大学物理电磁学部分总结
- 格式:doc
- 大小:404.50 KB
- 文档页数:12
电磁学部分总结 静电场部分第一部分:静电场的基本性质和规律电场是物质的一种存在形态,它同实物一样也具有能量、动量、质量等属性。
静电场的物质特性的外在表现是:(1)电场对位于其中的任何带电体都有电场力的作用(2)带电体在电场中运动,电场力要作功——电场具有能量1、描述静电场性质的基本物理量是场强和电势,掌握定义及二者间的关系。
电场强度 电势2、反映静电场基本性质的两条定理是高斯定理和环路定理要掌握各个定理的内容,所揭示的静电场的性质,明确定理中各个物理量的含义及影响各个量的因素。
重点是高斯定理的理解和应用。
3、应用(1)、电场强度的计算a)、由点电荷场强公式 及场强叠加原理 计算场强q FE =⎰∞⋅==aa ar d E q W U 0∑⎰⎰=⋅=ΦiSe qS d E 01ε ⎰=⋅0r d E L 02041r r q E πε=iiE E ∑=一、离散分布的点电荷系的场强二、连续分布带电体的场强其中,重点掌握电荷呈线分布的带电体问题b)、由静电场中的高斯 定理计算场源分布具有高度对称性的带电体的场强分布一般诸如球对称分布、轴对称分布和面对称分布,步骤及例题详见课堂笔记。
还有可能结合电势的计算一起进行。
c)、由场强和电势梯度之间的关系来计算场强(适用于电势容易计算或电势分布已知的情形),掌握作业及课堂练习的类型即可。
(2)、电通量的计算a)、均匀电场中S 与电场强度方向垂直b)、均匀电场,S 法线方向与电场强度方向成θ角2041i ii i i i r r q E E πε∑=∑=⎰⎰π==0204d r rq E d E εUgradU E -∇=-=)(k zU j y U i x U ∂∂+∂∂+∂∂-=c)、由高斯定理求某些电通量(3)、电势的计算a)、场强积分法(定义法)——根据已知的场强分布,按定义计算b)、电势叠加法——已知电荷分布,由点电荷电势公式,利用电势叠加原理计算第二部分:静电场中的导体和电介质 一、导体的静电平衡状态和条件导体内部和表面都没有电荷作宏观定向运动的状态称为静电平衡状态。
大一电磁学知识点总结电磁学是物理学中的一个重要分支,它研究电荷和电流之间的相互作用及其产生的电磁力现象。
本文将对大一电磁学涉及的一些重要知识点进行总结和概述。
一、电场与静电力在电磁学中,电场是一个重要的概念。
电荷在空间中产生电场,并对其他电荷施加静电力。
根据库仑定律,两个电荷之间的静电力与它们之间的距离成反比,与电荷的大小成正比。
静电力的方向沿着两个电荷之间的直线,满足叠加原理。
二、电场强度与电势电场强度描述单位正电荷所受到的力,是一个向量量。
电场强度的方向与电荷的正负性质有关。
电势是描述电场能量分布情况的物理量,可以理解为单位正电荷静止在某一位置上时所具有的能量。
电势的计算公式为电势差除以单位正电荷的电荷量。
根据电势与电场强度的关系,电势梯度可以解释为电场强度的负梯度。
三、高斯定理高斯定理是电磁学中一个基本而重要的定理。
它表明,通过任意闭合曲面的电场通量与闭合曲面所包围的总电荷量成正比。
这个定理可以用来简化一些电场计算问题,特别是对具有某种对称性的场情况下。
四、电场能与电介质电场中存在电势能,描述了电场对电荷进行功的能力。
对于电介质而言,由于分子或原子内部的正负电荷分布不均匀,使得电介质内产生极化,导致电场能量在电介质中储存。
电介质的性质可以通过介电常数来描述,介电常数越大,电介质在电场中的极化程度越强。
五、磁场与电磁感应和电场类似,磁场也是一个重要的概念。
电流和电荷运动可以产生磁场。
根据比奥-萨伐尔定律,电流元产生的磁场对于距离电流元很近的位置而言,其大小与距离成反比。
磁场是一个矢量,其方向满足右手定则。
电磁感应是指当磁场变化时,会在回路中产生感应电动势。
根据法拉第电磁感应定律,感应电动势的大小与磁场变化率成正比。
