2--平行与相交-习题(附答案)
- 格式:doc
- 大小:125.00 KB
- 文档页数:11
平行与相交专项练习30题(有答案)ok平行与相交专项练30题(有答案)1.下列对于线的描述,说法正确的是()A.不相交的两条直线是平行线B.两条直线相交成直角时,这两条直线互相垂直C.过直线外一点,能画无数条平行线D.有一条直线长6分米2.从直线外一点画已知直线的平行线,可以画()条.A.1B.2C.无数3.下面的图形中,()只有2组平行线.A.B.C.D.4.如果在同一平面内画两条直线,它们都和第三条直线相交成直角,那么这两条直线(A.互相垂直B.互相平行C.不垂直也不平行5.下列各句话中有()句是错误的.(1)两条直线相交,这两条直线互相垂直.(2)两条直线的交点,叫做这两条直线的垂足.(3)平行线之间的线段到处相等.(4)两条直线都与另一条直线相交,这两条直线一定平行.A.1B.2C.3D.46.在同一平面内,若把两根小棒都摆成和第三根小棒垂直,那么这两根小棒()A.相互平行B.相互垂直C.相交7.同一平面内的两条直线最多有()个交点.A.B.1C.28.一张长方形纸对折两次后展开,折痕()A.相互平行B.相互垂直C.可能相互垂直,也可能相互平行9.在两条平行线之间画垂直线段,第一条长7厘米,第二条长()A.大于7厘米B.小于7厘米C.等于7厘米10.关于平行线的说法正确的是()A.不相交的两条线段B.不相交的两条直线C.在同一平面内,不相交的两条直线11.直线a、b、c在同一平面里,a与b相互垂直,b与c 相互垂直,那么a与c相互(A..垂直B.平行C.平行或垂直12.有两条直线都与同一条直线平行,则这两条直线一定()平行与相交----1))A.相互垂直B.相互平行C.相交13.在同一个平面上垂直于同一条直线的两条直线一定()A.互相垂直B.互相平行C.两种都有可能D.A、B两种都不可能.14.在同一平面内,两条直线可能_________,也可能_________,互相垂直是一种特殊的_________.15.指出左图形中各有几组互相平行的线段,并写在括号里,(_________).16.在同一平面内不相交的两条直线叫做_________,也可以说这两条直_________.在同一平面内的两条直线的位置关系有_________、_________两种情况.17.语文课本的封面,相对的两条边是相互_________的,相邻的两条边是相互_________的.18.点到直线的所有线段中,_________最短.19.平行线之间的垂直线段不但相互_________,并且长度_________.20.在同一平面内,两条不重合的直线的位置干系有_________、_________.21.上面有一排字母:TEFNKHXZ有互相垂直线段的字母是_________;有互相平行线段的字母是_________;既有互相垂直,又有互相平行的线段的字母是_________.22.如图,能找到_________组相互垂直的线段.23.两条直线不相交,就说这两条直线相互平行._________.24.图中有几组相互垂直的线段?_________组.25.当两条直线相交成直角时,这两条直线相互平行._________.26.在一张纸上画若干条直线后发现,凡是不平行的,就一定会相交._________.平行与相交----227.在同一平面内,两条直线的位置干系可分红哪两类?相交或垂直_________相交或平行_________平行或垂直_________.28.过直线外一点只能画一条直线的垂线._________.29.小猪要过河,它走下面的哪条路最近?这条路有什么特点?30.点A是大象的家,XXX表示河.大象要去河岸边饮水,请设想一条使大象饮水近来的线路图.平行与相交----3参考答案:1.A、不相交的两条直线是平行线,说法错误,前提是:在同一平面内;B、根据互相垂直的含义:两条直线相交成直角时,这两条直线互相垂直,说法正确;C、过直线外一点,能画无数条平行线,说法错误,应为一条平行线;D、因为直线无限长,所以有一条直线长6分米,说法错误;故选:B.2.按照平行的性质得:过直线外一点画直线的平行线,可以画一条直线与直线平行,应选:A.3.A、是正六边形,有3组平行线;B、没有平行线;C、有2组平行线;D、是正八边形,有4组平行线;故选:C.4.如图:在同一平面内,p⊥d,k⊥d,所以XXX,故选:B.5.(1)两条直线相交,这两条直线互相垂直,说法错误,应为:两条直线相交成直角时,这两条直线就互相垂直;(2)两条直线的交点,叫做这两条直线的垂足,说法错误;因为两条直线相交成直角,这两条直线就互相垂直,交点叫做垂足;(3)平行线之间的线段处处相等,说法错误,应为:平行线之间的距离处处相等;(4)根据垂直的性质可知:两条直线都与另一条直线相交,这两条直线一定平行,说法错误,前提必须在同一个平面内;故选:D.6.如图所示,,a和b都垂直于c,则a和b平行;应选:A.7.同一平面内的两条直线最多有1个交点.应选:B.8.由阐发可知:把一张长方形的纸对折两次后,折痕的干系是可能相互平行,也可能相互垂直;应选:C.9.由阐发可知:两条平行线中可以画无数条垂线段,这些线段的长度都相等,所以在两条平行线之间画垂直线段,第一条长7厘米,第二条也长7厘米;应选:C.10.因为在同一平面内,两条不相交的直线是平行线,故A、B错误;应选:C.11.由垂直和平行的特征和性质可知:直线a、b、c在同一平面里,a与b相互垂直,b与c相互垂直,那么a与c互相平行;故选:B.12.根据平行的性质可得:有两条直线都与同一条直线平行,则这两条直线一定互相平行;故选:B13.由垂直的性质可得:在同一个平面内垂直于同一条直线的两条直线一定互相平行;故选:B.14.在同一平面内,两条直线可能相交,也可能平行,互相垂直是一种特殊的相交.15.指出左图形中各有几组互相平行的线段,并写在括号里,(9组).如图:平行与相交----4图中的平行线段有:AD∥EF,BD∥EF,DE∥FB,DE∥FC,DF∥AE,DF∥EC,DE∥BC,DF∥AC,EF∥AB;共有9对;故谜底为:9组16.在同一平面内不相交的两条直线叫做平行线,也能够说这两条直线相互平行.在同一平面内的两条直线的位置干系有相交、平行两种情形.由阐发得出:在同一平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行,在同一平面内的两条直线的位置关系有相交、平行两种情况.故答案为:平行线;线互相平行;相交;平行17.语文课本的封面,相对的两条边是相互平行的,相邻的两条边是相互垂直的.18.点到直线的所有线段中,垂线段最短.19.平行线之间的垂直线段不但相互平行,并且长度相等.20.在同一平面内,两条不重合的直线的位置干系有相交、平行.21.上面有一排字母:XXX有相互垂直线段的字母是T、E、H;有相互平行线段的字母是E、N、Z、H;既有相互垂直,又有相互平行的线段的字母是E、H.22.如图,能找到8组相互垂直的线段.23.两条直线如果永不相交,这两条直线一定互相平行,说法错误,前提是必须在同一平面内;故答案为:错误.24.图中有几组互相垂直的线段?6组.25.当两条直线相交成直角时,这两条直线相互平行.错误.26.在一张纸上画若干条直线后发现,凡是不平行的,就一定会相交.正确.由分析可知:在一张纸上画若干条直线后发现,凡是不平行的,就必然会相交;故答案为:正确.27.在同一平面内,两条直线的位置关系可分成哪两类?相交或垂直×相交或平行√平行或垂直×.28.过直线外一点只能画一条已知直线的垂线.正确.29.如图:PC近来,这条路垂直于河对岸的路.30.如图所示:根据垂直线段最短的性质,红色的垂线段就是使大象饮水最近的线路,。
