浅谈线性变换对角化问题
- 格式:doc
- 大小:1.10 MB
- 文档页数:19
线性变换与对称矩阵的对角化线性代数是数学中十分重要的一个分支。
其中线性变换和矩阵的对角化是其最为基础的内容。
线性变换和矩阵的对角化的应用非常广泛,尤其在物理、工程和计算机科学等领域中被广泛使用。
在此,我们将简单介绍线性变换和矩阵的概念,并重点探讨对称矩阵的对角化。
1. 线性变换线性变换是一种将一个向量空间映射到另一个向量空间的变换,满足两个向量空间之间的线性性质:对于任意向量u和v,以及任意实数a和b,满足以下条件:(1) T(u+v)=T(u)+T(v)(2) T(au)=aT(u)其中,T(u)表示对向量u进行线性变换的结果。
对于一个线性变换T,我们可以用一个矩阵来表示它。
具体地,对于一个n维向量空间中的线性变换T,我们可以用一个n×n矩阵A来表示它。
特别地,如果向量空间是二维的,则可以用如下的矩阵表示:$A=\begin{bmatrix}a & b\\ c & d\end{bmatrix}$此时,我们可以将一个二维向量$(x,y)$看成是一个列向量$\begin{bmatrix}x \\ y\end{bmatrix}$,于是线性变换T将一个向量$\begin{bmatrix}x \\ y\end{bmatrix}$映射到了另一个向量$\begin{bmatrix}u \\ v\end{bmatrix}$,并且有:$\begin{bmatrix}u \\ v\end{bmatrix}=T(\begin{bmatrix}x \\y\end{bmatrix})=\begin{bmatrix}a & b\\ c &d\end{bmatrix}\begin{bmatrix}x \\ y\end{bmatrix}$2. 对称矩阵和对角矩阵对于一个矩阵A,如果它满足$A=A^T$,那么我们称其为对称矩阵。
其中,A^T表示矩阵A的转置。
例如,对于一个二阶矩阵$A=\begin{bmatrix}1 & 2\\ 2 & 3\end{bmatrix}$,它是一个对称矩阵,因为$A=A^T$。
本科毕业论文(设计)题目:关于线性变换的可对角化问题学生:学号: 学院:专业: 入学时间:年月日指导教师:职称: 完成日期:年月日诚信承诺我谨在此承诺:本人所写的毕业论文《关于线性变换的可对角化问题》均系本人独立完成,没有抄袭行为,凡涉及其他作者的观点和材料,均作了注释,若有不实,后果由本人承担。
承诺人(签名):年月日关于线性变换的可对角化问题摘要:线性变换可对角化问题是高等代数的重要内容.我们可以通过探讨矩阵的可对角化问题来研究线性变换的可对角化问题.本文先给出可对角化的概念;再探讨线性变换可对角化的判定以及其在高等代数中应用,并简略介绍几种特殊的可对角化问题.关键词:线性变换可对角化;特征值;特征向量;最小多项式;矩阵可对角化;实对称矩阵Diagonolization of linear transformationAbstract: The diagonolization of linear transformation, which can be studied by the diagonalization of matrix, is important in higher algebra. In this paper, we first introduce the conception of diagonolization, then discuss the decision of diagonolization of linear transformation and its applications in the advanced algebra, moreover, we introduce briefly several kinds of special diagonolization problems.Key words: Diagonalization of linear transformation; Eigenvalue; Eigenvector; Minimal polynomial ; Matrix diagonalization; Real symmetric matrices目录1 引言........................................................ . (1)2 可对角化的概念 (1)3 判定方法 (1)4 两个矩阵同时合同对角化 (4)5 几类特别的可对角化矩阵 (6)6 应用........................................................ . (6)6.1 矩阵相似的判断 (6)6.2 方阵高次幂 (7)6.3 化实对称矩阵为对角形矩阵 (7)6.4 求特征值 (8)6.5 经典例题 (8)7 小结........................................................ .. (9)参考文献........................................................ ..101 引言我们要想研究可对角化问题,可以从它在某组基下的矩阵下手.那我们该如何研究这个问题?它的概念是什么?对角化有哪些判断方法?它们应该如何应用?下面将综合介绍一下以上问题.2 可对角化的概念定义[8] 设δ是n 维线性空间V 的一个线性变换, A 为δ在某一组基下的矩阵且A 与矩阵B 相似,其中矩阵B 是对角形矩阵,则称A 可对角化,也称线性变换δ可对角化.我们把B 叫做A 的相似对角形矩阵.3 判定方法3.1 定理1[8] 设n 维线性空间内有一个线性变换,且A 为它在某一组基下的矩阵,要是A 为对角形矩阵,那么δ可对角化.例1设在三维线性空间内有一个线性变换δ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=4000300031A 是δ在基321,,ααα下的矩阵,由于1A 为对角形矩阵,可知δ可对角化.3.2 定理2[1] 设δ是n 维线性空间内的一个线性变换,且δ有n 个线性无关的特征向量,则δ可对角化.证明 “必要性” 假设δ可对角化,令=),,,(21n αααδ ),,,(21n ααα ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡m λλλ 21. 即i i i αλαδ=)( ,n i ,2,1=;特征值为n λλλ 21,,则 n ααα,,,21 是δ的特征向量,由已学知识可知n ααα,,,21 是不相关的.“充分性” 设有n 个不相关的向量n ααα,,,21 ,并且它们都是δ的特征向量,设i i i αλαδ=)( ,其中n i ,2,1=; 将n ααα,,,21 作为线性空间中的一组基,则满足:)(,),(),((21n αδαδαδ )),,,(2211n n αλαλαλ ==),,,(21n ααα ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡m λλλ 21.即δ在基n ααα,,,21 下的矩阵为对角形矩阵,从而δ可对角化.例2[2] ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=163222123A 是δ在基321,,ααα下的矩阵,试利用定理2判断δ是否可对角化.解 由于)4()2(1632221232+-=+---+--=-λλλλλλA E ,A 的特征值为:4,2321-===λλλ.对于221==λλ,由()02=-X A E 知基础解系是:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012和⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101. 由已学知识可知它们是线性无关的,故它们对应的特征向量为:2112ααε+-=, 312ααε+=.对于43-=λ,由()04=-X A E 知基础解系是:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-13231.由已学知识可知它是线性无关的,故它对应的特征向量为:32133231αααε+-=. 由以上可知δ包含三个特征向量1ε,2ε,3ε,并且它们是线性无关的.其个数刚好等于空间维数,由定理1知δ可对角化.3.2推论1[2] 设δ是n 维线性空间V 的一个线性变换,若在数域P 中δ的特征多项式包含n 个互不相等的根,那么δ可对角化.例3 设二维线性空间内有一个线性变换δ,⎥⎦⎤⎢⎣⎡=3102A 是它在基21,αα下的矩阵,试利用推论1判断δ是否可对角化.解 由3102---=-λλλA E )3)(2(--=λλ知A 的特征值为3,221==λλ.因为它们是不相等的,所以特征值的个数与空间维数相等.由推论1知δ可对角化.3.3 推论2[5] 设n 维线性空间V 内有一个线性变换δ,其中δ的特征值是n λλλ ,,21,并且它们是不相同的.用iir i i ααα,,,21 来表示i λ对应的i r 个特征向量,;,,2,1k i =那么:[]1 n r r r i =+++ 21,则δ可对角化.[]2 n r r r i <+++ 21,则δ不可对角化.例4 已知 ,4001300132⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=4000301033A ,试利用推论2判断它们是否可对角化.解 通过计算02=-A E λ和03=-A E λ知32,A A 的特征值是相同的,它们全部为31=λ(二重),42=λ.