空预器漏风率控制
- 格式:pdf
- 大小:309.09 KB
- 文档页数:2
关于回转式空预器漏风问题的分析及防治措施摘要:空预器是火力发电厂锅炉设备中的重要组成部分,它是一种利用锅炉尾部烟气的热量来加热燃烧所需空气,以提高锅炉效率的热交换装置。
本文主要介绍了回转式空预器的工作原理,同时对空预器的漏风现象进行分析,并提出了相关防治措施。
关键词:回转式空预器漏风防治措施一、前言中国是电力生产与消费大国,年发电量位居世界第二位,而电力工业生产的可持续性发展和节能降耗的大力提倡,对电厂经济、高效的运行提出了更高的要求。
空预器作为火电厂的重要设备之一,其运行效益对整个发电作业起着举足轻重的作用。
近年来,我国新建的大型、超大型火电机组基本都采用回转式空预器,它具有传热密度高、结构紧凑、耐腐蚀、寿命长、运行费用低等优点。
但由于回转式空预器的先天结构决定其不可避免的存在不同程度的漏风情况,大部分漏风率在10%左右,也有部分空预器的漏风率在20%以上。
空预器漏风使得送风机、一次风机和引风机的出力大增,增加了能耗。
严重时,造成送入炉膛的风量不足,导致锅炉低负荷运行,影响机组安全、经济、稳定的运行。
因此,对漏风控制的研究是一项十分重要的课题。
以下就回转式空预器漏风问题展开探讨。
二、回转式空预器的工作原理回转式空预器按仓位划分为:三分仓、四分仓;按动、静部分划分为转子旋转式、风罩旋转式。
目前通常采用的是受热面旋转(转子旋转)式预热器,该类型代表是三分仓容克式空预器。
预热器主要部件有:转子(受热面布置其上)、主轴与轴承装置、传动装置、密封装置、罩壳五大部分。
容克式空预器密封装置配有径向密封,圆周旁路密封和轴向密封。
径向密封通过布置在烟气与空气通道之间密封区的扇形密封板来实现,上部扇形密封板内侧支撑在上轴;下部径向密封板由于转子特定变形,只要冷态预留适当的密封间隙,热态时间隙自然闭合。
圆周旁路密封是通过布置在上下封板的圆周方向,与转子圆周方向的密封圈形成密封,其密封间隙在热态时是闭合的。
轴向密封布置在与径向密封相对应的转子与外壳之间的通道中,它有效阻挡从圆周方向的空气漏向烟气。
锅炉回转式空预器漏风率高原因分析及改进措施摘要:空预器是锅炉的主要部件之一,其功能是将煤粉通过管道输送至炉膛中,使煤粉在一定的压力下,与空气进行充分的换热,以提高燃烧效率,减少烟气中的含尘气体,避免烟气的形成而对环境造成污染。
空预器的结构特点为:由筒体、壳体、引风管及送出排气管等部分组成,其中筒体和壳体的作用是支撑和调整送出气流,并使其在炉膛内自由下落。
关键词:锅炉回转式;空预器;漏风率;原因及措施引言回转式空预热器的工作原理为:利用回转套筒旋转产生的离心力,将物料与水分离,实现对工件的甩入。
由于水箱的存在,及回转叶片的安装位置的影响以及受力情况的限制等,导致转子的轴向位移较大,轴向偏移量较多,致使漏风现象较为严重。
因此本文针对这一问题,提出解决问题的有效措施。
一、锅炉回转式空预器漏风率高的危害当空预器的出口温度高于额定值时,空预器的漏风会引起严重的后果;当空冷换热器的进口温低于额定值时,会使换热元件的热损失增加,从而导致整个机组的耗电量上升。
(1)影响正常的蒸汽循环和管道内的热量交换,降低了传热效率,使传质系数下降,进而造成了汽泡现象的发生; (2)由于空冷式空气冷却后的低温烟气是由水垢组成的混合物而形成的物质层,在烟气与水垢的混合下,容易产生积碳,对汽泡的破坏作用大大增强,甚至可能会烧坏。