初一数学相交线与平行线28道典型题(含答案和解析及考点)1、若直线AB,CD相交于O,∠AOC与∠BOD的和为200°,则∠AOD的度数为.答案:80°.解析:∵∠AOC=∠BOD,∠AOC与∠BOD的和为200°.∴∠AOC=100°.∵∠AOD与∠AOC互补.∴∠AOD=80°.考点:几何初步——相交线与平行线——对顶角、邻补角.2、已知OA⊥OB,∠AOC∶∠AOB=2∶3,则∠BOC= .答案:30°或150°.解析:当OC在∠AOB内部时,∠BOC=30°;当OC在∠AOB外部时,∠BOC=150°.考点:几何初步——相交线与平行线——对顶角、邻补角——垂线.3、若直线a与直线b相交于点A,则直线b上到直线a距离等于2cm的点的个数是().A.0B.1C.2D.3答案:C.解析: 直线b的交点两侧各有一点到直线a的距离等于2cm.考点:几何初步——相交线与平行线——点到直线的距离.4、如图所示,在平面内,两条直线l1、l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1、l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有个.答案:4.解析:因为两条直线相交有四个角,因此每一个角内就有一个到直线l1、l2的距离分别是2、1,的点,即距离坐标是(2,1)的点,因而共有4个.考点:几何初步——相交线与平行线——点到直线的距离.5、若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为( ). A.45° B.135° C.45°或135° D. 不能确定 答案:D.解析:若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为不能确定. 考点:几何初步——相交线与平行线——三线八角.6、平面上n 条直线最少能将平面分为__________部分,最多能将平面分为__________部分. A. 最少能将平面分成n+1部分;最多分为n2+n+22.B. 最少能将平面分成n+2部分;最多分为n2+n−22.C. 最少能将平面分成n+1部分;最多分为n2+n−22. D. 最少能将平面分成n+2部分;最多分为n2−n+22.答案:A.解析:1条直线将平面分成2部分.2条直线最少将平面分成3部分,最多将平面分成4部分,其中4=1+1+2. 3条直线最少将平面分成4部分,最多将平面分成7部分,其中7=1+1+2+3. 4条直线最少将平面分成5部分,最多将平面分成11部分,其中11=1+1+2+3+4. ……n 条直线最少将平面分成n+1部分,最多将平面分成n2+n+22部分,其中n2+n+22=1+1+2+3+…+n .综上,n 条直线最少能将平面分成n+1部分,对多能将平面分成n2+n+22部分.考点:几何初步——相交线与平行线——相交线.7、如图,已知∠1=∠2,要使∠3=∠4,则需( ).A. ∠1=∠2B. ∠2=∠4C. ∠1=∠4D. AB ∥CD答案:D.解析:假设∠3=∠4,即∠BEF=∠CFE.由内错角相等,两直线平行,可得AB∥CD.故已知∠1=∠2,要使∠3=∠4,只要AB∥CD.考点:几何初步——相交线与平行线——平行线公理及推论.8、如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若图①中的∠DEF=20°,则图②中的∠CFE度数是.(2)若图①中的∠DEF=α,则图③中的∠CFE度数是.(用含有α的式子表示)答案:(1)160°.(2)180°-3α.解析:(1)在图①中:∵AD∥BC.∴∠BFE=∠DEF=20°.∴∠CFE=160°.在图②中,根据折叠性质,∠CFE大小不变.∴∠CFE=160°.(2)在图①中,∠CFE=180°-∠BFE=180°-α.在图②中,∠CFB=∠CFE-∠BFE=180°-α.根据折叠性质,图③中∠CFB与图②中∠CFB相等.在图③中,∠CFE=∠CFB-∠BFE=180°-3α.∴图③中的∠CFE度数是180°-3α.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.几何变换——图形的对称——翻折变换(折叠问题)——轴对称基础——轴对称的性质.9、已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴_____∥ _____.().又∵∠1=∠2,(已知).∴_____∥ _____.().∴_____∥ _____.().∴∠3=∠B.().答案:答案见解析.解析:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴AD∥EF.(同旁内角互补,两直线平行).又∵∠1=∠2,(已知).∴AD∥BC.(内错角相等,两直线平行).∴EF∥BC.(平行于同一直线的两直线平行).∴∠3=∠B.(两直线平行,同位角相等).考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.10、车库的电动门栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD的大小是().A.150°B.180°C.270°D.360°答案:C.解析:过B作CD的平行线BF,则CD∥BF∥AE.∴∠DCB+∠CBF=180°,∠ABF=90°.∴∠ABC+∠BCD=∠DCB+∠CBD+∠ABF=180°+90°=270°.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.11、如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐角∠A是120°,第二次拐角∠B是150°,第三次拐角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是.答案:150°.解析:如图,作BE∥AD.∴∠1=∠A=120°.∴∠2=∠ABC=∠1=150°-120°=30°.∵AD∥CF.∴BE∥CF.∴∠C+∠2=180°.∴∠C=180°-30°=150°.考点:几何初步——相交线与平行线——平行线公理及推论——平行线的性质.12、如图所示,若AB∥CD,则角α,β,γ的关系为().A.α+β+γ=360°B.α-β+γ=180°C.α+β+γ=180°D.α+β-γ=180°答案:D.解析:过β角的顶点为E,作EF∥AB,α+β-γ=180°.考点:几何初步——相交线与平行线平行线的判定——平行线的性质——平行有关的几何模型.13、如图AB∥CD∥EF,CG平分∠ACE,∠A=140°,∠E=110°,则∠DCG=().A.13°B.14°C.15°D.16°答案:C.解析:∵EF∥CD,∴∠ECD=180°-∠E=70°.同理∠ACD=40°.∴∠ACE=110°.∵CG平分∠ACE.∴∠ECG=55°.∴∠DCG=∠ECD-∠ECG=70°-55°=15°.考点:几何初步——相交线与平行线——平行线——平行线的性质——平行有关的几何模型.14、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数.A.15°B.20°C.25°D.30°答案:D.解析:由AB∥EF∥CD,可知∠BED=∠B+∠D.已知∠B+∠BED+∠D=192°.∴2∠B+2∠D=192°,∠B+∠D=96°.又∠B-∠D=24°,于是可得关于∠B、∠D的方程组:{∠B+∠D=96°∠B−∠D=24°.解得∠B=60°.由AB∥EF知∠BEF=∠B=60°.因为EG平分∠BEF,所以∠GEF=12∠BEF=30°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.15、把命题“在同一平面内,垂直于同一直线的两直线互相平行”改写成“如果……,那么……”的形式:.答案:“在同一平面内,如果两条直线都垂直于同一直线,那么这两直线互相平行”.解析:略.考点:命题与证明——命题与定理.16、下列命题中,假命题是().A. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行.B. 两条直线被第三条直线所截,同旁内角互补.C. 两直线平行,内错角相等.D. 在同一平面内,过一点有且只有一条直线与已知直线垂直.答案:B.解析:两条直线被第三条直线所截,同旁内角不一定互补,只有两直线平行时,同旁内角互补.考点:命题与证明——命题与定理.17、已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD.(2)求∠C的度数.答案:(1)证明见解析.(2)∠C=25°.解析:(1)∵AE⊥BC,FG⊥BC.∴AE∥FG.∴∠2=∠A.∵∠1=∠2.∴∠1=∠A.∴AB∥CD.(2)∵AB∥CD.∴∠C=∠3.∵∠D=∠3+60°,∠CBD=70°,∠C+∠D+∠CBD=180°.∴∠C+∠C+60°+70°=180°.∴∠C=25°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.18、已知:如图,在△ABC中,BD⊥AC于点D,E为BC上一点,过E点作EF⊥AC,垂足为F,过点D作DH∥BC交AB于点H.(1)请你补全图形.(2)求证:∠BDH=∠CEF.答案:(1)画图见解析.(2)证明见解析.解析:(1)补全图形.