六、安培定律与电磁场安培定律描述了电流元产生的磁场对于距离电流元很远的位置而言,其大小与电流元的大小和距离成正比。
根据安培定律,可以计算通过闭合曲面的总电流。
电磁场是电场和磁场的联合体现,它们互相影响,同时也受到电荷和电流的影响。
一、教学内容1. 库仑定律:描述静电力的大小和方向,公式为F=kq1q2/r^2,其中k为库仑常数,q1和q2分别为两个点电荷的电量,r为它们之间的距离。
2. 电场强度:描述电场对电荷的作用力,公式为E=F/q,其中F为电场对电荷的作用力,q为电荷的电量。
3. 高斯定律:描述电场通过一个闭合曲面的通量与该闭合曲面内部的总电荷之间的关系,公式为Φ=Q/ε0,其中Φ为电通量,Q为闭合曲面内部的总电荷,ε0为真空中的电常数。
4. 磁感应强度:描述磁场对运动电荷的作用力,公式为B=F/IL,其中F为磁场对运动电荷的作用力,I为电流的大小,L为电流所在导线的有效长度。
5. 安培定律:描述电流产生的磁场,公式为B=μ0I/2πr,其中B为磁场的大小,I为电流的大小,r为电流所在导线到被测点的距离,μ0为真空中的磁常数。
6. 法拉第电磁感应定律:描述磁场变化产生的电动势,公式为E=ΔΦ/Δt,其中E为电动势,ΔΦ为磁通量的变化量,Δt为时间的变化量。
二、教学目标1. 掌握大学物理电磁学的基本概念和公式。
2. 能够运用电磁学的知识解决实际问题。
3. 培养学生的科学思维和解决问题的能力。
三、教学难点与重点重点:库仑定律、电场强度、高斯定律、磁感应强度、安培定律、法拉第电磁感应定律。
难点:高斯定律、安培定律、法拉第电磁感应定律的理解和应用。
四、教具与学具准备教具:黑板、粉笔、PPT课件。
学具:教材、笔记本、笔。
五、教学过程1. 实践情景引入:讲解库仑定律时,可以引入两个点电荷之间的相互作用力。
2. 例题讲解:讲解电场强度时,可以举例一个正点电荷对周围电荷的作用力。
3. 随堂练习:让学生计算一个负点电荷对周围电荷的作用力。
4. 讲解高斯定律:讲解高斯定律时,可以举例一个闭合曲面内部的电荷对曲面外的电场的影响。
5. 讲解磁感应强度:讲解磁感应强度时,可以举例磁场对运动电荷的作用力。
6. 讲解安培定律:讲解安培定律时,可以举例电流产生的磁场对周围导线的影响。
大学物理电磁学心得体会在大学学习物理电磁学的过程中,我通过理论学习、实验探究以及数值模拟等方式,深入了解了电磁学的基本原理和应用。
在这个过程中,我收获颇丰,不仅增加了对物理学的兴趣,也体会到了学习物理学的乐趣和挑战。
以下是我对大学物理电磁学的一些心得体会。
一、电磁学的基本原理电磁学作为一门学科,涉及了电场、磁场以及它们之间的相互作用。
通过学习电磁学,我领悟到了一些基本概念的重要性,比如电荷、电场强度、电势、磁感应强度、磁场力等。
这些概念的理解对于后续学习电磁学的内容至关重要,只有对这些基本概念有深入的认识,才能够更好地理解电磁学的各个方面。
二、电磁学理论的应用在学习电磁学的过程中,我不仅了解了电磁学的基本原理,还学习了一些电磁学的应用。
比如,电磁感应现象和法拉第电磁感应定律的应用,使我更加深入地理解了电磁学与电磁感应之间的关系。
此外,电磁波的传播原理和特性也是电磁学中重要的内容,通过学习电磁波,我对无线通信、雷达、电视等技术有了更加深入的了解。
三、实验与数值模拟的重要性在电磁学的学习过程中,实验与数值模拟是不可或缺的环节。
通过实验,我能够亲身体验到电磁学理论的应用,并通过实验结果验证所学的理论。
实验让我对电磁学的知识有了更加直观和深入的理解。
此外,数值模拟也在电磁学学习中发挥了重要作用。
数值模拟可以模拟复杂的电磁现象,帮助我更好地理解电磁学的各个概念和原理。
四、团队合作与交流学习物理学,特别是电磁学,需要进行大量的实验和讨论。
在这个过程中,我逐渐认识到团队合作与交流的重要性。
与同学们一起进行实验探究,共同解决问题,相互交流经验和心得,不仅加深了对物理学知识的理解,还提高了团队合作的能力和交流能力。