(3)因为空冷式空气冷却后的温差较大,所以在进行对流换热的过程中,很有可能出现“死区”,使得锅炉的安全性能受到威胁。
综上所述,为了防止上述的情况发生,必须采取相应的措施来控制和解决锅炉的漏风问题。
二、锅炉回转式空预器漏风率高原因分析由于空预器的结构设计不合理,导致空预器的漏风现象。
主要原因是:一是空冷循环的管道和管壁的温度差较大,在热应力作用下,管壁的变形与泄漏;二是管子的材质问题,如钢材的腐蚀、焊接的质量差等;三是空冷循环的冷却水的流动阻力大,造成了漏风。
在对回转式空气预热器的研究中,发现其内部的流场分布不均匀,流体流经的通道也不一样,流场的大小和形状也会影响到压力的变化情况,从而使其出现不同的失压状况。
回转式空气预热器漏风率过高的分析与对策大型电站目前普遍都是应用锅炉回转预热机,但是该设备长期因为出现漏风量过高的问题影响工厂的经济收益,下文首先论述这种漏风量的危害,其次对降低漏风量,提出了几点关键性的建议。
标签:电站锅炉;预热器;漏风率当前回转式空气预热机主要应用锅炉辅助设备,和传统的预热机相比,该设备具有传热面热度大,结构紧凑,容易操作的特点。
但是该设备最大的缺点就是漏风量不容易控制,因此下文将对回转空气预热机漏风率过高的问题进行分析和论述。
1 漏风机模型工作原理回轉式预热器由转子和机械外壳两个部分组成,前者负责运动部分,后者属于静置保护结构,两者之间时刻保持一定的空隙,该空隙也就是漏风的主要渠道。
空气预热机器位于锅炉风烟系统的出口和进口位置,内部的侧压力较大,烟气压力和空气压力存在一定的差异,这也就是漏风的主要原因。
如果因为压力差异以及间隙差异的存在而产生的漏风则被成为直接漏风。
如果转子内部本身具有一定的活动空间,转子在活动的时候会携带一部分的空气进入到内部,这就是结构漏风,根据统计直接漏风将会占据总量的70%以上,结构漏风的总量为20%左右。
携带漏风的原理在于:停留在蓄热板内部的空间将会随着转子的运动最终一起进入到烟气中,所以转子的速度越快漏风的体积越大。
直接漏风主要是因为压力差距导致的,因此该机器设备属于机器运动,活动部件和静置部件之间必然会存在间隔,空隙位置存在压力差异必然会引起漏风。
在四分仓的预热器中这种情况能够用具体的公式表示出来[1]。
2 漏风过高所带来的生产危害空气通过回转预热器进入到烟气管道内部之后,将会对于附近的送风机,引风机造成强大的阻力,增加上述机器设备的电力损耗,如果漏风量大于送风机本身的荷载能力,还会导致燃烧的风向不足,增加锅炉机械设备的机械能损耗,更为严重的情况还会导致锅炉的送粉能力下降。
炉膛的持续负载工作将会最终导致锅炉停运。
其次空气预热器的持续漏风将会增加锅炉排烟系统中的空气系属,降低本身机器的工作效率,长时间持续这样的工作状态最终会造成叶轮毁坏,机组崩溃的后果,根据统计可以发现每一年都会存在这样的安全事故,并且空气预热机每泄漏1%的风量,将会增加机组能耗0.166g/KW。
空预器漏风率控制发表时间:2017-10-23T14:56:57.230Z 来源:《电力设备》2017年第17期作者:宋晓龙[导读] 摘要:本文介绍了应用于火电机组中空气预热器(下文简称:空预器)漏风率控制,通过分析空预器漏风发生的原因并通过控制安装过程提出有效办法,经多个安装项目实际应用证明,严格的过程控制和有效的施工方法,能够保证运行过程中系统的可靠、稳定,能够有效的降低机组空预器的漏风量,为机组安全、环保、高效、节能提供了有力保障。
