线性变换的运算
- 格式:ppt
- 大小:894.50 KB
- 文档页数:21
8.2 线性变换的运算V 是数域F 上的向量空间,用()L V 表示数域F 上向量空间V 的一切线性变换所成的集合.我们将在()L V 中引进加法、数乘和乘法.如何研究线性变换:注10第一个手段是对某空间V 的全体线性变换的集合()L V 引进运算:加法、数乘和乘法。
这样()L V 构成F 上的向量空间。
我们可以利用这些运算来研究线性变换。
20第二个手段。
在空间给定一个基,在该基下引入线性变换的矩阵,从而把空间的几何对象“线性变换”与数量对象“矩阵”进行了对应。
在解析几何中,点与坐标的对应称为“形”“数”转换,现在的线性变换与矩阵的对应是更广义的“形”“数”转换。
这种转换有两方面的好处:一方面可把向量空间与线性变换的一些问题转换为数字计算的问题;另一方面可把一些数量关系的问题联系上空间的性质(如线性变换的性质)而得到解决。
一、加法及其算律定义8.2.1 设()L V στ∈,,对于V 的每一向量ξ,令()()+στξξ与之对应,这样得到V 的一个变换,叫做σ与τ的和,记作+στ,即+στ:()()+στξξξ或()()()()+=+στστξξξ.求σ与τ的和的运算叫做σ与τ的加法.注10先定义和,再定义加法,()()+στξξ是V 中的向量。
+στ应看做一个整体,代表V 的一个新变换。
例8.2.1 设向量空间3F 的两个线性变换,对任意的()3123=x x x F ∈,,ξ,规定: ()()1231212=+x x x x x x x σ,,,,,()()123123312=+0x x x x x x x x x τ---,,,,,则()()()12312323=2x x x x x x x x στ+-,,+,,.命题1 V 的线性变换σ,τ的和+στ也是V 的一个线性变换.即()L V στ∀∈,,()+L V στ∈。
事实上,对任意的a b F ∈,,V ∈,ξη,()()()()()()()()()()()()()()()()()()()()+=.a b a b a b a b a b a b a b a b στστσσττστστστστστστ+=+=+⎡⎤⎡⎤⎣⎦⎣⎦=+⎡⎤⎡⎤⎣⎦⎣⎦=+⎡⎤⎡⎤⎣⎦⎣⎦+++++++++++ξηξηξηξηξηξξηηξξηηξη所以+στ是V 的一个线性变换.容易证明,线性变换的加法满足交换律和结合律.对任意的()L V ρστ∈,,,(1)+=+σττσ;(2)()()++=++ρστρστ;(3)令θ表示V 的零变换,对任意的()L V σ∈,有+=θσσ;(4)设()L V σ∈,σ的负变换σ-是指V 到自身的映射()σσ--:ξξ.σ-也是V 的线性变换,并且()+σσθ-=.命题2 σ-也是V 的线性变换。
第七章 线性变换学习单元2: 线性变换的运算_________________________________________________________● 导学学习目标:理解线性变换的加法、数乘、乘法运算的定义;了解线性变换关于加法、数乘、乘法的运算性质;理解线性变换的幂运算及线性变换的多项式。
学习建议:建议大家多看书,多看例题,一个一个的对运算进行理解掌握,可以自己对某个具体线性空间的某些线性变换进行加法、数乘、乘法运算,看看运算后的线性变换是怎样的。
重点难点:重点:深刻理解线性变换的加法、数乘、乘法运算的定义。
难点:理解可逆线性变换的概念及线性变换的多项式。
_________________________________________________________● 学习内容一、线性变换的加法、数乘、乘法的定义及性质定义 设V 为数域P 上线性空间,,,()k P A B L V ∈∈令:()kA V V kA αα→→; :()()A B V VA B ααα+→→+;:(())AB V V A B αα→→。
称kA 为k 与A 的数乘,A B +为A 与B 的和,AB 为A 与B 的积。
注:()()(())kA k A αα=(写成()kA α);()()()()A B A B ααα+=+;()()(())AB A B αα=。
定理 ,,()kA A B AB L V +∈。
性质(1)A B B A +=+;(2)()A B ++C (A B =++C );(3)A O A +=;(4)对()A L V ∈,存在()B L V ∈,使A B O +=;(5)1A A =;(6)()()kl A k lA =;(7)()k l A kA lA +=+;(8)()k A B kA kB +=+;(9)(A B C )=(AB ) C ;(10)A (B + C )=AB +AC ;(11)(A +B ) C =AC +BC ;(12)EA =A E =A ;(13)()()k AB kA B =;(14)(1)A A -=-。