(2)∵BD⊥AC,EF⊥AC.∴BD∥EF.∴∠CEF=∠CBD.∵DH∥BC.∴∠BDH=∠CBD.∴∠BDH=∠CEF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.尺规作图——过一点作已知直线的垂线——过一点作已知直线的平行线.19、已知,如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.答案:证明见解析.解析:过E点作EF∥AB,则∠B=∠3.又∵∠1=∠B.∴∠1=∠3.∵AB∥EF,AD∥CD.∴EF∥CD.∴∠A=∠D.又∵∠2=∠D.∴∠2=∠4.∵∠1+∠2+∠3+∠4=180°.∴∠3+∠4=90°,即∠BED=90°.∴BE⊥ED.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.20、如图,已知CD∥EF,∠1+∠2=∠ABC.求证:AB∥GF.答案:证明见解析.解析:延长CD、GF交于点H,∠1=∠H.故∠2+∠H=∠ABC.易得AB∥GF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.21、如图,已知点A,E,B在同一条直线上,设∠CED=x,∠C+∠D=y.(1)若AB∥CD,试用含x的式子表示y,并写出x的取值范围.(2)若x=90°,且∠AEC与∠D互余,求证:AB∥CD.答案:(1)y=180°-x,其中x的取值范围是(0<x<180).(2)证明见解析.解析:(1)∵AB∥CD.∴∠AEC=∠C,∠BED=∠D.∵∠C+∠D=y.∴∠AEC+∠BED=y.∵∠CED=x,∠AEC+∠CED+∠BED=180°.∴x+y=180°.∴y=180°-x,其中x的取值范围是(0<x<180).(2)∵x=90°,即∠CED=90°.∴∠AEC+∠BED=90°.∵∠AEC与∠D互余.∴∠AEC+∠D=90°.∴∠BED=∠D.∴AB∥CD.考点:函数——函数基础知识——函数自变量的取值范围.几何初步——角——余角和补角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.22、阅读材料:材料1:如图(a)所示,科学实验证明:平面镜反射光线的规律是:射到平面镜上的光线和反射出的光线与平面镜所夹的角相等.即∠1=∠2.材料2:如图(b)所示,已知△ABC,过点A作AD∥BC,则∠DAC=∠C,又∵AD∥BC,∴∠DAC+∠BAC+∠B=180°,∴∠BAC+∠B+∠C=180°.即三角形内角和为180°.根据上述结论,解决下列问题:(1)如图(c)所示,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射,若b反射出的光线n平行于m,且∠1=50°,则∠2= ,∠3= .(2)在(1)中,若∠1=40°,则∠3= ,若∠1=55°,则∠3= .(3)由(1)(2)请你猜想:当∠3= 时,任何射到平面镜a上的光线m经过平面镜a和b的两次反射后,入射光线m与反射光线n总是平行,请说明理由.答案:(1)1.100°.2.90°.(2)1.90°.2.90°.(3)90°.解析:(1)∵∠1=50°.∴∠4=∠1=50°.∴∠6=180°-50°-50°=80°.∵m∥n.∴∠2+∠6=180°.∴∠2=100°.∴∠5=∠7=40°.∴∠3=180°-50°-40°=90°.故答案为:100°,90°.(2)∵∠1=40°.∴∠4=∠1=40°.∴∠6=180°-40°-40°=100°.∵m∥n.∴∠2+∠6=180°.∴∠2=80°.∴∠5=∠7=50°.∴∠3=180°-50°-40°=90°.∵∠1=55°.∴∠4=∠1=55°.∴∠6=180°-55°-55°=70°.∵m∥n.∴∠2+∠6=180°.∴∠2=110°.∴∠5=∠7=35°.∴∠3=180°-55°-35°=90°.(3)当∠3=90°时,m∥n.理由是:∵∠3=90°.∴∠4+∠5=180°-90°=90°.∵∠4=∠1,∠7=∠5.∴∠1+∠7+∠4+∠5=2×90°=180°.∴∠2+∠6=180°-(∠1+∠4)+180°-(∠5+∠7)=180°.∴m∥n.故答案为:90°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.23、如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)如图1,当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD.,(2)如图2,当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(请画出图形并直接回答成立或不成立)(3)如图3,当动点P落在第③部分时,探究∠PAC,∠APB,∠PBD之间的关系,请画出图形并直接写出相应的结论.答案:(1)证明见解析.(2)不成立.(3)证明见解析.解析:(1)过点P作直线AC的平行线,易知∠1=∠PAC,∠2=∠PBD.又∵∠APB=∠1+∠2,∴∠APB=∠PAC+∠PBD.(2)不成立.(3)①当动点P在射线BA的右侧时(如图4).结论是∠PBD =∠PAC+∠APB.②当动点P在射线BA上(如图5).结论是∠PBD =∠PAC+∠APB或∠PAC =∠PBD +∠APB或∠APB=0°,∠PAC=∠PBD.③当动点P在射线BA的左侧时(如图6).结论是∠PAC =∠PBD +∠APB.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质——平行有关的几何模型.24、如图所示,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠3=∠4且∠ABC=∠ADC;④∠BAD+∠ABC=180°;⑤∠ABD=∠ACD;⑥∠ABC+∠BCD=180°.能判定AB∥CD的共有()个.A.2B.3C.4D.5答案:A.解析:由平行的判定知③⑥可以判定AB∥CD.考点:几何初步——相交线与平行线——平行线的判定.25、有下列四个命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行.②两条直线被第三条直线所截,同旁内角互补.③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直.④在同一平面内,过一点有且只有一条直线与已知直线垂直.其中所有正确的命题是().A. ①②B. ①④C. ②③D. ③④答案:B.解析:①④正确;②两条直线被第三条直线所截,同旁内角不一定互补,需要两条直线平行;③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行. 考点:几何初步——相交线与平行线——平行线公理及推论——平行线的判定——平行线的性质.26、如图,DB ∥FG ∥EC ,∠ABD=60°,∠ACE=30°,AP 平分∠BAC ,求∠PAG 的度数.A.11°B.12°C.13°D.14°答案:B.解析:由DB ∥FG ∥EC.可得∠BAC=∠BAG+∠CAG=∠DBA+∠ACE=60°+36°=96°.由AP 平分∠BAC 得∠CAP=12∠BAC=12×96°=48°. 由FG ∥EC 得∠GAC=∠ACE=36°.∴∠PAG=48°-36°=12°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.27、如图,AB ∥CD ,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=( ).A.10°B.15°C.20°D.30°答案:B.解析:得∠APC=∠BAP+∠DCP .∴45°+α=60°-α+30°-α.解得:α=15°.考点:几何初步——相交线与平行线——平行线的性质.28、已知,如图,AB∥CD,直线α交AB、CD分别于点E、F,点M在线段EF点上,P是直线CD 上的一个动点,(点P不与F重合).(1)当点P在射线FC上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:.(2)当点P在射线FD上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:. 答案:(1)∠FMP+∠FPM=∠AEF.(2)∠FMP+∠FPM+∠AEF=180°.解析:(1)当点P在射线FC上移动时.∵AB∥CD.∴∠AEF+∠CFE=180°.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM=∠AEF.(2)当点P在射线FD上移动时.∵AB∥CD.∴∠AEF=∠MFD.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM+∠AEF=180°.考点:几何初步——相交线与平行线——平行线的性质.。
