~19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分,各小题都必须写出解答过程)17.计算:0|2021|(3)-+-.【答案】2020【解析】【分析】先计算绝对值、零指数幂和算术平方根,最后计算加减即可;【详解】解:0|2021|(3)-+--2020=.【点睛】本题主要考查实数的混合运算,解题的关键是掌握实数的混合运算顺序及相关运算法则.18.解方程组:26x y x y =⎧⎨-=⎩.【答案】12,6.x y =⎧⎨=⎩【解析】【分析】利用代入消元法解二元一次方程组即可.【详解】解:26x y x y =⎧⎨-=⎩①②,把①代入②,得26y y -=,解得6y =.把6y =代入①,得12x =.∴原方程组的解是126x y =⎧⎨=⎩.【点睛】本题考查解二元一次方程组,熟练掌握二元一次方程组的解法是解答的关键.19.在创建“浙江省健康促进学校”的过程中,某数学兴趣小组针对视力情况随机抽取本校部分学生进行调查,并按照国家分类标准统计人数,绘制成如下两幅不完整的统计图表,请根据图信息解答下列问题:抽取的学生视力情况统计表类别检查结果人数A正常88B 轻度近______视中度近59C视重度近______D视(1)求所抽取的学生总人数;(2)该校共有学生约1800人,请估算该校学生中,近视程度为中度和重度的总人数;(3)请结合上述统计数据,为该校做好近视防控,促进学生健康发展提出一条合理的建议.【答案】(1)200人;(2)810人;(3)答案不唯一,见解析【解析】【分析】(1)根据检查结果正常的人数除以所占百分比即可求出抽查的总人数;(2)首先求出近视程度为中度和重度的人数所占样本问题的百分比,再依据样本估计总体求解即可;(3)可以从不同角度分析后提出建议即可.÷=(人).【详解】解:(1)8844%200∴所抽取的学生总人数为200人.⨯--=(人).(2)1800(144%11%)810∴该校学生中,近视程度为中度和重度的总人数有810人.(3)本题可有下面两个不同层次的回答,A 层次:没有结合图表数据直接提出建议,如:加强科学用眼知识的宣传.B 层次:利用图表中的数据提出合理化建议.如:该校学生近视程度为中度及以上占比为45%,说明该校学生近视程度较为严重,建议学校要加强电子产品进校园及使用的管控.【点睛】本题考查了频率分布表及用样本估计总体的知识,本题渗透了统计图、样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.20.如图,在55⨯的方格纸中,线段AB 的端点均在格点上,请按要求画图.(1)如图1,画出一条线段AC ,使,AC AB C =在格点上;(2)如图2,画出一条线段EF ,使,EF AB 互相平分,,E F 均在格点上;(3)如图3,以,A B 为顶点画出一个四边形,使其是中心对称图形,且顶点均在格点上.【答案】(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)根据“矩形对角线相等”画出图形即可;(2)根据“平行四边形对角线互相平分”,找出以AB 对角线的平行四边形即可画出另一条对角线EF ;(3)画出平行四边形ABPQ 即可.【详解】解:(1)如图1,线段AC 即为所作;(2)如图2,线段EF 即为所作;(3)四边形ABPQ 为所作;【点睛】本题考查作图-复杂作图,矩形的性质以及平行四边形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题.21.李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s (千米)与行驶时间t (小时)的关系如图所示(中途休息、加油的时间不计.当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s 关于t 的函数表达式;(3)当货车显示加油提醒后,问行驶时间t 在怎样的范围内货车应进站加油?【答案】(1)工厂离目的地的路程为880千米;(2)80880(011)s t t =-+≤≤;(3)251542t <<.【解析】【分析】(1)根据图象直接得出结论即可;(2)根据图象,利用待定系数法求解函数表达式即可;再求出油量为(3)分别求出余油量为10升和0升时行驶的路程,根据函数表达式求出此时的t 值,即可求得t 的范围.【详解】解:(1)由图象,得0t =时,880s =,答:工厂离目的地的路程为880千米.(2)设(0)s kt b k =+≠,将0880t s ==,和4,560t s ==分别代入表达式,得880,5604.b k b =⎧⎨=+⎩,解得80880k b =-⎧⎨=⎩,∴s 关于t 的函数表达式为80880(011)s t t =-+≤≤.