五、自主学习与批判思维学习物理学需要具备自主学习的能力和批判思维。
在学习电磁学的过程中,我不仅仅是被动地接受知识,更是通过自主学习和思考来加深对电磁学的理解。
通过批判思维,我能够更好地分析和评估所学的理论和模型的适用性,并形成自己的见解。
【精品】大学物理电磁学部分总结一、电磁学及其应用电磁学是研究电场、磁场、电动势与磁动势及其作用之门门学科:它在物理学上,研究电场、磁场、电动势及磁动势的形成、传播、作用机理;在材料学上,研究材料对电场和磁场的反应和作用;在工程学上,研究电场和磁场的合理利用以及它们自身的特性及其应用。
有研究显示,电磁学对人类生活和工作的影响巨大,它提供了许多用于获得信息、控制运动和传输电能的重要原理和方法。
例如,电磁学的开发应用给电信、电子学和计算机领域做出了巨大的贡献,无射线电流可以轻松完成国内外大量的电子、电信设备的远程监控、远程控制和数据传输的任务,使得人类的文明水平进步得更《快捷》。
此外,电子探测、电磁遥感、电磁断层成像及其它用电磁APP于诊断、治疗服务深受人们青睐,极大拓宽了电医学领域的应用范围,为止去贴旷日持久病、遗传病和精神分装病等疾病做出了很大贡献,对于促进人们健康发挥了重要作用。
二、电磁定律电磁学的基础是电磁场牵涉到的电磁定律,电磁学的发展就是建立及应用这些定律的过程。
1、定义电流《电磁学》的第一个定律是定义电流——电流由分布在载体中的电荷发生。
因此,电流可以看作是移动电荷的流动。
2、定义磁感应《电磁学》的第二个定律是定义磁感应——当电流发生变化时,它会产生磁感应。
即在一点处,磁感应是各种特性的函数,其中包括向量旋度,微分曲率,曲率的偏度等。
它的结果可以用磁场的方法来换算得出。
《电磁学》的第三个定律是定义电动势——电动势是由一个点到另一个点的电场的差值。
此外,电动势可表示为电场的瞬时变化,也可以由电场各种特性做出推断。
4、定义磁动势三、电磁场定义及性质电磁场可以定义为比特拉斯尼埃变量,由电场、磁场和电磁能量流组成。
空间内任何一点都有一个电磁场,这个电磁场会影响任何物质和能量的运动。
它具有电势、磁势和动量,施加在物体上释放出电动势或磁动势,因此对物体有力和功能都会产生影响。
除了以上性质之外,电磁场还具有强大的能量存储能力,它们不仅能够激发电磁波,而且能够将我们辛苦的获得的能量保存起来,使得电磁场成为一个重要的能源来源,广大应用中。
大学物理电磁学部分总
结
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
电磁学部分总结 静电场部分
第一部分:静电场的基本性质和规律
电场是物质的一种存在形态,它同实物一样也具有能量、动量、质量等属性。
静电场的物质特性的外在表现是:
(1)电场对位于其中的任何带电体都有电场力的作用
(2)带电体在电场中运动,电场力要作功——电场具有能量
1、描述静电场性质的基本物理量是场强和电势,掌握定义及二者间的关系。
电场强度
电势
2、反映静电场基本性质的两条定理是高斯定理和环路定理
要掌握各个定理的内容,所揭示的静电场的性质,明确定理中各个物理量的含义及影响各个量的因素。
重点是高斯定理的理解和应用。
3、应用
(1)、电场强度的计算
q F
E =
⎰∞⋅==a a a r
d E q W U
0∑⎰⎰=
⋅=Φi
S
e q
S d E 0
1
ε ⎰=⋅0
r d E L 0
21
r q E =
a)、由点电荷场强公式 及场强叠加原理 计算场强
一、离散分布的点电荷系的场强
二、连续分布带电体的场强
其中,重点掌握电荷呈线分布的带电体问题
b)、由静电场中的高斯 定理计算场源分布具有高度对称性的带电体的场强分布
一般诸如球对称分布、轴对称分布和面对称分布,步骤及例题
详见课堂笔记。
还有可能结合电势的计算一起进行。
c)、由场强和电势梯度之间的关系来计算场强(适用于电势容易计
算或电势分布已知的情形),掌握作业及课堂练习的类型即可。