(山东电力建设第三工程公司)摘要:本文介绍了应用于火电机组中空气预热器(下文简称:空预器)漏风率控制,通过分析空预器漏风发生的原因并通过控制安装过程提出有效办法,经多个安装项目实际应用证明,严格的过程控制和有效的施工方法,能够保证运行过程中系统的可靠、稳定,能够有效的降低机组空预器的漏风量,为机组安全、环保、高效、节能提供了有力保障。
关键词:空预器、漏风率、漏风控制1、引言空预器作为火力发电厂设备中的重要组成部分,它是一种提高锅炉热交换性能,降低热量损耗的一种预热设备。
空预器的作用是将尾部中排出烟气中带出的携带热量,通过散热片传导到进入锅炉前的空气中,将空气预热到一定温度,从而提高锅炉的热交换性能,降低能量消耗。
常用的空预器多用于燃煤电站锅炉,一般可分为两种:管箱式、回转式,其中回转式又分为风罩回转式和受热面回转式两种。
本论文中仅对回转式空气预热器进行讨论。
本论文以杰拉达发电厂350MW机组空预器漏风控制为例,分析可能存在的漏风原因,并在安装过程和调试过程中控制并找出合理的解决办法。
2、回转式空气预热器漏风率分析及解决办法摩洛哥JERADA 1X350 MW工程安装哈尔滨锅炉厂生产的超临界参数变压直流炉,本项目安装2台回转式空气预热器。
预热器转子正常转数为1r/min,预热器对称布置锅炉尾部。
回转式空气预热器由外壳定子、转子、换热元件、密封件、轴承、驱动装置、润滑油冷却系统等组成。
一、空预器概况:****热电一厂2×350MW热电联产机组工程使用的空气预热器为哈尔滨锅炉厂设计制造,型号为30.5-Ⅵ(T)-2450-QMR 的三分仓回转式空气预热器。
单台机组配置有两台同型号的空气预热器,布置于锅炉尾部烟道下方。
主要部件有转子、外壳、支承轴承、导向轴承、冷端中心桁架、热端中心桁架、冷一次风中心桁架、热一次风中心桁架、冷端连接板、热端连接板、扇形板、密封装置、传动装置、吹灰、清洗装置、润滑油系统等。
1#预热器转子从俯视图看为逆时针方向旋转,2#预热器转子从俯视图看为顺时针方向旋转。
转子名义直径φ11818mm,立式倒置,三分式,一次风开口70°逆转,传热元件总高2450mm。
以防止和减少漏风,空气预热器的径向、周向和轴向均有密封装置,密封片由考登钢制成。
空气预热器漏风率的控制,直接关系到整台机组运行的出力及经济性,漏风不仅增大锅炉排烟热损失,而且加重了因烟温降低所造成的设备低温腐蚀,也增加了风机电耗,漏风问题严重时还会因风量不足直接影响锅炉出力。
根据****热电一厂提出的精细化质量管理的目标:空预器漏风率<5%,空气预热器漏风率小组对漏风发生的原因进行了详细的分析,并对分析出的原因针对性地制定了一系列的控制措施,以确保漏风率<5%的目标的实现。
二、空气预热器漏风原因分析1、携带漏风:携带漏风是由于预热器自身旋转时,造成空气随传热元件旋转进入烟气侧,形成漏风。
这部分漏风是回转式空气预热器本身结构决定的,不可消除。
2、回转式空气预热器的一次风压比二次风和烟气侧的风压均高很多,加上转子与外壳之间有间隙的存在,因此不可避免地存在一次风向二次风侧和烟气侧的直接泄漏以及二次风向烟气侧的漏风。
分为轴向漏风、周向漏风、径向漏风三部分组成。
3、由于回转式空气预热器自身变形,引起密封间隙过大。
装满传热元件的空气预热器转子或静子处于冷态时,扇形板与转子端面为一间隙很小的平面。
