【西安交大 核电厂系统与设备】压水堆核电厂的运行_第六章
- 格式:ppt
- 大小:9.96 MB
- 文档页数:56
压⽔堆核电⼚运⾏压⽔堆核电⼚运⾏1.正常运⾏和运⾏瞬态正常运⾏是指核电⼚功率运⾏、燃料更换、维修过程中,频繁发⽣的事件。
要求:不触发停堆,放射性后果⽆影响。
主要包括:1)稳态和停堆运⾏2)带有允许偏差的运⾏3)运⾏试验2.中等频度事件:发⽣频率:>10-2/堆年要求:最坏的结果,导致紧急停堆,可以很快恢复运⾏,放射性后果⽆影响。
3.稀有事件:发⽣频率:10-4-10-2/堆年要求:允许少量元件破损,堆芯⼏何形状不受影响,放射性后果对公众⽆影响。
4.极限事故:发⽣频率:10-6-10-4/堆年要求:事故缓解系统正常。
后果:后果严重,但要求放射性不致使公众健康和安全受到危害。
针对三道安全屏障的安全限值1)保证燃料包壳完整性如燃料芯块温度≤2800℃、DNBR≥1.22线功率密度≤590W/cm等。
2)保证冷却剂边界完整性冷却剂压⼒≤16.55MPa、冷却剂温度≤343 ℃等3)保证安全壳的完整性:安全壳压⼒≤0.13MPa、壳内平均温度≤145 ℃、峰值压⼒下泄漏率≤0.3%等。
有些安全限值是⽆法直接测量的,如DNBR、线功率密度、燃料芯块温度等,可以通过其他可测量的参数加以限制,如堆芯热功率、冷却剂温度、压⼒、流量等。
加热升温为什么要加热升温:①保证慢化剂温度系数为负值②保护系统的仪表⼯作在正常范围③稳压器能在有汽腔情况下处于可运⾏状态④反应堆压⼒容器远离最⼩脆性转变温度⑤其他原因:如⽔化学的原因、⽔泵的原因等。
由什么来进⾏加热升温:主要靠⼀次⽔泵来加热升温。
为了保证稳压器容积⾥的⽔和⼀次主回路的⽔同时升温并建⽴汽腔,稳压器的断续式加热器也投⼊运⾏。
加热升温的初始条件①反应堆冷却剂系统·反应堆冷却剂系统含稳压器已完成充⽔排⽓,处于⽔实体状态;·反应堆冷却剂内的硼浓度为冷停堆模式的硼浓度;·反应堆冷却剂系统的温度维持在60℃以下;·反应堆冷却剂系统的压⼒维持在0.345⾄0.689MPa(表压);·反应堆冷却剂泵处于可运⾏状态。
注:本资料主要针对《核电厂系统及设备》臧希年编著第2版清华大学出版社2011年7月;笔者根据所学知识及综合一些其它资料汇编而成,分为课后习题解答与复习提纲两部分;本资料仅供读者作些参考,由于笔者知识有限,有些知识难免存在一些偏差,请批评指正。
2014年2月16日星期日第一部分:课后习题参考答案(2、3、4、5、7、8)第二章压水堆核电厂1.从电能生产的观点看,压水堆核电厂有哪些部分?各自有什么作用?答:从电能生产的角度看,压水堆核电厂分为核岛与常规岛,核岛利用核能生产蒸汽,常规岛利用蒸汽生产电能。
2.从热力循环的观点看,压水堆核电厂由几个回路组成?各自的作用是什么?答:压水堆核电厂主要由反应堆冷却剂系统(简称一回路),蒸汽和动力转换系统(又称二回路),循环水系统组成。
一回路生产蒸汽,二回路与三回路将蒸汽的热能转换为推动核汽轮机组转动的机械能。
3.核电厂的厂址须满足什么要求?答:应考虑三个方面①核电厂的本身特性。
核反应堆是一个强大的放射源,核电厂的热功率决定了反应堆内的放射性的总储量,在相同的运行条件下,堆内放射的总量与功率成正比。
②厂址的自然条件与技术要求。
应尽可能地避免或减少自然灾害(如地震,洪水,及灾难性气象条件)造成的后果,并应利于排出的放射性物质在环境中稀释③辐射安全要求。
⑴辐射安全应符合国家环境保护,辐射防护等法规和标准的要求⑵将核电厂设置在非居民区⑶考虑厂址周围的人口密度和分布。
4.核电厂主要有哪些厂房?核电厂主要有反应堆厂房(即安全壳),燃料厂房,核辅助厂房,汽轮机厂房和控制厂房。
5.解释名词:多道屏障,纵深防御,单一故障准则多道屏障:在所有情况下保证绝对控制过量放射性物质对外释放,核电厂设置了三道屏障,只有这三道屏障全部被破坏才会释放大量的放射性物质。
纵深防御:将安全有关的所有事项置于多重防御之下,在一道屏障失效后还有另一道屏障来弥补。