(3)当油箱中剩余油量为10升时,880(6010)0.1380s =--÷=(千米),38080880t ∴=-+,解得254t =(小时).当油箱中剩余油量为0升时,880600.1280s =-÷=(千米),28080880t ∴=-+,解得152t =(小时).800,k s =-<∴ 随t 的增大而减小,t ∴的取值范围是251542t <<.【点睛】本题考查一次函数的应用,解答的关键是理解题意,能从函数图象上提取有效信息解决问题.22.如图,在ABC 中,AC BC =,以BC 为直径的半圆O 交AB 于点D ,过点D 作半圆O 的切线,交AC 于点E .(1)求证:2ACB ADE ∠=∠;(2)若3,DE AE ==,求 CD的长.【答案】(1)见解析;(2)3【解析】【分析】(1)连结,OD CD ,利用圆的切线性质,间接证明:ADE ODC ∠=∠,再根据条件中:AC BC =且OD OC =,即能证明:2ACB ADE ∠=∠;(2)由(1)可以证明:AED 为直角三角形,由勾股定求出AD 的长,求出tan A ,可得到A ∠的度数,从而说明ABC 为等边三角形,再根据边之间的关系及弦长所对应的圆周角及圆心角之间的关系,求出120COD ∠=︒,半径OC =,最后根据弧长公式即可求解.【详解】解:(1)证明:如图,连结,OD CD .DE 与O 相切,90,90ODE ODC EDC ∴∠=︒∴∠+∠=︒.BC 是圆的直径,90,90BDC ADC ∴∠=︒∴∠=︒.90,ADE EDC ADE ODC ∴∠+∠=︒∴∠=∠.,22AC BC ACB DCE OCD =∴∠=∠=∠ .,OD OC ODC OCD =∴∠=∠ .2ACB ADE ∴∠=∠.(2)由(1)可知,90,,90ADE EDC ADE DCE AED ∠+∠=︒∠=∠∴∠=︒,3,DE AE ==,AD ∴==,tan 60A A =∴∠=︒,,AC BC ABC =∴ 是等边三角形.60,2B BC AB AD ∴∠=︒===,2120,COD B OC ∴∠=∠=︒=12023431803l CD π⨯∴==.【点睛】本题考查了圆的切线的性质、解直角三角形、勾股定理、圆心角和圆周角之间的关系、弧长公式等知识点,解本题第二问的关键是:熟练掌握等边三角形判定与性质.23.如图,已知抛物线2:L y x bx c =++经过点(0,5),(5,0)A B -.(1)求,b c 的值;(2)连结AB ,交抛物线L 的对称轴于点M .①求点M 的坐标;②将抛物线L 向左平移(0)m m >个单位得到抛物线1L .过点M 作//MN y 轴,交抛物线1L 于点N .P 是抛物线1L 上一点,横坐标为1-,过点P 作//PE x 轴,交抛物线L 于点E ,点E 在抛物线L 对称轴的右侧.若10PE MN +=,求m 的值.【答案】(1)4,5--;(2)①(2,3)-;②1或12-+.【解析】【分析】(1)直接运用待定系数法求解即可;(2)①求出直线AB 的解析式,抛物线的对称轴方程,代入求解即可;②根据抛物线的平移方式求出抛物线1L 的表达式,再分三种情况进行求解即可.【详解】解:(1)把点(0,5),(5,0)A B -的坐标分别代入2y x bx c =++,得5,2550.c b c =-⎧⎨++=⎩.解得4,5.b c =-⎧⎨=-⎩,b c ∴的值分别为4,5--.(2)①设AB 所在直线的函数表达式为()0y kx n k =+≠,把(0,5),(5,0)A B -的坐标分别代入表达式,得5,50.n k n =-⎧⎨+=⎩解得1,5.k n =⎧⎨=-⎩AB ∴所在直线的函数表达式为5y x =-.由(1)得,抛物线L 的对称轴是直线2x =,当2x =时,53y x =-=-.∴点M 的坐标是(2,3)-.②设抛物线1L 的表达式是2(2)9y x m =-+-,//MN y 轴,∴点N 的坐标是()22,9m -.∵点P 的横坐标为1,-∴点P 的坐标是()21,6m m --,设PE 交抛物线1L 于另一点Q ,∵抛物线1L 的对称轴是直线2,//x m PE x =-轴,∴根据抛物线的轴对称性,点Q 的坐标是()252,6m m m --.(i )如图1,当点N 在点M 下方,即06m <≤时,52(1)62PQ m m =---=-,()22396MN m m =---=-,由平移性质得,QE m =,∴626PE m m m=-+=-10PE MN +=Q ,∴26610m m -+-=,解得12m =-(舍去),21m =.(ii )图2,当点N 在点M 上方,点Q 在点P 右侧,63m <≤时,26,6PE m MN m =-=-,10PE MN +=Q ,26610m m ∴-+-=,解得112m +=(舍去),212m =(舍去).