而当空气预热器运行时,转子和静子处于热态,热端转子径向膨胀大于冷端转子;同时由于中心轴向上膨胀,加上自重下垂,使转子产生蘑菇状变形,扇形板与转子或静子端面密封的外缘间隙,在热态时比冷态时增大很多,形成三角状的漏风区,如图1所示。
空气预热器漏风率标准
空气预热器在锅炉系统中的重要性不言而喻,它不仅影响着锅炉的热效率,而且关系到整个锅炉的安全稳定运行。
因此,控制空气预热器的漏风率至关重要。
本文将详细介绍空气预热器漏风率的计算方法、标准以及如何提高空气预热器的密封性能。
一、空气预热器漏风率的计算方法
空气预热器漏风率的计算公式如下:
漏风率= (入口氧量-出口氧量)/入口氧量×100%
其中,入口氧量指的是空气预热器进口处的氧含量,出口氧量指的是空气预热器出口处的氧含量。
通过测量这两个氧含量,可以计算出空气预热器的漏风率。
二、空气预热器漏风率标准
空气预热器漏风率的标准因锅炉类型、燃料种类和燃烧方式等因素而异。
一般来说,漏风率越低,锅炉的运行效率和经济效益越高。
对于燃煤锅炉,漏风率控制在5%以下是比较理想的。
三、提高空气预热器密封性能的方法
1.设计优化:在空气预热器的设计阶段,应充分考虑密封性能,采用合理的结构形式和材料。
2.加工质量:提高空气预热器零部件的加工精度,确保密封部位的平整度和光洁度。
3.安装调试:在空气预热器的安装过程中,严格执行安装规程,
确保各部件的相对位置和密封效果。
4.密封材料:选用性能优良的密封材料,提高密封部位的耐磨性和抗老化性能。
5.定期检查与维护:对空气预热器进行定期检查,发现问题及时处理,确保密封性能良好。
通过以上措施,可以有效降低空气预热器的漏风率,提高锅炉的运行效率和经济效益。
总之,空气预热器漏风率的控制是锅炉行业面临的重要课题,需要从设计、制造、安装和运行维护等多个环节入手,实现空气预热器的优质密封。
空预器漏风问题及实测数据
在锅炉的热损失中,排烟热损失是最大的一项,一般占
5%-12%。
同时,空气预热器漏风也会对排烟热损失产生影响,主要是由漏风率和排烟温度两个因素决定。
降低空气预热器的漏风率可以明显提升锅炉效率。
冷端和热端漏风系数的变化对锅炉效率的影响不同,需要分别研究。
在某300MW机组的数
据中,排烟热损失占所有热损失的92%左右,漏风率每降低1%,锅炉效率提升1%。
因此,减少漏风率可以降低排烟热损失,提高锅炉效率。
乙侧漏风率随着负荷的降低而增加。
据分析数据显示,漏风率与负荷呈负相关。
也就是说,负荷越低,漏风率越高。
因此,在实际操作中,我们需要注意控制负荷,以降低乙侧的漏风率。
另外,根据实际情况,对于明显漏风的设备,应及时维修或更换,以保证系统的正常运行。
总之,乙侧漏风率是影响系统效率的重要因素之一,我们需要认真对待并采取相应的措施来控制它。
锅炉技术回转式空预器的漏风及治理1 概述对于回转式空预器来说,其优点是:布置结构紧凑、受热面金属壁温较高,比管式空预器相比,其冷端腐蚀轻等。
近年来,我国在设计高参数、大容量锅炉的过程中,该类型空预器得到广泛的使用。
回转式空预器漏风率作为一项重要的经济指标,通常情况下对其运行的经济性进行衡量。
目前国内200MW机组使用的回转式空预器的漏风系数普遍早0.3-0.5之间,有的高达0.6。
漏风的增大直接影响锅炉的安全经济运行以及文明生产。
由此,在设备选型基础上,对回转式空预器漏风率进行调整和降低具有重要的现实意义。