首先讨论2A ,对于31=λ(二重),由()032=-X A E 知它的基础解系是:()T 0,0,11=α.因为31=λ是2A 的特征值而且是二重根,但只对应一个特征向量,故2A 只包含2个特征向量.它的个数比空间维数要少,由推论2知2A 不可对角化.最后讨论3A ,对于31=λ(二重),由()033=-X A E 知它的基础解系是:()()T T 01000121,,和,,==εε . 对于42=λ,由()043=-X A E 知它的基础解系是:()T 1013,,=ε;故3A 有3个特征向量而且它们是线性无关的,特征向量的个数与空间维数相等,由推论2知3A 可对角化.3.4 定理3[7] 在数域P 上,设k λλλλ,,,, 3,21是矩阵A 的所有互不相同的特征值.如果满足()()()()0321=----E A E A E A E A k λλλλ ,那么A 可以对角化.例5 设有一个线性变换δ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=163222123A 是它在基321,,ααα下的矩阵,试利用定理3判断δ能否可对角化. 解 由上面例2知()()422+-=-λλλA E ,故4-2与是矩阵A 的所有不同特征值.又()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=+-00000000036322212736324212142E A E A . 通过定理3知A 可以对角化.3.5 定理4[9] A 是复数域上的矩阵,当矩阵A 的最小多项式没有重根时,则A 可以对角化.例6 设一个线性变换δ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=163222123A 是它在基321,,ααα下的矩阵,试利用定理4判断δ是否可对角化.解 由上面例2知()()422+-=-λλλA E ,则A 的最小多项式有以下两种可能:()()()()42422+-+-λλλλ或.计算()()042=+-E A E A 推出A 的最小多项式为()()42+-λλ.通过定理4知A 可对角化.4[10] 两个矩阵同时合同对角化4.1 定义[10] 设矩阵A ,B n n R ⨯∈,若存在可逆矩阵P ,使AP P T 和BP P T 同时为对角形矩阵,则A 、B 可同时合同对角化.4.2[10] 同时合同对角化的计算方法下面是以A 为n 阶实对阵正定矩阵,B 为n 阶实对阵矩阵为例给出计算步骤:(1)求出A 的n 个特征值,再求出特征向量;(2)对于每个不一样的特征值,把它们的特征向量标准正交化后通过列的形式构成n 阶正交阵1P ,那么()n T diagAP P λλλ,,, 2111=,令⎪⎪⎭⎫ ⎝⎛=n d ia g P P λλλ111211,,, , 则P 是可逆的,同时满足AP P T E =;(3)解出BP P T ,再求出它的n 个特征值i μ和它的n 个特征向量i η;(4)对每个不同的特征值,把它们的特征向量标准正交化后通过列的形式构成n阶正交矩阵Q ,则()()n T T diag Q BP P Q μμμ,,, 21=; (5)记PQ T =,则()n T T diag BT T E AT T μμμ,,,, 21==.例7设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011010200021012B A ,,求可逆矩阵T 将A 、B 可同时合同对角化.解 计算0=-A E λ可知321321===λλλ,,为A 的特征值.对于11=λ,由()01=-X A E λ得出它的一个特征向量为()T0111,,-=ξ; 对于22=λ,由()02=-X A E λ得出它的一个特征向量为()T 1002,,=ξ;对于33=λ,由()03=-X A E λ得出它的一个特征向量为()T 0113,,=ξ.将其单位化得()TT T ⎪⎭⎫ ⎝⎛==⎪⎭⎫ ⎝⎛-=021,2110002121321,,,,,,,,ααα.则正交矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=01021021210211P ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=32111AP P T . 记⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=02106102161021312111P P ,则⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-=210321010321021AP P T . 其特征方程为()031131=⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛+=-μμμμBP P E T . 