(ⅲ)如图3,当点N 在点M 上方,点Q 在点P 左侧,即3m >时,2,6PE m MN m ==-,10PE MN +=Q ,2610m m ∴+-=,解得11652m --=(舍去),21652m -+=.综上所述,m 的值是1或1652-+.【点睛】本题属于二次函数综合题,考查了待定系数法求函数的解析式、抛物线的平移规律和一元二次方程等知识点,数形结合、熟练掌握相关性质是解题的关键.24.如图,在菱形ABCD 中,ABC ∠是锐角,E 是BC 边上的动点,将射线AE 绕点A 按逆时针方向旋转,交直线CD 于点F.(1)当AE BC EAF ABC ,^Ð=Ð时,①求证:AE AF =;②连结BD EF ,,若25EF BD =,求ABCDAEF菱形SS的值;(2)当12EAF BAD ∠=∠时,延长BC 交射线AF 于点M ,延长DC 交射线AE 于点N ,连结AC MN ,,若42AB AC ==,,则当CE 为何值时,AMN 是等腰三角形.【答案】(1)①见解析;②825;(2)当43CE =或2或45时,AMN 是等腰三角形.【解析】【分析】(1)根据菱形的性质得到边相等,对角相等,根据已知条件证明出BAE DAF ∠=∠,得到ABE ADF ≌,由=AE AF ,CE CF =,得到AC 是EF 的垂直平分线,得到//EF BD ,CEF CBD ∽△△,再根据已知条件证明出AEF BAC ∽,算出面积之比;(2)等腰三角形的存在性问题,分为三种情况:当AM AN =时,ANC MAC ≌,得到CE =43;当NA NM =时,CEN BEA ≌,得到CE =2;当=MA MN 时,CEN BEA ∽△△,得到CE =45.【详解】(1)①证明:在菱形ABCD 中,//AB AD ABC ADC AD BC ,,=Ð=Ð,AE BC AE AD ,^\^,90ABE BAE EAF DAF ∴∠+∠=∠+∠=︒,,EAF ABC BAE DAF ∠=∠∴∠=∠ ,∴ABE ADF ≌(ASA ),∴=AE AF .②解:如图1,连结AC .由①知,ABE ADF BE DF CE CF ≌,,\=\=,AE AF AC EF ,=\^.在菱形ABCD 中,//AC BD EF BD CEF CBD ,,∽^\\,∴25EC EF BC BD ==,设=2EC a ,则534AB BC a BE a AE a ,,===\=.AE AF AB BC EAF ABC ,,==Ð=Ð,∴AEF BAC ∽,∴22625=415AEF BAC S AE a S ABa 骣骣琪琪==琪琪桫桫,∴1168222525AEF AEF BAC ABCD S S S S 菱形==´=.(2)解:在菱形ABCD 中,1122BAC BAD EAF BAD ,�行=,BAC EAF BAE CAM ,\Ð=Ð\Ð=Ð,//C AB CD BAE AN ANC CAM ,,\Ð=Ð\Ð=Ð,同理,AMC NAC ∠=∠,∴AC AM MAC ANC CN NA∽,\=.AMN 是等腰三角形有三种情况:①如图2,当AM AN =时,ANC MAC ≌,2CN AC ∴==,//AB CN CEN BEA ,∽\,142CE CN AB BE AB ,=\==,14433BC CE BC ,=\==.②如图3,当NA NM =时,NMA NAM BAC BCA ∠=∠=∠=∠,12AM AC ANM ABC AN AB ∽,\==,24CN AC CEN BEA ,≌\==\,∴122CE BE BC ===.③如图4,当=MA MN 时,MNA MAN BAC BCA AMN ABC ,∽Ð=Ð=Ð=Ð\,1212AM AB CN AC AN AC ,\==\==,14CE CN CEN BEA BE AB ∽,\==,1455CE BC ∴==.综上所述,当43CE =或2或45时,AMN 是等腰三角形.【点睛】本题主要考查了菱形的基本性质、相似三角形的判定与性质、菱形中等腰三角形的存在性问题,解决本题的关键在于画出三种情况的等腰三角形(利用两圆一中垂),通过证明三角形相似,利用相似比求出所需线段的长.。
中考数学模拟试卷2一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)(共10题;共29分)1.计算25-3×[32+2×(-3)]+5的结果是( )A. 21B. 30C. 39D. 712.如果用表示1个立方体,用表示两个立方体叠加,用█表示三个立方体叠加,那么下图由6个立方体叠成的几何体的主视图是( )A. B. C. D.3.据报道,2017年11月11日淘宝网一天的销售额为1682亿元,这个数据用科学记数法表示为()A. 1682×108B. 16.82×1010C. 1.682×1010D. 1.682×10114.