2 回转式空预器的工作原理对于回转式空预器,根据仓位可以将其分为:三分仓和四分仓两类;根据动、静部分,可以将其分为:转子旋转式和风罩旋转式两类。
目前在实际应用中,应用比较普遍的是受热面旋转式预热器,其中,主要以三分仓容克式空预器为主。
通常情况下,转子、主轴与轴承装置、传动装置、密封装置,以及相应的罩壳等共同构成预热器的主要部件。
对于容克式空预器密封装置来说,其密封方式通常情况下分为径向密封、周旁路密封和轴向密封三类:①径向密封。
通常情况下,通过对烟气与空气通道进行布置,使得密封区的扇形密封板在一定程度上实现相应的径向密封,由于转子特定变形的影响和制约,只要对下部径向密封板下冷态预留一定程度上的密封间隙,那么对于热态时间隙来说,通常情况下,就能够进行相应的自然闭合。
②圆周旁路密封。
该种密封方式,通常情况下,在上下封板的圆周方向,以及转子圆周方向,通过设置相应的密封圈,进行密封处理。
在热态时,其密封间隙在一定程度上能够进行闭合。
③轴向密封。
轴向密封通常情况下,与径向密封相类似,在转子与外壳之间的通道中设置相应的轴向密封,从圆周方向漏过的空气漏向烟气在一定程度上被有效地阻挡,降低其透过率。
3 漏风原因分析3.1 漏风通常情况下被分为直接漏风、携带漏风两种。
①直接漏风。
所谓直接漏风就是指,在空预器三分仓中,流动介质之间由于存在压差,在一定程度上受预热器转动的影响和制约,进而在动、静之间产生相应的空隙,透过空隙进而在一定程度上形成漏风。
回转式空气预热器漏风控制简析摘要:回转式空气预热器是目前大中型电站锅炉上广泛采用的尾部换热设备,而漏风率高一直是该类设备所面临的极大困难,漏风不仅增大排烟热损失和风机电耗,当漏风严重时,由于送入炉膛参加燃烧的空气不足,还将直接影响锅炉的出力。
所以在回转式空气预热器技术中,降低漏风即密封技术占有很重要的地位。
本文主要通过分析引起空气预热器漏风的各种因素,从而对如何控制空气预热器的漏风量提出建议。
关键词:空气预热器、间隙、漏风、密封。
0引言回转式空气预热器在热态运行时,同时位于烟风系统的进口和出口。
烟气自上而下流动,烟气温度逐渐降低,空气自下而上流动,温度不断升高。
致使转子的温度热端大于冷端,转子的热端膨胀量大于冷端的膨胀量,加之转子自身重量的影响,转子就会发生蘑菇状变形,使密封间隙增大。
为了使空气预热器在热态工作时获得良好的密封效果,这就需要在冷态安装的过程中严格控制各处的间隙,实践表明设计和安装好的回转式空气预热器的密封漏风量一般为8%~10%,而漏风严重时可达到20%~30%。
1漏风的影响因素及原因回转式空气预热器的漏风主要包括密封漏风和携带漏风两种,转子是运动部件,而机壳是静止部件,动静部件之间一定留有间隙,该间隙就为漏风提供了渠道,同时由于空气侧为正压,而烟气侧为负压,这就为漏风提供了动力,此种由于间隙和压力的存在而产生的漏风称为密封漏风。
同时由于转子内部存在一定的容积,转子在旋转的过程中,不可避免的会将部分气体带入另一侧,此种漏风称为携带漏风。
携带漏风与转子的容积和转动速度有关,由于空气预热器转子的转动速度均较低,携带漏风量通常不超过1%,因此要控制空气预热器的漏风率就要主要从密封漏风着手。
在回转式空气预热器中空气的漏风量的计算公式为:G=(1)G:空气预热器的漏风量;K:漏风系数;A:漏风面积;∆:密封片两侧的压差;Pρ:介质的密度。