它们的特征值为31131321==-=μμμ,,.由()01=-X BP P E T μ知()T23011-=,,η是1μ的一个特征向量; 由()02=-X BP P E T μ知()T0102,,=η是2μ的一个特征向量;由()03=-X BP P E T μ知()T23013+=,,η是3μ的一个特征向量; 将其单位化,则⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡++--+-=322322032223010322103221Q ; 于是有:()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-=31131Q BP P Q TT .⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡++--+--==021032613032613326103261PQ T ,则T 可逆,且()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-====31131BT T E EQ Q Q AP P Q AT T T T T T T ,, 故T 就是合乎题意的矩阵. 5 几类特别的可对角化矩阵命题4.1[4] 如果一个矩阵为实对称矩阵,那么该矩阵可以对角化. 命题 4.2[4] 如果一个矩阵为对合矩阵()E A =2,那么该矩阵可以对角化.命题4.3[4] 如果一个矩阵为周期矩阵)(E A m =,那么该矩阵可以对角化.命题 4.4[7] 如果一个矩阵为幂等矩阵()A A =2,那么该矩阵可以对角化.命题4.5[7] 如果一个矩阵为循回矩阵,那么该矩阵可以对角化. 命题4.6[4] 如果一个矩阵为幂零矩阵)00(=≠m A A ,,那么该矩阵不可以对角化.解 通过计算01=-A E λ,02=-A E λ和03=-A E λ知321,,A A A 的特征值相同,它们全部为31=λ(二重),42=λ;其中1A 已经是对角形矩阵,所以只需判断2A ,3A 是否可对角化.首先讨论2A ,对于31=λ(二重),由()032=-X A E 知它的基础解系是:()T 0,0,11=α.因为31=λ是2A 的特征值而且是二重根,但只对应一个特征向量,故2A 只包含2个特征向量.它的个数比空间维数要少,由推论2知2A 不可对角化,则1A 与2A 不相似.最后讨论3A ,对于31=λ(二重),由()033=-X A E 知它的基础解系是:()()T T 01000121,,和,,==εε . 对于42=λ,由()043=-X A E 知它的基础解系为:()T 1013,,=ε,故3A 有3个特征向量而且它们是线性无关的,特征向量的个数与空间维数相等,由推论2知3A 可对角化, 则1A 与3A 相似.参考文献:[1] 北京大学数学系几何与代数教研室代数小组.高等代数[M].北京,2003:299.[2] 邱森.高等代数.武汉:武汉大学出版社,2008:216-219.[3] 张禾端,郝炳新.高等代数[M].4版.北京:高等教育出版社,2000.[4] 李志慧,李永明.高等代数中的典型问题与方法[J].北京:科学出版社,2008:204.[5] 唐忠明,戴桂生.高等代数[M].南京:南京大学出版社,2000:146-147.[6] 张正成.可对角化矩阵的应用[J].科技资讯,2007.252(2):252-253.[7] 冯莉.矩阵对角化的若干方法[J].赤峰学院学报(自然科学版),2011,27(9):9-11.[8] 徐新萍.有关对角化问题综述[J].江苏教育学院学报(自然科学),2010,26(6):44-46.[9] 李至琳.关于矩阵可对角化的问题[J].黔东南民族师专学报,1998,16(5):1-3.[10] 周立仁.矩阵同时对角化的条件[J].理工学院学报,2007,20(1):8-10.内部资料仅供参考。
目录摘要 (1)Abstract (2)引言 (3)1 线性变换 (4)1.1 线性变换的定义 (4)1.1.1 线性变换的概念 (4)1.1.2 线性变换的矩阵及矩阵表示 (4)1.2 矩阵的相似对角化问题 (5)1.2.1 相似对角化问题 (5)1.2.2 矩阵的特征值与特征向量 (5)2 线性变换的对角化 (7)2.1 线性变换的对角化 (7)2.1.1 线性对角化的提出 (7)2.1.2 线性对角化的定义 (7)2.2 线性变换的特征值与特征向量 (7)2.2.1 线性变换的特征值与特征向量的概念 (7)2.2.2 线性变换的特征多项式 (7)2.3 线性变换对角化与矩阵对角化之间的联系 (8)2.3.1 特征值与特征向量的联系 (8)2.3.2 线性变换对角化与矩阵相似对角化之间的关系 (9)2.3.3 线性变换可对角化的充要条件及推论 (9)2.3.4 求线性变换对角化的方法和步骤 (10)3 线性对角化问题的相关题目 (14)总结 (16)参考文献 (17)致谢 (18)摘要线性变换是贯穿高等代数的重要内容之一,其研究价值不言而喻。