四年级上册数学单元测试-4.平行与相交一、单选题1.在下图中,哪组是平行线?()A. B. C.2.两条直线相交,如果其中一个角是90°,那么其他三个角是()。
A. 锐角B. 直角C. 钝角D. 平角3.在同一个平面内,直线a与直线b平行,直线b和直线c垂直.那么直线a和直线c( )A. 互相平行B. 互相垂直C. 相交4.下列现象中,不属于平移的是()。
A. 乘坐直升电梯从一楼到三楼。
B. 钟表的指针嘀嗒嘀嗒的走。
C. 火车在笔直的轨道上行驶。
二、判断题5.不相交的两条直线互相平行。
6.如果两条直线都与同一条直线平行,那么这两条直线平行。
7.在同一平面内,不相交的直线一定平行.8.经过直线外一点画这条直线的平行线可以画无数条。
9.判断对错.两条直线相交于一点,这点叫垂足.三、填空题10.看图填空.观察上面的四幅图.观察上面的四幅图?(1)图________中的两条直线是相交的,图________中的两条直线是不相交的.(2)图A中的两条直线互相平行.其中的一条直线叫做另一条直线的________.(3)图C中的两条直线互相垂直.其中的一条直线叫做另一条直线的________.11.看图回答(1)下面每组中两条直线,互相垂直的是________;(2)下面每组中两条直线,互相平行的是________.12.如下图,小强和小军同时出发,速度相同,谁先到达学校?________先到达学校。
13.如图中,直线CD有________条垂线,分别是________和________,这两条垂线是________关系。
14.如下图,点A到直线BC的距离是线段________的长.四、解答题15.在下图中,把互相平行的两条直线描成不同的颜色.你还能说出一些两条直线互相平行的例子吗?16.如果两条平行线为一组,下图中一共有几组平行线?请找一找。
17.假如直线AB是一条公路,公路同侧有甲、乙两个村庄(如下图所示).现要在公路上修建一个公共汽车站,让两个村子的人到汽车站的路线之和最短.则车站应该建在什么地方?五、综合题18.下图中,有a、b、C、d、e五条直线。
相交线与平行线测试题〔一〕一、选择题1.以下说法中,正确的选项是〔〕A.一条射线把一个角分成两个角,这条射线叫做这个角的平分线;B.P是直线L外一点,A、B、C分别是L上的三点,PA=1,PB=2,PC=3,那么点P•到L的距离一定是1;C.相等的角是对顶角;D.钝角的补角一定是锐角.2.如图1,直线AB、CD相交于点O,过点O作射线OE,那么图中的邻补角一共有〔〕A.3对 B.4对 C.5对 D.6对(1) (2) (3)3.假设∠1与∠2的关系为错角,∠1=40°那么∠2等于〔〕 A.40° B.140° C.40°或140° D.不确定5.a,b,c为平面不同的三条直线,假设要a∥b,条件不符合的是〔〕A.a∥b,b∥c;B.a⊥b,b⊥c;C.a⊥c,b∥c; D.c截a,b所得的错角的邻补角相等6.如图2,直线a、b被直线c所截,现给出以下四个条件:〔1〕∠1=∠5;〔2〕∠1=•∠7;〔3〕∠2+∠3=180°;〔4〕∠4=∠7,其中能判定a∥b的条件的序号是〔〕A.〔1〕、〔2〕 B.〔1〕、〔3〕C.〔1〕、〔4〕 D.〔3〕、〔4〕7.如图3,假设AB∥CD,那么图中相等的错角是〔〕A.∠1与∠5,∠2与∠6;B.∠3与∠7,∠4与∠8;C.∠2与∠6,∠3与∠7;D.∠1与∠5,∠4与∠88.如图4,AB∥CD,直线EF分别交AB、CD于点E、F,ED平分∠BEF.假设∠1=72°,•那么∠2的度数为〔〕A.36° B.54° C.45° D.68°(4) (5)(6)9.线段AB的长为10cm,点A、B到直线L的距离分别为6cm和4cm,•那么符合条件的直线L的条数为〔〕A.1 B.2 C.3 D.410.如图5,四边形ABCD中,∠B=65°,∠C=115°,∠D=100°,那么∠A的度数为〔• 〕A.65° B.80° C.100° D.115°11.如图6,AB⊥EF,CD⊥EF,∠1=∠F=45°,那么与∠FCD相等的角有〔〕A.1个 B.2个 C.3个 D.4个12.假设∠A和∠B的两边分别平行,且∠A比∠B的2倍少30°,那么∠B的度数为〔〕A.30°B.70°C.30°或70° D.100°二、填空题13.如图,一个合格的弯形管道,经过两次拐弯后保持平行〔即AB∥DC〕.•如果∠C=60°,那么∠B的度数是________.14.,如图,∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°.将以下推理过程补充完整:〔1〕∵∠1=∠ABC〔〕,∴AD∥______〔2〕∵∠3=∠5〔〕,∴AB∥_____,〔___________〕〔3〕∵∠ABC+∠BCD=180°〔〕,∴_______∥________,〔__________〕16.直线AB、CD相交于点O,∠AOC-∠BOC=50°,那么∠AOC=_____度,•∠BOC=___度.17.如图7,B、C、E在同一直线上,且CD∥AB,假设∠A=105°,∠B=40°,那么∠ACE为_________.1 / 5〔7〕〔8〕18.如图8,∠1=∠2,∠D=78°,那么∠BCD=______度19.如图9,直线L1∥L2,AB⊥L1,垂足为O,BC与L2相交于点E,假设∠1=43°,•那么∠2=_______度.〔9〕〔10〕20.如图10,∠ABD=•∠CBD,•DF•∥AB,•DE•∥BC,•那么∠1•与∠2•的大小关系是________.三、解答题22.如图,AB∥A′B′,BC∥B′C′,BC交A′B′于点D,∠B与∠B•′有什么关系?为什么?23.如图,AB∥CD,试再添上一个条件,使∠1=∠2成立〔•要求给出两个答案〕.24.如图,AB∥CD,∠1:∠2:∠3=1:2:3,说明BA平分∠EBF的道理.25.如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB 于E,且∠1=∠2,•∠3=80°.求∠BCA的度数.26.如图,EF⊥GF于F.∠AEF=150°,∠DGF=60°,试判断AB和CD的位置关系,并说明理由.2 / 51、∵直线AB、CD相交于点O,∴∠AOC和∠BOD是对顶角,∴∠AOC=∠BOD.∵∠AOC+∠BOD=240°,∴∠AOC=∠BOD=120°.又∵∠AOC和∠BOC是邻补角,∴∠BOC=180°-∠AOC,∴∠BOC=60°..2、[点拨] 观察图形,∠AOF与∠BOF是邻补角,∠BOF 与∠AOE是对顶角,利用它们的性质可求出∠EOC的度数.[解答] 设∠BOF=x,那么∠AOF=3x,∵∠AOF+∠BOF=180°∴x+3x=180°∴x=45°,即∠BOF=45°∴∠AOE=∠BOF=45°∴∠EOC=∠AOC-∠AOE=90°-45°=45°.[方法规律] 通过设未知数列方程求解,是求角的度数一种常用的方法.3、[点拨]过一点画射线或线段的垂线时,是指画它们所在直线的垂线,垂足有时在射线反向延长线或在线段的延长线上.此题垂足分别在射线OB的反向延长线上和线段AO的延长线上.[解答]如图-3所示,直线AE为过点A与OB垂直的直线,垂足为E;直线BD为过点B与OA垂直的直线,垂足为D.图-3[方法规律] ①所有的垂足都要作垂直标记;②垂线画实线,延长线画虚线.5、 [方法规律] 判断两条直线平行要抓住两个关键一个前提.两个关键:一是“在同一平面〞;二是“不相交〞. 一个前提:两条直线.6、[点拨]运用平行公理的推论加以判断.[解答]因为a∥b,b∥c,所以a∥c,又因为c∥d,所以a∥d.[方法规律] 对于n条直线l1,l2,l3…l n,假设l1∥l2,l2∥l3,…,l n-1∥l n,那么这n条直线互相平行.7、[点拨]由∠1=∠2,与角平分线定义,可得∠EAQ=∠ABN,从而可证PQ∥MN.[解答] ∵AF平分∠EAQ,BC平分∠ABN,∴∠1=12∠EAQ,∠2=12∠ABN∵∠1=∠2,∴∠EAQ=∠ABN∴PQ∥MN[方法规律]此题不能直接判定PQ∥MN,要经过转化才能成为直接条件.8、[点拨]从标出的3个角可知:∠1与∠3是同位角,假设∠1=∠3,那么AB∥CD,由图可知,∠1+∠2=180°,∠2=3∠1,故可求出∠1,又由∠1+∠3=90°,可求出∠3.