由于空气的密度我们可以近似的看成是一常熟,该式表明空气预热器的漏风率与漏风系数成正比;与密封间隙的面积成正比;与密封片两侧介质的压差的平方根成正比。
空气预热器漏风率控制研究摘要:回转式空气预热器漏风问题对于电厂的能耗指标有较大影响,漏风会导致排烟热损失部分增加,还会增加送、引风机、一次风机的出力和电耗,严重时会造成风机喘振,锅炉不能带满负荷运行。
因此减少空气预热器漏风量对于提高锅炉效率,降低能源消耗,提高经济效益具有积极的作用。
本文对空气预热器漏风的原因及当前降低空气预热器漏风率的主要技术措施进行了阐述。
关键词:空气预热器;漏风;技术措施1、前言回转式空气预热器漏风问题对于电厂的能耗指标影响较大,漏风增加会导致排烟热损失部分增加,同时增加送、引风机、一次风机的电耗,过高的漏风会造成送、引风机、一次风机的出力达到极限,漏风严重时会造成风机喘振,锅炉不能带满负荷运行。
在国家节能降耗产业政策日趋严厉的今天,积极开发新技术或者进行设计优化,降低空气预热器的漏风,是需要大力发展的技术。
2、空气预热器漏风原因分析回转式空气预热器的漏风主要由直接漏风和携带漏风组成,还包括少量转子中心轴部位的漏风。
直接漏风是由漏风带和烟风侧压差引起,主要分为三个方面:转子直径方向(径向漏风),转子外侧轴向方向(轴向漏风)以及转子上下端外缘(旁路或环向漏风)。
直接漏风量与密封片两端压差的平方根和漏风带的面积成正比[1]。
携带漏风是由于转子旋转时,转子仓格(包括换热元件)的缝隙在空气侧填充的一部分空气,在转子仓格旋转到烟气侧时这部分空气会释放到烟气中形成空气泄漏,回转式空气预热器的携带漏风量与其转子的容积及转速成正比。
此外,回转式空气预热器中心筒密封位置存在烟风短路通道,也有部分漏风,称为中心筒漏风,它属于直接漏风的一部分。
对于特定工程而言,在回转式空气预热器转子容积、转子转速和传热介质温度已确定的情况下,其携带漏风量保持不变,减少回转式空气预热器漏风量的方法就只有减少直接漏风量。
3、降低空气预热器漏风率的主要技术措施因为空气预热器的直接漏风量与密封片两端压差和漏风带的面积有关,所以减少漏风量的途径就是减少两端的压差和减少漏风带的面积(密封间隙值)。
空预器漏风率控制
发表时间:2017-10-23T14:56:57.230Z 来源:《电力设备》2017年第17期作者:宋晓龙
[导读] 摘要:本文介绍了应用于火电机组中空气预热器(下文简称:空预器)漏风率控制,通过分析空预器漏风发生的原因并通过控制安装过程提出有效办法,经多个安装项目实际应用证明,严格的过程控制和有效的施工方法,能够保证运行过程中系统的可靠、稳定,能够有效的降低机组空预器的漏风量,为机组安全、环保、高效、节能提供了有力保障。
(山东电力建设第三工程公司)
摘要:本文介绍了应用于火电机组中空气预热器(下文简称:空预器)漏风率控制,通过分析空预器漏风发生的原因并通过控制安装过程提出有效办法,经多个安装项目实际应用证明,严格的过程控制和有效的施工方法,能够保证运行过程中系统的可靠、稳定,能够有效的降低机组空预器的漏风量,为机组安全、环保、高效、节能提供了有力保障。
关键词:空预器、漏风率、漏风控制
1、引言
空预器作为火力发电厂设备中的重要组成部分,它是一种提高锅炉热交换性能,降低热量损耗的一种预热设备。
空预器的作用是将尾部中排出烟气中带出的携带热量,通过散热片传导到进入锅炉前的空气中,将空气预热到一定温度,从而提高锅炉的热交换性能,降低能量消耗。