(2)、电通量的计算
i
i
E E
∑=0
2041i i
i i i i r r q E E
πε∑=∑=⎰
⎰π==0
204d r r
q E d E
εU
gradU E -∇=-=
)
(k z
U j y U i x U ∂∂+∂∂+∂∂-=
a)、均匀电场中S 与电场强度方向垂直
b)、均匀电场,S 法线方向与电场强度方向成θ角
c)、由高斯定理求某些电通量
(3)、电势的计算
a)、场强积分法(定义法)——根据已知的场强分布,按定义计
算
b)、电势叠加法——已知电荷分布,由点电荷电势公式,利用电
势叠加原理计算
第二部分:静电场中的导体和电介质 一、导体的静电平衡状态和条件
导体内部和表面都没有电荷作宏观定向运动的状态称为静电平衡状
态。
静电平衡下导体的特性:
(1)整个导体是等势体,导体表面是个等势面; (2)导体内部场强处处为零,导体表面附近场强的大小与该
表面的电荷面密度成正比,方向与表面垂直; (3)导体内部没有净电荷,净电荷只分布在外表面。
⎰∞⋅=P
P r
d E U
⎪⎪⎩
⎪⎪⎨
⎧
=
==⎰⎰∑∑r dq dU r q U U i
i i 0044πεπε
有导体存在时静电场的计算
1. 静电平衡的条件
原则: 2.基本性质方程:高斯定理 场强环路定理 3.电荷守恒定律
二、静电场中的电介质
掌握无限大、均匀的、各向同性的电介质的情况:
充满电场空间的各向同性均匀电介质内部的场强大小等于真空中场
强的 倍,方向与真空中场强方向一致。
电位移矢量
介质中的高斯定理 (自由电荷) 掌握程度:作业中的情形
=内E C
U =∑⎰⎰=
⋅i
i
S
Q
S d E 0
1ε ⎰=⋅L
l E 0
d ∑=i
i
Q
.
常量r
E E E E ε0
'
0=
-=相对介电常数
--r εr
ε1E
D ε=r
0εεε=∑⎰⎰=⋅q S
d D S
三、电容、电场能量
1、孤立导体的电容、电容器的电容计算;影响电容的因素;
电容器电容的大小只取决于极板的形状、大小、相对位置以及极板间的电介质情况 2、电容器的能量
3、电场能量
能量密度 适合任何电场
电场能量 课上例题或作业
稳恒磁场部分
第一部分:稳恒磁场的基本性质和规律
(1) 磁场是物质的一种形态,具有能量、质量、动量等。
(2)磁场是由运动电荷(或电流)产生的,它又对放入其中的运动电荷(或电流)有力的作用
U
Q C =
U
Q C ∆=
2
22
1212CU QU C Q W e ===DE E V W e e w 2
1
212===εV
E W W V V e e d 2
1d 2
ε⎰⎰⎰⎰==
1、描述稳恒磁场性质的基本物理量——磁感应强度
2、反映稳恒磁场基本性质的两条定理是高斯定理和安培环路环路定理
要掌握各个定理的内容,所揭示的稳恒磁场的性质,明确定理中各个物理量的含义及影响各个量的因素。
重点是安培环路定理的理解和应用。
磁场中的高斯定理
安培环路定律
3、应用
(1)、磁感应强度的计算
a)、由毕——萨定律计算任意形状的载流导线的磁场
直线电流、圆形载流导线圆心及轴线上的、圆弧形载流导线在圆心处的磁感应强度计算。
b)、由磁场叠加原理计算组合导线的磁感应强度,如
O
=
⋅
⎰⎰
S
S d
B
内
∑
⎰=
⋅
i
L
I
μ
l
B
d
i
i
B
B
∑
=
c)、利用安培环路定理计算场源分布具有高度对称性的磁感应强度 详见课堂例题 (2)、磁通量的计算
a)、均匀磁场中S 与磁感应强度方向垂直
b)、均匀磁场,S 法线方向与磁感应强度方向成θ角
c)、由高斯定理求某些磁通量 第二部分:磁场对运动电荷和电流的作用 1、带电粒子在均匀磁场中的运动:
三种情况:
在中学基础上会简单求解即可。
2、霍尔效应:霍尔电势差的表达式、会判断载流子类型、霍尔电势
差的大小,正负。
3、磁场对电流的作用:会由安培定律计算安培力; 会由公式计算载流线圈的磁矩和磁力矩。
简单求解磁力的功.