如下图中的图象(折线ABCDE)描述了一汽车在某一直路上的行驶过程中,汽车离出发地的距离S(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车在途中停留了0.5小时;②汽车行驶3小时后离出发地最远;③汽车共行驶了120千米;④汽车返回时的速度是80千米/小时.其中正确的说法共有( )A. 1个B. 2个C. 3个D. 4个5.下列计算错误的是()A. a2÷a0•a2=a4B. a2÷(a0•a2)=1C. (﹣1.5)8÷(﹣1.5)7=﹣1.5D. ﹣1.58÷(﹣1.5)7=﹣1.56.如果把存入3万元记作+3万元,那么支取2万元记作()A. +2万元B. ﹣2万元C. ﹣3万元D. +3万元7.设S1=1,S2=1+3,S3=1+3+5,…,S n=1+3+5+…+(2n-1),S= + +… (其中n为正整数),当n=20时,S的值为()A. 200B. 210C. 390D. 4008.一个不透明的盒子中装有3个白球、9个红球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的可能性是()A. B. C. D.9.在Rt△ABC中,∠C=90°,BC=a,AC=b,a+b=16,则Rt△ABC的面积S关于边长a的函数关系式为( ).A. B. C. S=a2-16a D. S=a2-16a10.如图,在□ABCD中,点M为CD中点,AM 与BD相交于点N,那么S△DM N∶S□ABCD为()A. 1∶12B. 1∶9C. 1∶8D. 1∶6二、填空题(本大题共6小题,每小题4分,共24分)(共6题;共20分)11.因式分解:________.12.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问,需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?若设需安排x名工人加工大齿轮,y名工人加工小齿轮,则根据题意可得方程组________.13.已知扇形的弧长为4π,半径为8,则此扇形的圆心角为________.14.一次函数的图象过点且与直线平行,那么该函数解析式为________.15.如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为________度.16.如图,已知中,,顶点分别在反比例函数与的图象上,则的值为________.三、解答题(本大题共8小题,共66分)(共8题;共58分)17.如图所示,已知△ABC中,AB=AC,∠BAD=30°,AD=AE,求∠EDC的度数.18.计算:(1﹣)0+|﹣|﹣2cos45°+()﹣119.九(1)数学兴趣小组为了测量河对岸的古塔A、B的距离,他们在河这边沿着与AB平行的直线l上取相距20m的C、D两点,测得∠ACB=15°,∠BCD=120°,∠ADC=30°,如图所示,求古塔A、B的距离.20.学校为了了解我校七年级学生课外阅读的喜好,随机抽取我校七年级的部分学生进行问卷调查(每人只选一种书籍).下图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息回答问题:(1)这次活动一共调查了________名学生;(2)补全条形统计图;(3)在扇形统计图中,喜欢漫画的部分所占圆心角是________度;(4)若七年级共有学生2800人,请你估计喜欢“科普常识”的学生人数共有多少名?21.我校为开展研究性学习,准备购买一定数量的两人学习桌和三人学习桌,若购买1张两人学习桌,1张三人学习桌需230元;若购买2张两人学习桌,3张三人学习桌需590元.(1)求两人学习桌和三人学习桌的单价;(2)学校欲投入资金不超过6600元,购买两种学习桌共60张,以至少满足137名学生的需求,有几种购买方案?并求哪种购买方案费用最低?22.如图,公交车行驶在笔直的公路上,这条路上有A,B,C,D四个站点,每相邻两站之间的距离为5千米,从A站开往D站的车称为上行车,从D站开往A站的车称为下行车,第一班上行车、下行车分别从A 站、D站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A,D站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.(1)问第一班上行车到B站、第一班下行车到C站分别用时多少?(2)若第一班上行车行驶时间为t小时,第一班上行车与第一班下行车之间的距离为s千米,求s与t的函数关系式;(3)一乘客前往A站办事,他在B,C两站间的P处(不含B,C站),刚好遇到上行车,BP=x千米,此时,接到通知,必须在35分钟内赶到,他可选择走到B站或走到C站乘下行车前往A站.若乘客的步行速度是5千米/小时,求x满足的条件.23.