本文尝试通过探讨矩阵对角化的知识点类比线性变换对角化的知识点,再通过矩阵的特征值与特征向量,以线性对角化问题为主要线索,着手研究线性变换特征值与特征向量的求解步骤以及线性对角化的基本条件,并且总结说明线性变换的对角化与矩阵对角化的联系,更进一步的,加深了解矩阵对角化与线性对角化的内容及要点。
关键词:线性变换的对角化问题;矩阵;特征值;特征向量Linear transformation is an important part of higher algebra through its research value is self-evident. This paper attempts to explore the matrix diagonalization by knowledge points of analog linear transformation diagonalization knowledge, and through the eigenvalues and eigenvectors of the matrix, linear diagonalization problem as the main clue, started studying linear transformations eigenvalues and eigenvectors steps to solve the basic conditions and linear keratosis, and summary description of the linear transformation matrix diagonalization diagonalization with links to further deepen understanding of linear matrix diagonalization diagonalization content and points.Keywords: Changing existing diagonalization;Matrix;Eigenvalues;Eigenvectors线性变换的对角化问题作为重要的数学课程,在高等代数的地位不言而喻,高等代数是数学与应用数学专业最主要的基础课之一,它在初等代数的基础上对研究对象进行进一步的扩充,并引进了许多新的概念以及与通常情况很不相同的量,比如最基本的有集合、向量和向量空间等。
浅谈线性变换的对角化问题及应用作者:邓亮章来源:《昆明民族干部学院学报》2016年第08期【摘要】本文主要研究的是线性变换的对角化问题及其应用,首先通过对线性变换的对角化进行概况分析,其次运用矩阵对角化的知识体系以及其与线性变换对角化两者之间的关系,来探讨线性变换的对角化问题及其具体应用。
【关健词】线性变换;对角化;矩阵;应用在现在的高校数学代数课程中,线性变换对角化与矩阵对角化都是高等代数课程中的重要内容,而线性变换的对角化与矩阵对角化之间又存在着某种联系,学生通过学习矩阵对角化的知识体系可以更全面的掌握线性变换的对角化问题,因此本文主要是通过矩阵对角化问题来探讨线性变换的对角化问题及其应用。
一、线性变换的对角化概况线性变换的对角化是现代高等代数课程中线性变换的一章重要内容,许多高等代数课程中以及关于线性代数的教材中,都是将线性变换对角化作为其教学主线,同时其中还夹带着一些关于矩阵对角化的问题,这样一来使得学生在学习关于矩阵对角化问题时得不到全面有效的知识体系,虽然对于线性变换对角化问题与矩阵对角化问题学生可以统一兼之,但这两者互相交织起来就会变得混淆不清,容易使学生晕头转向,增加了学习的难度,同时矩阵对角化在平时的应用范围比较广泛,其理论体系相对于线性变换对角化的理论体系来说,要更容易理解得多,相应的一旦掌握了矩阵对角化方法,对于学习线性变换的对角化有非常大的帮助作用,学习起来也会事半功倍。
二、线性变换的对角化问题如上文所述,线性变换的对角化与矩阵对角化之间存在联系,率先掌握矩阵对角化问题,在理解学习线性变换对角化问题时可以起事半功倍的效果,因此研究线性变换的对角化问题就先要对矩阵对角化问题进行相应的分析。
1.矩阵对角化的定义在数学领域中,矩阵是一个依据长方形排列而成的复数或实数的集合体,它起源于方程组中系数与常数所构成的方阵,而对角化的矩阵则是线性代数与矩阵论中的一个重要的矩阵类别,假设一个方块矩阵A比较相似于对角矩阵,那也就是说,当有一个可逆矩阵P,使得P-1AP为对角矩阵时,这个方块矩阵A就是可以对角化的,同样的以V代表有限维度的向量空间,则线性映射T:V到V之间也是可以对角化的,如果向量空间V存在一个基,则线性映射T就可以表示为对角矩阵,因此可以对角化的矩阵与线性映射在线性代数中具有非常重要的价值,主要是因为可以对角化的矩阵处理起来相对要容易一些,在其特征值与特征向量都是已知的情况下,通过对对角元素的提升就可将同样的幂提升到矩阵所需要的高度。