单一故障准则:当系统中某一部件不能执行其预定功能安全功能时,并不影响整个系统功能的执行。
《压水堆核电厂的运行》课程论文题目:AP1000 核电厂与二代压水堆核电厂主泵运行的比较学号:姓名:班级:专业:2012 年11 月AP1000核电厂与二代压水堆核电厂主泵运行的比较摘要:综合介绍美国西屋公司第三代先进压水堆AP1000屏蔽式电动主泵以及现代压水堆核电厂使用最广泛的冷却剂泵—轴密封泵。
通过对屏蔽式电动主泵和轴封泵功能及机械结构方面的介绍, 分析比较AP1000核电厂与二代压水堆核电厂主泵的运行。
关键词:压水堆核电站AP1000 屏蔽式电动主泵轴封泵二代压水堆主泵运行比较Abstract: The synthesis of the U.S. Westinghouse third generation of advanced pressurized water reactor AP1000 shielded electric main pump as well as a modern pressurized water reactor nuclear power plant is the most widely used coolant pumps - shaft seal pump. Introducedby shielded electric main pump and shaft seal pump function and mechanical structures, analysis of the AP1000 nuclear power plant and the second-generation PWR nuclear power factory owners pump running.Keywords: PWR AP1000 The shielded electric main pump Seal pumps The running of main pump Compare、八、亠前言:核电与水电、火电并称为世界电力的三大支柱。
西安交通大学核电厂系统与设备课程教学研究与实践核电厂系统与设备是核工程与核技术专业的专业核心必修课程,该课程是核工程专业核心课程核反应堆物理、核反应堆热工分析、核反应堆控制及核反应堆安全课程的基础,也是学生走上工作岗位所必须掌握的基本知识,因此,将该课程称为核工程与核技术专业最重要的一门课程也不为过。
通过对该课程的学习,学生能够深刻掌握核电厂主要系统设备的基本工作原理和设计理念。
虽然这门课程没有大量烦琐的公式推导和理论方程,但要想使学生达到“知其然并知其所以然”的目标却并非易事,对教师本身专业知识水平及课程资源等诸方面都有较高要求。
近些年来国内成立核专业的高校剧增,由十来年前的10余所猛增至现在的50余所。
新开设核专业的高校面临着课程体系及师资力量建设等诸多困难。
西安交通大学核专业是我国最早成立的核专业之一,已经有60年的专业历史,核能科学与工程是国家重点学科,为我国核工程培养了3400余名本科毕业生、800余名研究生,为各大核电集团开展操作员基础培训3200余人次,在人才培养和教学研究中积累了丰富的经验。
核电厂系统与设备课程在西安交大也已经开设了30余年,本文将介绍西安交大在核动力系统与设备课程方面的教学研究和尝试,供其他开设该课程的高校同仁参考。
一、精编教材,将最新前沿知识引入教学自第一座核反应堆于1942年在美国芝加哥大学由核能先驱费米主导设计和建成以来,世界核能技术的发展大致经历了如图1所示的几个阶段,特别是2000年以后,随着核能发展春天的来临和第四代先进核能系统的提出,众多新型核反应堆概念不断提出。
西安交大在90年代初出版了讲义教材《核反应堆结构与动力设备》[1],后经几次修订。
但随着核能形式的不断发展,特别是21世纪以来一些创新性的堆芯和核电厂系统设计理念的不断涌现,原有教材内容较为陈旧,已不能满足目前课程教学和人才培养的需要,而现有的国内其他教材也存在内容陈旧的问题[2][3]。