如图1,已知抛物线y=﹣x2+mx+m﹣2的顶点为A,且经过点B(3,﹣3).(1)求顶点A的坐标(2)若P是抛物线上且位于直线OB上方的一个动点,求△OPB的面积的最大值及比时点P的坐标;(3)如图2,将原抛物线沿射线OA方向进行平移得到新的抛物线,新抛物线与射线OA交于C,D两点,请问:在抛物线平移的过程中,线段CD的长度是否为定值?若是,请求出这个定值;若不是,请说明理由.24.已知:平行四边形,对角线点P为射线BC上一点,,(点M与点B分别在直线AP的两侧),且联结MD.(1)当点M在内时,如图一,设求关于的函数解析式.(2)请在图二中画出符合题意得示意图,并探究:图中是否存在与相似的三角形?若存在,请写出证明过程,若不存在,请说明理由(3)当为等腰三角形时,求的长.答案解析部分一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.【解析】【解答】解:25-3×[32+2×(-3)]+5=25-3×(9-6)+5=25-9+5=21.故答案为:A.【分析】按照有理数混合运算的顺序计算出结果,即可得到结论.2.【解析】【解答】解:从正面看,左边两列都只有一个正方体,所以选;中间一列有三个正方体,所以选█;右边一列是一个正方体,所以选,故答案为:B.【分析】根据主视图是从正面看到的图形,数一下每一列从前面看重叠的个数,相应的选择图形即可.3.【解析】【解答】解:科学记数法为将一个数表示为a×10n(1≤<10,n为整数)的形式,∴1682亿=1.682×1011故答案为:D.【分析】根据科学记数法将一个数表示为a×10n(1≤<10,n为整数)的形式,据此求解。
4.【解析】【解答】解:①汽车在途中停留了2-1.5=0.5小时,正确;②汽车行驶3小时后离出发地最远,正确;③汽车共行驶了120+120=240千米,故错误;④汽车返回时的速度是120÷(4.5-3)=80千米/小时,正确.故正确的个数为3,故答案为:C.【分析】根据图象提供的信息解决问题,弄懂坐标系中的横轴与纵轴所代表的实际意义,找出各段图象的关键点的坐标即可一一判断得出答案.5.【解析】【解答】解:∵a2÷a0•a2=a4,∴选项A不符合题意;∵a2÷(a0•a2)=1,∴选项B不符合题意;∵(-1.5)8÷(-1.5)7=-1.5,∴选项C不符合题意;∵-1.58÷(-1.5)7=1.5,∴选项D符合题意.故答案为:D.【分析】A、从左到右依次运算,先按同底数幂的除法法则,再按同底数幂的乘法法则算出结果;B、先按同底数幂的乘法法则算括号内,再按同底数幂的除法法则算出答案;C、同底数幂的除法,底数不变,指数相减算出结果;D、此题先根据乘方的性质,有理数除法的符号法则,确定符号,再按同底数幂的除法,底数不变,指数相减算出结果,根据计算的结果即可判断。
6.【解析】【解答】解:“正”和“负”相对,∵存入3万元记作+3万元,∴支取2万元应记作﹣2万元,故答案为:B.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.7.【解析】【解答】解:∵S1=1,S2=1+3=4,S3=1+3+5=9,…,S n=1+3+5+…+(2n-1)=n2,S= + +…(其中n为正整数),∴当n=20时,S的值为:S= + + +…+ =1+2+3+4+…+20=210,故答案为:B.【分析】由题意可知S1=1,S2=22,S3=32…S n=n2,将n=20代入公式S= + +… ,进行计算可求值。
8.【解析】【解答】解:∵一个不透明的盒子中装有3个白球,9个红球,∴球的总数=3+9=12(个),∴这个盒子中随机摸出一个球,摸到红球的可能性= .故答案为:A.【分析】先求出球的总数,再由概率公式即可得出结论.9.【解析】【解答】解:∵a+b=16,∴AC=b=16-a(0<a<16),又∵BC=a∴Rt△ABC的面积S关于边长a的函数关系式为S==,故答案为:B.【分析】因为△ABC是直角三角形,利用面积公式可表示,S= ,又通过a+b=16,得AC=b=16-a,将BC=a、AC =16-a代入,即可得到,△ABC的面积S与边长a的函数关系式。
10.【解析】【解答】解:∵点M为CD中点,∴DM:DC=1:2,∵四边形ABCD是□ABCD,∴DC∥AB,△DMN∽△BAN,DC=AB,∴DM:AB=1:2,则△DMN和△BAN的高之比为1:2,△DMN与□ABCD的高之比为1:3,∴故答案为:A.【分析】根据中点的定义得出DM:DC=1:2,根据平行四边形的性质得出DC∥AB,DC=AB,根据平行于三角形一边的直线截其它两边,所截的三角形与原三角形相似得出△DMN∽△BAN,根据相似三角形对应高的比等于相似比得出则△DMN和△BAN的高之比为1:2,进而得出△DMN与□ABCD的高之比为1:3,根据三角形的面积计算方法,平行四边形的面积计算方法即可算出答案。