线性代数中正交变换与对角化线性代数是数学中的一个重要分支,它研究的是向量空间及其线性变换。
正交变换和对角化是线性代数中的两个重要概念,它们在矩阵理论、物理学、工程学等领域中具有广泛的应用。
本文将深入探讨线性代数中的正交变换和对角化。
1. 正交变换正交变换是指保持向量的长度和两向量之间的夹角不变的线性变换。
具体来说,设T为一个线性变换,如果对于任意向量u和v,有内积⟨Tu, Tv⟩ = ⟨u, v⟩,则称T为正交变换。
在二维空间中,常见的正交变换有旋转和翻转。
旋转变换保持向量的长度不变,翻转变换则改变向量的方向。
在三维空间中,正交变换可以通过矩阵表示。
一个3×3的实数矩阵A如果满足A^T · A = I(式中 I 是单位矩阵),则称A为正交矩阵。
正交矩阵表示了三维空间中的旋转和翻转变换。
2. 对角化对角化是线性代数中另一个重要的概念,它是指通过选择合适的坐标系,使得线性变换的矩阵表示具有对角形式。
具体来说,设T为一个线性变换,如果存在一个可逆矩阵P,使得P^-1 · A · P = D(式中 A 是线性变换T的矩阵表示,D是对角矩阵),则称T是可对角化的。
对角化的一个重要应用是简化线性变换的计算。
对于可对角化的线性变换,我们可以通过对角矩阵D来计算其作用,而不需要直接计算线性变换的矩阵表示。
这在很多实际问题中具有重要意义。
3. 正交变换与对角化的关系在线性代数中,正交矩阵具有非常有用的性质。
如果一个矩阵是正交矩阵,那么它的逆等于它的转置,即A^-1 = A^T。
这意味着一个正交矩阵同时也是一个酉矩阵(复数域上的正交矩阵)。
对于一个实对称矩阵,我们可以通过正交变换将其对角化。
具体来说,设A是一个实对称矩阵,存在正交矩阵P,使得P^-1 · A · P = D,其中D是对角矩阵。
对角矩阵的对角元素恰好是矩阵A的特征值,而P的列向量是对应的特征向量。
对角化问题的研究一、引言有关的,而且同一个线性变换在不同的基下的矩阵是不同的,但是他们之间相似。
这些矩阵有简单,有复杂的。
所以我们可以想到用简单的矩阵去解决复杂矩阵的问题。
而对角矩阵是相对比较简单的矩阵。
二、正文I 、线性变换对角化1、定义:设A 是n 维线性空间V 的一个线性变换,A 的矩阵可以在某一组基下为对角矩阵的充分必要条件是A 有n 个线性无关的特征向量。
定理1: 属于不同特征值的特征向量是线性无关的。
推论1:如果在n 维线性空间V 中,线性变换A 的特征多项式在数域P 中有n 个不同的根,即A 有n 个不同的特征值,那么A 在某组基下的矩阵是对角形。
推论2:在复数域上的线性空间中,如果线性变换A 的特征多项式没有重根,那么A 在某组基下的矩阵是对角形。
如果一个线性变换没有n 个不同的特征值该如何?如果λ 1 ,···,λk 是线性变换A 的不同的特征值,而1i α,···,i ir α是属于特征值i λ的线性无关的特征向量,i =1,···,k,那么向量组11α,···,11r α,···,1k α,···,k kr α也是线性无关。
⇒如果这些线性无关的特征向量的个数等于空间的维数,那么这个线性变换在一组合适的基下的矩阵是对角矩阵。
A 可对角化−−−→←−−−定义A 在某一组基下是对角矩阵。
⇑A 有n 个不同特征值⇐ A 有n 个线性无关特征向量。
⇓重根0λ的重根数: ⇐ 每个特征值的重数等于属于k=n-(0λE-A) 它的线性无关的特征向量个数。
II.方阵的对角化线性变换A 可对角化⇔矩阵A 可对角化⇔A 相似于某个对角矩阵。
证明:矩阵A 可对角化⇒A 在一组基1α,···,n α下的矩阵A 可对角化。
目录摘要 (1)Abstract (2)引言 (3)1 线性变换 (4)1.1 线性变换的定义 (4)1.1.1 线性变换的概念 (4)1.1.2 线性变换的矩阵及矩阵表示 (4)1.2 矩阵的相似对角化问题 (5)1.2.1 相似对角化问题 (5)1.2.2 矩阵的特征值与特征向量 (5)2 线性变换的对角化 (7)2.1 线性变换的对角化 (7)2.1.1 线性对角化的提出 (7)2.1.2 线性对角化的定义 (7)2.2 线性变换的特征值与特征向量 (7)2.2.1 线性变换的特征值与特征向量的概念 (7)2.2.2 线性变换的特征多项式 (7)2.3 线性变换对角化与矩阵对角化之间的联系 (8)2.3.1 特征值与特征向量的联系 (8)2.3.2 线性变换对角化与矩阵相似对角化之间的关系 (9)2.3.3 线性变换可对角化的充要条件及推论 (9)2.3.4 求线性变换对角化的方法和步骤 (10)3 线性对角化问题的相关题目 (14)总结 (16)参考文献 (17)致谢 (18)摘要线性变换是贯穿高等代数的重要内容之一,其研究价值不言而喻。