第三部分:磁介质
B
v //B
v ⊥θ
间夹角为与B v
要求同静电场:掌握无限大、均匀的、各向同性的磁介质的情况:
介质的磁导率
磁介质中的安培环路定理 掌握程度:作业中的情形
对于磁介质和铁磁质,按作业中的情况能够根据图示分清磁介质的种类,从铁磁质的磁滞回线判断剩磁、矫顽力、硬磁材料、矩磁材料和软磁材料。
电磁感应和电磁场部分
一、电磁感应基本定律 法拉第电磁感应定律
对N 匝线圈
楞次定律——判断感应电流(电动势)方向 二、动生电动势和感生电动势
产生机理(非静电力或非静电场)、定义及求解。
对于任何感应电动势,都要求会用法拉第电磁感应定律计算。
对于动生电动势:要求会计算均匀磁场中平动和转动导体、非均匀磁场中平动的直导线中的动生电动势。
H
B μ=μ
μμ=r 0∑⎰=⋅L
L
I l d H 0
dt
d m
i Φ-
=εdt
d N
m
i Φ-=ε
三、1、区分感生电场和静电场
2、知道涡电流的产生条件:大块的金属在磁场中运动,或
处在变化的磁场中
四、自感、互感、磁场能量
1、会求自感系数和自感电动势,知道影响自感系数的因素;
2、会求互感系数,知道影响互感系数的因素;
3、会由 计算载流线圈中的磁场能量
4、磁能密度和磁场能量
适合任何磁场
要求同作业。
五、电磁场理论
1、区分传导电流和位移电流
位移电流与传导电流是完全不同的概念,仅在产生磁场方面二者等价.
传导电流是自由电荷的宏观定向运动,只存在于导体中,有电荷流动,通过导体会产生焦耳热.
2
2
1LI
W m =BH
H B V W w m m 2
121212
2====μμ
===⎰⎰⎰⎰⎰⎰BHdV dV w W V V m m 2
1
11 只要电场随时间变化,就有相应的位移电流.位移电流的实质是变化的电场, I D 则无论是导体、介质或真空中都可以存在,无电荷流动,一般不存在热效应。
在高频交变电场作用下,介质也发热,那是分子反复极化造成,不遵守焦耳—楞次定律.
2、掌握电磁波的基本特性,会根据特性求出未知的量(如作业)
变化的电场在其周围激发变化的磁场,变化的磁场在其周围又会激发变化的电场,这个变化的电磁场相互激发并以波的形式由近及远,以有限的速度在空间传播开去,就形成了电磁波。
在无限大均匀绝缘介质(或真空)中,平面电磁波的性质概括如下: 1. 电磁波是横波, 构成正交右旋关系. 电磁波是偏振波, 都在各自的平面内振动,且 是同位相的. 如图:
2. 在同一点的E 、H 值满足下式:
u H E ,,H E ,H E ,H
E με=0
0H E με=
电磁波的波函数的幅值也满足
3. 电磁波的传播速度为真空中
εμ
1
=
u
1
8
10
9979
.2
1-
⋅
⨯
=
=
=s
m
c
uμ
ε
12。