常用的空预器多用于燃煤电站锅炉,一般可分为两种:管箱式、回转式,其中回转式又分为风罩回转式和受热面回转式两种。
本论文中仅对回转式空气预热器进行讨论。
本论文以杰拉达发电厂350MW机组空预器漏风控制为例,分析可能存在的漏风原因,并在安装过程和调试过程中控制并找出合理的解决办法。
2、回转式空气预热器漏风率分析及解决办法
摩洛哥JERADA 1X350 MW工程安装哈尔滨锅炉厂生产的超临界参数变压直流炉,本项目安装2台回转式空气预热器。
预热器转子正常转数为1r/min,预热器对称布置锅炉尾部。
回转式空气预热器由外壳定子、转子、换热元件、密封件、轴承、驱动装置、润滑油冷却系统等组成。
该型预热器是利用锅炉排烟的余热加热冷空气的热交换设备。
其工作原理(见图1)是通过转子缓慢旋转,传热元件交替的经过烟气和空气通道,当传热元件通过热的烟气流时吸收热量,通过空气流时,释放储藏的热量,加热进来的冷空气。
烟气向下流动,空气向上流动。
一般空预器漏风的主要原因有两种:携带漏风、间隙漏风,携带漏风是不可避免的,间隙漏风是可以控制的。
但携带漏风不会超过10%,携带漏风由空预器的结构、尺寸大小和转速决定,而这些参数对锅炉是已经设定的,转速越低,携带漏风量越小。
目前转子的设计转速一般低于n=1r/min,携带漏风量已很小,一般不会超过1%,从理论上讲基本已达到上限,故这部分漏风已无法减小。
间隙漏风是大多数火电机组空预器漏风的主要因素。
间隙漏风又分为三种,即旁路、轴向和径向漏风,其中旁路和轴向漏风约占漏风总量的30%~40%,其余60%~70%的漏风为径向密封造成,漏风量与漏风间隙的面积成正比,故科学的密封间隙和良好的密封装置是控制漏风率的根本因素。
针对空预器漏风形成的原因和特点,本论文主要讨论如何最大限度的降低间隙漏风,漏风量的公式如下:
由公式中可以看出,漏风量与间隙面积成正比,与空气侧压力和烟气侧压力差值的平方根成正比,因此降低漏风量主要采取两个办法,一是降低间隙面积,二是降低空气侧与烟气侧的压差。
具体措施如下:
(1)减小径向漏风:径向密封片固定在转子径向隔板的热端和冷端上,空预器在热态下,热端温度高,转子径向膨胀大,冷端温度低,径向膨胀小,同时中心轴向上膨胀,空预器转子受热后发生蘑菇形膨胀变形,径向密封片受热后变为弧形,从而导致漏风量加大,所以径向密封间隙是影响漏风率的重要因素。
所以安装密封装置便是控制漏风率的关键,对径向密封片安装可采与以下措施:
一、对空预器的热端,采用增加径向密封片,密封片调整前,按照图纸要求安装标尺,标尺的准确性是保证密封间隙的前提,对冷端也采用径向密封片,冷端径向密封虽与热端结构相似,但冷端不可调,需采用预调的方法,使其在热态下也可获得满意的密封间隙。
二、冷端径向密封片可采用双径向密封,就是任何时候都有两道密封片与扇形板相接触,由于径向漏风是由于空气侧和烟气侧存在压差造成的,在相同工况下,漏风间隙也相同的情况下,采用双密封结构,空气先由空气侧泄漏到过渡区,再由过渡区泄漏到烟气侧,就可以把泄漏压差降低一半;同时采用双径向密封,可以使在热态运行时,减小多边形形成的间隙,降低旁路漏风和轴向密封。
三、从空预器本体结构入手,采用变形较小的副转子结构,采用柔性可自动弯曲扇形板结构,在温度变化时,扇形板本身随温度变化自动变化,以适应转子的热态变形,从而保证密封间隙,