本文尝试通过探讨矩阵对角化的知识点类比线性变换对角化的知识点,再通过矩阵的特征值与特征向量,以线性对角化问题为主要线索,着手研究线性变换特征值与特征向量的求解步骤以及线性对角化的基本条件,并且总结说明线性变换的对角化与矩阵对角化的联系,更进一步的,加深了解矩阵对角化与线性对角化的内容及要点。
关键词:线性变换的对角化问题;矩阵;特征值;特征向量Linear transformation is an important part of higher algebra through its research value is self-evident. This paper attempts to explore the matrix diagonalization by knowledge points of analog linear transformation diagonalization knowledge, and through the eigenvalues and eigenvectors of the matrix, linear diagonalization problem as the main clue, started studying linear transformations eigenvalues and eigenvectors steps to solve the basic conditions and linear keratosis, and summary description of the linear transformation matrix diagonalization diagonalization with links to further deepen understanding of linear matrix diagonalization diagonalization content and points.Keywords: Changing existing diagonalization;Matrix;Eigenvalues;Eigenvectors线性变换的对角化问题作为重要的数学课程,在高等代数的地位不言而喻,高等代数是数学与应用数学专业最主要的基础课之一,它在初等代数的基础上对研究对象进行进一步的扩充,并引进了许多新的概念以及与通常情况很不相同的量,比如最基本的有集合、向量和向量空间等。
在线性变换的对角化问题中,本文提出矩阵相似对角化问题,给出矩阵的特征值与特征向量等概念,在此之后总结它们与矩阵特征值和特征向量之间的关系,并把线性变换与矩阵对角化问题之间的密切关系探究清楚。
充分应用探究的结论,最后使我们通透掌握线性变换的对角化与矩阵相似对角化的内在联系与区别。
尝试将整个内容贯穿在一条主线,以分析线性变换和矩阵的特征值、特征向量与特征多项式为重点,总结说明在这几方面的联系,并且归纳求解线性变换特征值与特征向量的方法步骤,使整个内容清晰简洁,做到一目了然。
将线性变换的对角化与矩阵对角化之间的关系梳理更加清晰,易于掌握与通透理解。
1 线性变换1.1 线性变换的定义 1.1.1 线性变换的概念定义1 设V 是数域F 上的线性空间,σ是V 到自身的一个映射,即对于V 中的任意元素x 均存在唯一的V y ∈与之对应,则称σ为V 的一个变换或算子,记为y x =σ,称y 为x 在变换σ下的象,x 为y 的原象。
若变换σ还满足)()()(x l x k ly kx σσσ+=+ F l k V y x ∈∈∀,,,称σ为V 的线性变换。
1.1.2 线性变换的矩阵及矩阵表示定义2 设V 是数域F 上一个n 维向量空间,令σ是V 的一个线性变换。
取定V 的一个基n ααα,,,21 , 令,)(12211111n n a a a αααασ+++=,)(22221122n n a a a αααασ+++=.)(2211n nn n n n a a a αααασ+++=这里n j i a ij ,,1,, =就是)(j ασ关于基n ααα,,,21 的坐标。
令n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A 212222111211那么这个n 阶矩阵A 叫做线性变换σ关于基{n ααα,,,21 }的矩阵。
矩阵A 的第j 列的元素就是)(j ασ关于基{n ααα,,,21 }的坐标。
1.2 矩阵的相似对角化问题 1.2.1 相似对角化问题1 对角矩阵设A 是数域F 上的矩阵,形如⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n A λλλ 00000021的矩阵,我们把A 叫做对角矩阵。
2 相似矩阵对于n 阶方阵A 和B , 若有可逆矩阵T 使得B AT T =-1,则称A 相似于B , 记作B A ~,T 称为由A 到B 的相似矩阵。