[解答] ∵∠1+∠2=180°,∠2=3∠1∴∠1+3∠1=180°,∴∠1=45°∵∠1+∠3=90°,∴∠3=45°∴∠1=∠3,∴AB∥CD.[方法规律] 利用角的关系和邻补角定义,求角定线.9、点拨] ∠1和∠3,∠2和∠3分别是l1与l3被l 所截而成的错角与l2与l3被l所截而成的同旁角,假设它们满足平行的判定条件再由平行公理推论即可得到l1∥l2.[解答] ∵∠1=∠3=80°∴l1∥l33 / 54 / 5∵∠2=100° ∴∠2+∠3=180° ∴l 2∥l 3∴l 1∥l 2[方法规律] 这里l 3为l 1与l 2平行架起了桥梁,这就是转化,它为与求证结论铺平了道路[点拨] ∠1与∠3是AD 、DC 被AC 所截的同旁角,由∠1=∠3并不能推出两条直线平行,但∠2=∠1所以能代换得到∠2=∠3,这时∠2与∠3是AB 与DC 被AC 所截得的错角,由错角相等可推出AB ∥CD .10、[解答]由条件可判断AB ∥CD ,理由如下: ∵AC 平分∠DAB 〔〕,∴∠1=∠2〔角平分线定义〕. 又∵∠1=∠3〔〕,∴∠2=∠3〔等量代换〕. ∴AB ∥CD (错角相等,两直线平行).[方法规律] 要判断两条直线平行,得寻找同位角、错角相等或同旁角互补.[点拨] 此题直接求∠C 不容易,如果过点C 作FC ∥AB ,就可以把问题转化为求的∠B 与∠D 的同旁角,进而求得∠C .11、[解答] 过点C 作FC ∥AB , ∵AB ∥ED ,∴FC ∥ED ,∴∠1+∠B =180°,∠2+∠D =180°, ∴∠1+∠2+∠B +∠D =360°. ∵∠B =140°,∠D =120°,∴∠1+∠2=360°-140°-120°=120°[方法规律]此类题型,一般都是过拐点作直线的平行线,从而把未知问题转化为问题.12、点拨]利用对顶角相等,转化为同旁角互补,得l 1∥l 2,再根据平行性质和对顶角相等即可求出∠4的度数.[解答]∵∠1=60°,∠2=120°,∴∠1+∠2=180° ∵∠1=∠6,∴∠6+∠2=180°,∴l 1∥l 2 ∴∠7=∠3=70°,∵∠4=∠7,∴∠4=70°.[方法规律]此题的切入点是对顶角相等,再根据平行的判定和性质,可求出∠4的度数.点拨] 由∠2=∠EBD ,∠1=∠2,得∠1=∠EBD ,从而得FG ∥CD ,再由平行线的性质和∠3=55°,可求出∠4的度数.[解答] ∵∠2=∠EBD ,∠1=∠2,∴∠1=∠EBD ∴GF ∥CD ,∴∠4=∠ABD∵∠3=55°,∴∠ABD =125°,∴∠4=125°,∴选D.13、[方法规律]此题综合运用了平行线的判定和性质,在解题过程中应由未知想,不断促使问题的转化.[点拨]由 CD ⊥AB ,EF ⊥AB ,得DC ∥EF , 从而得∠1=∠BCD ,再由∠1=∠2,可得DG ∥BC . [解答] DG ∥BC .∵CD ⊥AB ,EF ⊥AB , ∴∠CDB =∠EFB =90°∴CD ∥EF .〔同位角相等,两直线平行〕 ∴∠1=∠BCD .〔两直线平行,同位角相等〕 又∵∠1=∠2,∴∠2=∠BCD .∴DG ∥BC .〔错角相等,两直线平行〕[方法规律]此题抓住垂直证平行,促使条件向未知条件转换. 相交线平行线答案 1.D2.D 点拨:图中的邻补角分别是:∠AOC 与∠BOC ,∠AOC 与∠AOD ,∠COE 与∠DOE ,∠BOE 与∠AOE ,∠BOD 与∠BOC ,∠AOD 与∠BOD ,共6对,应选D . 3.D 4.C 5.C 6.A7.C 点拨:此题的题设是AB ∥CD ,解答过程中不能误用AD ∥BC 这个条件.8.B 点拨:∵AB ∥CD ,∠1=72°, ∴∠BEF=180°-∠1=108°. ∵ED 平分∠BEF , ∴∠BED=12∠BEF=54°.∵AB ∥CD ,∴∠2=∠BED=54°.应选B . 9.C 点拨:如答图,L 1,L 2两种情况容易考虑到,但受习惯性思维的影响,L 3这种情况容易被忽略. 10.B11.D 点拨:∠FCD=∠F=∠A=∠1=∠ABG=45°.应选D .12.C 点拨:由题意,知,230A B A B ∠=∠⎧⎨∠=∠-︒⎩或5 / 5180,230A B A B ∠+∠=︒⎧⎨∠=∠-︒⎩ 解之得∠B=30°或70°.应选C . 13.120°14.〔1〕BC ;同位角相等,两直线平行 〔2〕CD ;错角相等,两直线平行 〔3〕AB ;CD ;同旁角互补,两直线平行 15.〔2〕,〔3〕,〔5〕 16.115;65点拨:设∠BOC=x °,那么∠AOC=x °+50°. ∵∠AOC+∠BOC=180°. ∴x+50+x=180,解得x=65. ∴∠AOC=115°,∠BOC=65°. 17.145° 18.102 19.133点拨:如答图,延长AB 交L 2于点F . ∵L 1∥L 2,AB⊥L 1,∴∠BFE=90°. ∴∠FBE=90°-∠1=90°-43°=47°. ∴∠2=180°-∠FBE=133°. 20.∠1=∠221.解:如答图,由邻补角的定义知∠BOC=100°. ∵OD ,OE 分别是∠AOB ,∠BOC 的平分线,。
七年级下册相交线与平行线练习题及答案第五章相交线与平行线一、典型例题例1.如图1,直线a与b平行,∠1=(3x+70)°,∠2=(5x+22)°,求∠3的度数。
图1例2.已知:如图2,AB∥EF∥CD,EG平分∠XXX,∠B+∠BED+∠D=192°,求∠EGD的度数。
图2例3.如图3,已知AB∥CD,且∠B=40°,∠D=70°,求∠DEB的度数。
图3例4.平面上n条直线两两相交且无3条或3条以上直线共点,有多少个不同交点?例5.6个不同的点,其中只有3点在同一条直线上,2点确定一条直线,问能确定多少条直线?例6.10条直线两两相交,最多将平面分成多少块不同的区域?例7.两条直线相交于一点,所形成的角中有2对对顶角,4对邻补角,那么,三条直线相交于一点时,有多少对对顶角,多少对邻补角?四条直线相交于一点时,有多少对对顶角,多少对邻补角?n条直线相交于一点时,有多少对对顶角,多少对邻补角?二、巩固练1.平面上有5个点,其中仅有3点在同一直线上,过每2点作一条直线,一共可以作直线()条。
A。
6B。
7C。
8D。
92.平面上三条直线相互间的交点个数是()。
A。
3B。
1或3C。
1或2或3D。
不一定是1,2,33.平面上6条直线两两相交,其中仅有3条直线过一点,则截得不重叠线段共有()。
A。
36条B。
33条C。
24条D。
21条4.已知平面中有n个点,A、B、C三个点在一条直线上,A、D、F、E四个点也在一条直线上,除这些之外,再没有三点共线或四点共线,以这n个点作一条直线,一共可以画出38条不同的直线,这时n等于()。
A。
9B。
10C。
11D。
125.若平行直线AB、CD与相交直线EF、GH相交成如图所示的图形,则共得同旁内角()。
A。
4对B。
8对C。
12对D。
16对6.如图,已知FD∥BE,则∠1+∠2-∠3=()。
图4A。
90°B。
135°C。
四年级下册数学单元测试-3。
平行与相交一、单选题1.过直线外一点A,可以画()条与这条直线垂直的线段。
A. 1条B. 2条C. 3条D. 无数条2.如果直线a和直线b都与直线c垂直,那么直线a与直线b( )。
A. 互相垂直B. 互相平行C. 前面两种都有可能3.在同一平面内垂直于同一条直线的两条直线()。
A. 互相垂直B. 互相平行C. 互相交叉4.在同一平面内,不相交的两条直线一定()A. 平行B. 垂直C. 不平行也不垂直二、判断题5.两条直线相交成直角时,这两条直线互相垂直。
()6.只要不相交的两条直线就一定平行。
()7.把一张长方形纸沿同一方向对折两次后打开,这些折痕互相平行。
()8.一组平行线就是同一平面内两条不相交的直线。
()三、填空题9.如果两条直线相交成直角,就说这两条直线互相________,其中一条直线叫作另一条直线的________,这两条直线的交点叫作________。
10.在同一平面内,两条直线的位置关系是________或________。
11.下图中有________组平行线,________组垂线。
A. 1B. 2C. 3D. 4四、解答题12.下列哪些字母含有垂直的线段?A B C E F H I M五、作图题13.测量∠A=()度;过O点画射线AC的垂线。
14.过点A做直线b的垂线。
参考答案一、单选题1.【答案】A【解析】【解答】可以画1条与这条直线垂直的线段。
故答案为:A。