(2)减少轴向密封:由于轴向密封间隙调整不合理,不能适应转子不规则的蘑菇变形,会造成轴向漏风、密封间隙偏小处、易造成密封部件的磨损、间隙偏大处漏风增大。
采用和冷端径向漏风相同的处理办法,在冷态时进行轴向密封调整,使在转子热态变形后仍可活的满意的密封间隙,并根据安装数据经常进行调整,停机检查时,发现间隙超标,及时调整,同时可采用双轴向密封片,保证任何时候都有两道轴向密封片与轴向密封板接触,从而减小漏风。
因此施工过程中密封片
(3)降低空气侧与烟气侧压差:回转式空预器漏风主要因为空气侧与烟气侧存在压差,而漏风量与压差的平方根成正比,所以减少燃烧器及一次风的阻力,降低空预器内部两侧,也可以达到减少空预器漏风的目的,如果燃烧阻力较大,要求的热空气压强就要高一些,这样就会增大空预器的漏风量。
(4)减少堵灰的影响:空预器,特别是低温段的换热元件,由于低温腐蚀等原因,容易造成换热原件积灰、堵灰严重,流道堵塞,会加大流通阻力,造成空气侧与烟气侧压差增大,从而加大漏风量,因此要减小空预器的漏风率,还必须结合空预器防止腐蚀、堵灰的具
体措施,对空预器进行定期吹扫,在停机修理过程中要认真清理积灰,堵灰等。
(5)在安装过程需控制:密封片调整前,按照图纸要求安装标尺,标尺的准确性是保证密封间隙的前提,安装密封片时,根据标尺调整好密封片间隙紧好固定螺栓,施工完毕后检查每一个螺栓的紧固情况,防止运行中螺栓松动造成密封间隙变化。
对每一密封片的间隙测量出准确的数据并做好记录,各级检查人员认真检查并签字确认,严格执行验收制度,认真检查空气预热器各部密封焊,根据图纸要求认真检查不得有漏焊的地方,对每一道密封片每一个规定的点都要精确测量,旁路密封固定在热端和冷端连接板的旁路密封角钢上。
限制气流由转子通向外壳,此密封虽对漏风率起不了多大作用,但它关系到空预器的换热效率,必须正确安装。
在所有间隙调整完后接头处用补隙片进行密封焊。
最后通过对漏风系数的计算来确定漏风率。
漏风系数计算公式
漏风系数△αk=(E2-E1)/BJ
式中:E1----空预器进口烟气量,kg/s
E2----空预器出口烟气量,kg/s
BJ----计算燃煤量*理论空气量,kg/s
杰拉达项目空预器漏风率要求最大不超过8%,争取达到5%以内,通过各项方法的实施及安装过程的控制,同时后期运行过程中的有效手段,进而保证炉膛风量充足,风机出力足够,保证炉膛内燃烧充分,从而达到提高效率、降低能耗、减少运行成本的目的。
随着全球经济高速的发展,对发电量的要求与日俱增,然而可持续能源却与日俱减,如何高效、稳定的发展,如何有效的提高节能降耗,如何将利益最大化,将成为电力发展行业的立命之本,相对来说改造锅炉本体和改造汽轮机主体费用较高,而空预器的改造却比较经济,空预器的漏风率和空预器的换热效率作为各电厂重要的节能指标,降低空预器的漏风率将成为提高锅炉效率、降低能耗的主要手段之一,因此可以说空预器漏风率控制的市场前景是不可估量的,在不久的将来,更多的、更具有创新性的降低漏风率措施将要登上舞台,以适应我国不断发展的节能、环保的要求。
参考文献
[1]李义成.回转式空预器漏风的分析[J].华北电力.1998(11).
[2]吉宪磊.回转式空预器漏风及治理方法[J].西北电力技术.1995(5).
[3]2016年中国电力行业发展报告.中国中联网.
[4]侯宇轩、盘雨宏.2017-2021年中国电力行业节能减排投资分析及前景预测报告.中国投资咨询网,2016年7月.。