3.矩阵相似对角化定义3 设A 是数域F 上一个n 阶矩阵。
如果存在数域F 上一个n 阶可逆矩阵T 使得AT T 1-为对角矩阵,那么矩阵A 可对角化。
1.2.2 矩阵的特征值与特征向量定义4 设A 是一个n 阶方阵,λ是一个数,如果方程X AX λ=存在非零解向量,则称λ为A 的一个特征值,相应的非零解向量X 称为属于特征值λ的特征向量。
如果n n x x x X ααα+++= 2211是矩阵A 的属于特征值λ的一个特征向量,那么我们有⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n n x x x x x x A 2121λ 即i i x Ax λ=,其中n i ,,2,1 =。
定义5 设)(ij a A =是数域F 上的n 阶矩阵,λ是参数,A 的特征矩阵A I -λ的行列式()nnn n nn a a a a a a a a a A I ---------=-λλλλ212222111211det 称为矩阵A 的特征多项式。
它是数域F 上的一个n 次多项式,记为()λϕ。
()λϕ的根(或零点) 0λ称为A 的特征值(根),而相应于方程组的非零解向量()T n ξξξ,,,21 称为A 的属于特征值0λ的特征向量。
2 线性变换的对角化 2.1 线性变换的对角化 2.1.1 线性对角化的提出设V 是数域F 上的n 维线性空间(记为n V ),σ是线性空间V 的一个线性变换,任取V 的一组基{}n ααα,...,,21,设σ在这组基下的矩阵为A 。
那能否找到V 的一组基,使得σ在这组基下的矩阵是一个对角阵呢?接下来,我们就来寻找这组基,由此引出线性变换对角化的问题。
假设这组基存在,我们不妨把它设为{},...,21n εεε,,使得 ()()()F d d d d diag D D i n n n ∈==,...,,,,...,,,...,,212121εεεεεεσn i d i i i ,...,2,1,==εσε则,可见i ε,i d 满足方程∂=∂d σ,即满足线性对角化。
2.1.2 线性对角化的定义定义1 设σ是n 维线性空间V 的一个线性变换,如果存在V 的一个基,使σ在这组基下的矩阵为对角矩阵,则称线性变换σ可对角化。
2.2 线性变换的特征值与特征向量 2.2.1 线性变换的特征值与特征向量的概念定义2 设σ是数域F 上线性空间V 的一个线性变换,如果对于数域F 中的任一数λ,存在一个非零向量ξ,使得 λξξσ=)(则λ称为σ的一个特征值,而ξ称为σ属于特征值λ的一个特征向量。
2.2.2 线性变换的特征多项式定义3 设σ是数域F 上的一个线性变换,A 是F 上的n 阶矩阵,λ是一个数,线性变换σ关于矩阵E A λ-的行列式nnn n nn a a a a a a a a a E A ---------=-λλλλ212222111211称为线性变换σ的特征多项式,这是数域F 上的一个n 次多项式。
2.3 线性变换对角化与矩阵对角化之间的联系 2.3.1 特征值与特征向量的联系定理[5] 设V 是数域F 上一个线性空间, σ是V 的一个线性变换,σ在V 的一个基{}n ααα,...,,21下的矩阵为A ,如果0,≠∈ξλK ,那么:⑴λ是σ的特征值⇔λ是矩阵A 的特征值;⑵⎪⎪⎪⎪⎪⎭⎫⎝⎛=n n x x x 2121),,,(αααξ是σ的属于特征值λ的特征向量⇔⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n x x x 21是矩阵A 的属于特征值λ的特征向量。
证明:由假设A n n ),,,())(,),(),((2121αααασασασ =,及⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n x x x 2121),,,(αααξX n ),,,(21ααα =又)(ξσ在基),,,(21n ααα 下的坐标为AX 。
λξξσ=)(表明)(ξσ在基),,,(21n ααα 下的坐标为X λ。
因此,当λ是σ的特征值时,AX =X λ。
联系:由于,0≠ξ故X 是非零向量,这说明λ是矩阵A 的特征值。
X 是矩阵A 的属于特征值λ的特征向量。
如果λ是矩阵A 的特征值,而T n x x x X ),,,(21 =是A 的属于λ的特征向量,那么AX =X λ。
且0≠X ,即)(ξσ与λξ在基),,,(21n ααα 下的坐标是一样的。
所以λξξσ=)(。
又02211≠+++=n n x x x αααξ,所以λ是σ的特征值,而ξ是σ的属于特征值λ的特征向量。
线性变换σ在数域F 中某一组基下的矩阵是A ,如果0λ是线性变换σ的特征值,那么0λ一定是矩阵A 的特征多项式的一个根;反过来,如果0λ是矩阵A 的特征多项式在数域P 中的一个根,即00=-E A λ,那么0λ就是线性变换σ的一个特征值。