【分析】过直线外一点,有且只有一条直线与已知直线垂直。
2.【答案】B【解析】【解答】解:直线a与直线b互相平行。
故答案为:B。
【分析】同时垂直于一条直线的两条直线互相平行,由此填空即可。
3.【答案】B【解析】【解答】在同一平面内垂直于同一条直线的两条直线互相平行。
故答案为:B。
【分析】垂直于同一直线的两直线平行。
4.【答案】A【解析】【解答】解:在同一平面内,不相交的两条直线一定平行。
故答案为:A。
【必刷题】2024八年级数学下册平行线与相交线专项专题训练(含答案)试题部分一、选择题:1. 在同一平面内,下列说法正确的是()A. 两条平行线可以相交B. 两条相交线一定不平行C. 两条平行线的斜率相等D. 两条相交线的斜率一定相等2. 若两条直线平行,则它们的倾斜角()A. 相等B. 互补C. 互余D. 无法确定3. 下列图形中,不是由平行线与相交线构成的是()A. 矩形B. 正方形C. 梯形D. 圆4. 在平行四边形ABCD中,若AB=4cm,AD=6cm,则对角线AC的长度可能是()A. 2cmB. 5cmC. 7cmD. 10cm5. 下列关于平行线的性质,错误的是()A. 同位角相等B. 内错角相等C. 同旁内角互补D. 同旁内角相等6. 下列关于相交线的性质,正确的是()A. 对顶角相等B. 邻补角相等C. 内错角相等D. 同旁内角相等7. 若直线AB平行于直线CD,直线EF与直线AB、CD相交,则下列结论正确的是()A. ∠AEF + ∠CFD = 180°B. ∠BEF + ∠DEF = 180°C. ∠AEF = ∠CFDD. ∠BEF = ∠DEF8. 在三角形ABC中,若AB=AC,直线DE平行于BC,则下列结论正确的是()A. ∠BAC = ∠ABCB. ∠BAC = ∠ACBC. ∠BAC = ∠DCED. ∠ABC = ∠ACB9. 下列关于平行线的说法,错误的是()A. 平行线之间的距离处处相等B. 平行线上的任意一点到另一条平行线的距离相等C. 平行线的斜率相等D. 平行线一定在同一平面内10. 若两条直线垂直相交,则它们的斜率之积为()A. 0B. 1C. 1D. 无法确定二、判断题:1. 两条平行线的同旁内角互补。
()2. 两条相交线的对顶角相等。
()3. 平行四边形的对角线互相平分。
()4. 两条平行线的斜率相等。
()5. 在三角形中,若两边平行,则这两边所对的角相等。
一、选择题1.为了亮化某景点,石家庄市在两条笔直且互相平行的景观道MN 、QP 上分别放置A 、B 两盏激光灯,如图所示.A 灯发出的光束自AM 逆时针旋转至AN 便立即回转,B 灯发出的光束自BP 逆时针旋转至BQ 便立即回转,两灯不间断照射,A 灯每秒转动30°,B 灯每秒转动10°,B 灯先转动2秒,A 灯才开始转动,当B 灯光束第一次到达BQ 之前,两灯的光束互相平行时A 灯旋转的时间是( )A .1或6秒B .8.5秒C .1或8.5秒D .2或6秒 2.如图,//AB CD ,PF CD ⊥于F ,40AEP ∠=︒,则EPF ∠的度数是( )A .120︒B .130︒C .140︒D .150︒3.给出下列说法: (1)两条直线被第三条直线所截,同位角相等;(2)不相等的两个角不是同位角;(3)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(4)从直线外一点到这条直线的垂线段,叫做该点到直线的距离;(5)过一点作已知直线的平行线,有且只有一条.其中真命题的有( )A .0个B .1个C .2个D .3个4.如下图,在“A ”字型图中,AB 、AC 被DE 所截,则A ∠与4∠是( )A .同位角B .内错角C .同旁内角D .邻补角 5.如图,直线12//l l ,23216∠+∠=°,则1∠的度数为( )A .216︒B .36︒C .44︒D .18︒6.如图,两个直角三角形重叠在一起,将ABC 沿AB 方向平移2cm 得到DEF ,CH =2cm ,EF =4cm ,下列结论:①BH //EF ;②AD =BE ;③DH =CH ;④∠C =∠BHD ;⑤阴影部分的面积为6cm 2.其中正确的是( )A .①②③④⑤B .②③④⑤C .①②③⑤D .①②④⑤ 7.如果,直线//AB CD ,65A ∠=︒,则EFC ∠等于( )A .105︒B .115︒C .125︒D .135︒8.如图,//AB CD ,AC 平分BAD ∠,B CDA ∠=∠,点E 在AD 的延长线上,连接EC ,2B CED ∠=∠,下列结论:①//BC AD ;②CA 平分BCD ∠;③AC EC ⊥;④ECD CED ∠=∠.其中正确的个数为( )A .1个B .2个C .3个D .4个 9.如图,////AF BE CD ,若140∠=︒,250∠=︒,3120∠=︒,则下列说法正确的是( )A .100F ∠=︒B .140C ∠=︒ C .130A ∠=︒D .60D ∠=︒ 10.如图,已知AB ∥CD ,BE 和DF 分别平分∠ABF 和∠CDE ,2∠E-∠F=48°,则∠CDE 的度数为( ).A .16°B .32°C .48°D .64°二、填空题11.如图,//AC BD ,BC 平分ABD ∠,设ACB ∠为α,点E 是射线BC 上的一个动点,若:5:2BAE CAE ∠∠=,则CAE ∠的度数为__________.(用含α的代数式表示).12.一副三角尺按如图所示叠放在一起,其中点,B D 重合,若固定三角形AOB ,将三角形ACD 绕点A 顺时针旋转一周,共有 _________次 出现三角形ACD 的一边与三角形AOB 的某一边平行.13.如图,已知AB CD ∥,CE 、BE 的交点为E ,现作如下操作:第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E ,第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E ,第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E ,…第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E .若1n E ∠=度,那BEC ∠等于__________度.14.小明将一副三角板中的两块直角三角尺的直角顶点C按如图所示的方式叠放在一起,当∠ACE<180°且点E在直线AC的上方时,他发现若∠ACE=_____,则三角板BCE有一条边与斜边AD平行.15.如图,有两个正方形夹在AB与CD中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)16.如图,已知直线l1∥l2,∠A=125°,∠B=85°,且∠1比∠2大4°,那么∠1=______.17.一副三角板按如图所示(共定点A)叠放在一起,若固定三角板ABC,改变三角板ADE的位置(其中A点位置始终不变),当∠BAD=___°时,DE∥AB.18.把一张对边互相平行的纸条,折成如图所示,EF 是折痕,若32EFB ∠=︒,则下列结论:(1)'32C EF ∠=︒;(2)148AEC ∠=︒;(3)64BGE ∠=︒;(4)116BFD ∠=︒.正确的有________个.19.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB ,CD .若CD ∥BE ,∠1=28°,则∠2的度数是______.20.如图//AB CD ,分别作AEF ∠和CFE ∠的角平分线交于点1P ,称为第一次操作,则1P ∠=_______;接着作1AEP ∠和1CFP ∠的角平分线交于2P ,称为第二次操作,继续作2AEP ∠和2CFP ∠的角平分线交于2P ,称方第三次操作,如此一直操作下去,则n P ∠=______.三、解答题21.如图1,MN ∥PQ ,点C 、B 分别在直线MN 、PQ 上,点A 在直线MN 、PQ 之间. (1)求证:∠CAB =∠MCA +∠PBA ;(2)如图2,CD ∥AB ,点E 在PQ 上,∠ECN =∠CAB ,求证:∠MCA =∠DCE ;(3)如图3,BF 平分∠ABP ,CG 平分∠ACN ,AF ∥CG .若∠CAB =60°,求∠AFB 的度数.22.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,求证:90A C ∠+∠=︒;(2)如图2,过点B 作BD MA ⊥的延长线于点D ,求证:ABD C ∠=∠;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,且BF 平分DBC ∠,BE 平分ABD ∠,若AFC BCF ∠=∠,3BFC DBE ∠=∠,求EBC ∠的度数. 23.如图,已知直线//AB 射线CD ,100CEB ∠=︒.P 是射线EB 上一动点,过点P 作PQ //EC 交射线CD 于点Q ,连接CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.(1)若点P ,F ,G 都在点E 的右侧,求PCG ∠的度数;(2)若点P ,F ,G 都在点E 的右侧,30EGC ECG ∠-∠=︒,求CPQ ∠的度数;(3)在点P 的运动过程中,是否存在这样的情形,使:4:3EGC EFC ∠∠=?若存在,求出CPQ ∠的度数;若不存在,请说明理由.24.如图1,已知直线CD ∥EF ,点A ,B 分别在直线CD 与EF 上.P 为两平行线间一点.(1)若∠DAP =40°,∠FBP =70°,则∠APB =(2)猜想∠DAP ,∠FBP ,∠APB 之间有什么关系?并说明理由;(3)利用(2)的结论解答:①如图2,AP 1,BP 1分别平分∠DAP ,∠FBP ,请你写出∠P 与∠P 1的数量关系,并说明理由;②如图3,AP 2,BP 2分别平分∠CAP ,∠EBP ,若∠APB =β,求∠AP 2B .(用含β的代数式表示)25.如图1,点E 在直线AB 、DC 之间,且180DEB ABE CDE ∠+∠-∠=︒.(1)求证://AB DC ;(2)若点F 是直线BA 上的一点,且BEF BFE ∠=∠,EG 平分DEB ∠交直线AB 于点G ,若20D ∠=︒,求FEG ∠的度数;(3)如图3,点N 是直线AB 、DC 外一点,且满足14CDM CDE ∠=∠,14ABN ABE ∠=∠,ND 与BE 交于点M .已知()012CDM αα∠=︒<<︒,且//BN DE ,则NMB ∠的度数为______(请直接写出答案,用含α的式子表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】设A 灯旋转的时间为t 秒,求出t 的取值范围为016t <≤,再分①06t <≤,②612t <≤和③1216t <≤三种情况,先分别求出MAM '∠和PBP '∠的度数,再根据平行线的性质可得MAM PBP ''∠=∠,由此建立方程,解方程即可得.【详解】解:设A 灯旋转的时间为t 秒,A 灯光束第一次到达AN 所需时间为180630︒=︒秒,B 灯光束第一次到达BQ 所需时间为1801810︒=︒秒, B 灯先转动2秒,A 灯才开始转动,0182t ∴<≤-,即016t <≤,由题意,分以下三种情况:①如图,当06t <≤时,//AM BP '',30,10(2)MAM t PBP t ''∴∠=︒∠=︒+,//,//MN PQ AM BP '',1,1MAM PBP ''∴∠=∠∠=∠,MAM PBP ''∴∠=∠,即3010(2)t t ︒=︒+,解得1t =,符合题设;②如图,当612t <≤时,//AM BP '',18030(6)36030,10(2)MAM t t PBP t ''∴∠=︒-︒-=︒-︒∠=︒+,//,//MN PQ AM BP '',2180,2180MAM PBP ''∴∠+∠=︒∠+∠=︒,MAM PBP ''∴∠=∠,即3603010(2)t t ︒-︒=︒+,解得8.5t =符合题设;③如图,当1216t <≤时,//AM BP '',30(12)30360,10(2)MAM t t PBP t ''∴∠=︒-=︒-︒∠=︒+,同理可得:MAM PBP ''∠=∠,即3036010(2)t t ︒-︒=︒+,解得1916t =>,不符题设,舍去;综上,A 灯旋转的时间为1秒或8.5秒,故选:C .【点睛】本题考查了平行线的性质、一元一次方程的几何应用等知识点,正确求出时间t 的取值范围,并据此分三种情况讨论是解题关键.2.B解析:B【分析】过点P 作MN ∥AB ,结合垂直的定义和平行线的性质求∠EPF 的度数.【详解】解:如图,过点P作MN∥AB,∵∠AEP=40°,∴∠EPN=∠AEP=40°∵AB∥CD,PF⊥CD于F,∴PF⊥MN,∴∠NPF=90∴∠EPF=∠EPN+∠NPF=40°+90°=130°故答案为B【点睛】本题考查了平行线的判定定理和性质,作出辅助线构造平行线是解答本题的关键.3.B解析:B【详解】试题分析:根据两平行线被第三条直线所截,同位角相等,故(1)不正确;同位角不一定相等,只有在两直线平行时,同位角相等,故(2)不正确;平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交,故(3)正确;从直线外一点到这条直线的垂线段的长度,叫做该点到直线的距离,故(4)不正确;过直线外一点作已知直线的平行线,有且只有一条,故(5)不正确.故选B.4.A解析:A【分析】根据同位角,内错角,同旁内角和邻补角的定义判断即可.【详解】解:在“A”字型图中,两条直线AB、AC被DE所截形成的角中,∠A与∠4都在直线AB、DE的同侧,并且在第三条直线(截线)AC的同旁,则∠A与∠4是同位角.故选:A.【点睛】本题主要考查了同位角,内错角,同旁内角和邻补角的定义,正确理解定义是解题的关键.5.B解析:B【分析】记∠1顶点为A ,∠2顶点为B ,∠3顶点为C ,过点B 作BD ∥l 1,由平行线的性质可得∠3+∠DBC =180°,∠ABD +(180°-∠1)=180°,由此得到∠3+∠2+(180°-∠1)=360°,再结合已知条件即可求出结果.【详解】如图,过点B 作BD ∥l 1,∵12//l l ,∴BD ∥l 1∥l 2,∴∠3+∠DBC =180°,∠ABD +(180°-∠1)=180°,∴∠3+∠DBC +∠ABD +(180°-∠1)=360°,即∠3+∠2+(180°-∠1)=360°,又∵∠2+∠3=216°,∴216°+(180°-∠1)=360°,∴∠1=36°.故选:B .【点睛】本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线性质是解题的关键. 6.D解析:D【分析】根据平移的性质直接可判断①②;先根据线段的和差可得2cm BH =,再根据直角三角形的斜边大于直角边即可判断③;根据平行线的性质可判断④;根据阴影部分的面积等于直角梯形BEFH 的面积即可判断⑤.【详解】解:由题意得:90ABC ∠=︒,由平移的性质得:,4cm,2cm AB DE BC EF AD BE =====,//,//,90BH EF AC DF E ABC ∠=∠=︒,则结论①②正确;2cm CH =,2cm BH BC CH CH ∴=-==,在Rt BDH 中,斜边DH 大于直角边BH ,DH CH ∴>,即结论③错误;//AC DF ,C BHD ∴∠=∠,即结论④正确;由平移的性质得:ABC 的面积等于DEF 的面积,则阴影部分的面积为ABC BDH DEF BDH S S S S -=-,BEFH S =直角梯形,2BH EF BE +=⋅, 2422+=⨯, 26(cm )=,即结论⑤正确;综上,结论正确的是①②④⑤,故选:D .【点睛】本题考查了平移的性质、平行线的性质等知识点,熟练掌握平移的性质是解题关键. 7.B解析:B【分析】先求∠DFE 的度数,再利用平角的定义计算求解即可.【详解】∵AB ∥CD ,∴∠DFE =∠A =65°,∴∠EFC =180°-∠DFE =115°,故选B .【点睛】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键. 8.D解析:D【分析】结合平行线性质和平分线判断出①②正确,再结合平行线和平分线根据等量代换判断出③④正确即可.【详解】解:∵AB //CD ,∴∠1=∠2,∵AC 平分∠BAD ,∴∠2=∠3,∴∠1=∠3,∵∠B =∠CDA ,∴∠1=∠4,∴∠3=∠4,∴BC //AD ,∴①正确;∴CA 平分∠BCD ,∴②正确;∵∠B=2∠CED,∴∠CDA=2∠CED,∵∠CDA=∠DCE+∠CED,∴∠ECD=∠CED,∴④正确;∵BC//AD,∴∠BCE+∠AEC= 180°,∴∠1+∠4+∠DCE+∠CED= 180°,∴∠1+∠DCE = 90°,∴∠ACE= 90°,∴AC⊥EC,∴③正确故其中正确的有①②③④,4个,故选:D.【点睛】此题考查平行线的性质和角平分线的性质,难度一般,利用性质定理判断是关键.9.D解析:D【分析】根据平行线的性质进行求解即可得到答案.【详解】解:∵BE∥CD∴∠ 2+∠C=180°,∠ 3+∠D=180°∵∠ 2=50°,∠ 3=120°∴∠C=130°,∠D=60°又∵BE∥AF,∠ 1=40°∴∠A=180°-∠ 1=140°,∠F=∠ 3=120°故选D.【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质是解题的关键.10.B解析:B【分析】已知BE和DF分别平分∠ABF和∠CDE,根据角平分线分定义可得∠ABE=12∠ABF,∠CDF=12∠CDE;过点E作EM//AB,点F作FN//AB,即可得////AB CD EM//FN,由平行线的性质可得∠ABE=∠BEM,∠MED=∠EDC,∠ABF=∠BFN,∠CDF=∠DFN,由此可得∠BED=∠BEM+∠DEM=∠ABE+∠CDE=12∠ABF+∠CDE,∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=∠ABF +12∠CDE,又因2∠BED-∠BFD=48°,即可得2(12∠ABF+∠CDE)-(∠ABF +12∠CDE)=48°,由此即可求得∠CDE=32°.【详解】∵BE和DF分别平分∠ABF和∠CDE,∴∠ABE=12∠ABF,∠CDF=12∠CDE,过点E作EM//AB,点F作FN//AB,∵//AB CD,∴////AB CD EM//FN,∴∠ABE=∠BEM,∠MED=∠EDC,∠ABF=∠BFN,∠CDF=∠DFN,∴∠BED=∠BEM+∠DEM=∠ABE+∠CDE=12∠ABF+∠CDE,∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=∠ABF +12∠CDE,∵2∠BED-∠BFD=48°,∴2(12∠ABF+∠CDE)-(∠ABF +12∠CDE)=48°,∴∠CDE=32°.故选B.【点睛】本题考查了平行线的性质,根据平行线的性质确定有关角之间的关系是解决问题的关键.二、填空题11.或【分析】根据题意可分两种情况,①若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再由,,列出等量关系求解即可得出结论;②若点运动到下方,根据 解析:41203α︒-或36047α︒-【分析】根据题意可分两种情况,①若点E 运动到1l 上方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再由5:2BAE CAE ∠∠=,BAE BAC CAE ∠=∠+∠,列出等量关系求解即可得出结论;②若点E 运动到1l 下方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再由5:2BAE CAE ∠∠=,BAE BAC CAE ∠=∠-∠列出等量关系求解即可得出结论.【详解】解:如图,若点E 运动到l 1上方,//AC BD ,CBD ACB α∴∠=∠=,BC 平分ABD ∠,22ABD CBD α∴∠=∠=,1801802BAC ABD α∴∠=︒-∠=︒-,又5:2BAE CAE ∠∠=,5():2BAC CAE CAE ∴∠+∠∠=, 5(1802):2CAE CAE α︒-+∠∠=, 解得180241205312CAE αα︒-∠==︒--; 如图,若点E 运动到l 1下方,//AC BD ,CBD ACB α∴∠=∠=, BC 平分ABD ∠,22ABD CBD α∴∠=∠=,1801802BAC ABD α∴∠=︒-∠=︒-, 又5:2BAE CAE ∠∠=,5():2BAC CAE CAE ∴∠-∠∠=, 5(1802):2CAE CAE α︒--∠∠=, 解得180236045712CAE αα︒-︒-∠==+. 综上CAE ∠的度数为41203α︒-或36047α︒-. 故答案为:41203α︒-或36047α︒-. 【点睛】 本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补.两直线平行,内错角相等,合理应用平行线的性质是解决本题的关键. 12.【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分10种情况讨论:(1)如图1,AD 边与OB 边平行时,∠BAD =45°或135°;;解析:8【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分10种情况讨论:(1)如图1,AD 边与OB 边平行时,∠BAD =45°或135°;;(2)如图2,当AC 边与OB 平行时,∠BAD =90°+45°=135°或45°;(3)如图3,DC 边与AB 边平行时,∠BAD =60°+90°=150°,(4)如图4,DC 边与OB 边平行时,∠BAD =135°+30°=165°,(5)如图5,DC 边与OB 边平行时,∠BAD =45°﹣30°=15°;(6)如图6,DC 边与AO 边平行时,∠BAD =15°+90°=105°(7)如图7,DC 边与AB 边平行时,∠BAD =30°,(8)如图8,DC 边与AO 边平行时,∠BAD =30°+45°=75°;综上所述:∠BAD 的所有可能的值为:15°,30°,45°,75°,105°,135°,150°,165°.故答案为:8.【点睛】本题考查了平行线的性质及判定,画出所有符合题意的示意图是解决本题的关键.13.【分析】先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE;根据∠ABE和∠DCE的平分线交点为E1,解析:2n【分析】先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE;根据∠ABE和∠DCE的平分线交点为E1,则可得出∠CE1B=∠ABE1+∠DCE112=∠ABE12+∠DCE12=∠BEC;同理可得∠BE 2C =∠ABE 2+∠DCE 212=∠ABE 112+∠DCE 112=∠CE 1B 14=∠BEC ;根据∠ABE 2和∠DCE 2的平分线,交点为E 3,得出∠BE 3C 18=∠BEC ;…据此得到规律∠E n 12n =∠BEC ,最后求得∠BEC 的度数.【详解】如图1,过E 作EF ∥AB .∵AB ∥CD ,∴AB ∥EF ∥CD ,∴∠B =∠1,∠C =∠2.∵∠BEC =∠1+∠2,∴∠BEC =∠ABE +∠DCE ;如图2.∵∠ABE 和∠DCE 的平分线交点为E 1,∴∠CE 1B =∠ABE 1+∠DCE 112=∠ABE 12+∠DCE 12=∠BEC . ∵∠ABE 1和∠DCE 1的平分线交点为E 2, ∴∠BE 2C =∠ABE 2+∠DCE 212=∠ABE 112+∠DCE 112=∠CE 1B 14=∠BEC ; ∵∠ABE 2和∠DCE 2的平分线,交点为E 3, ∴∠BE 3C =∠ABE 3+∠DCE 312=∠ABE 212+∠DCE 212=∠CE 2B 18=∠BEC ; …以此类推,∠E n 12n=∠BEC , ∴当∠E n =1度时,∠BEC 等于2n 度.故答案为:2n .【点睛】本题考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.14.或或【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形:①如图1中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠E解析:30或120︒或165︒【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形:①如图1中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠ECD=∠ECD+∠DCB=90°,∴∠ACE=∠DCB=30°.②如图2中,当AD∥CE时,∠DCE=∠D=30°,可得∠ACE=90°+30°=120°.③如图2中,当AD∥BE时,延长BC交AD于M.∵AD∥BE,∴∠AMC=∠B=45°,∴∠ACM=180°-60°-45°=75°,∴∠ACE=75°+90=165°,综上所述,满足条件的∠ACE的度数为30°或120°或165°.故答案为30°或120°或165°.【点睛】本题考查旋转变换、平行线的判定和性质、三角形内角和定理等知识,解题的关键是学会用分类讨论的首先思考问题,属于中考常考题型.15.【详解】作IF∥AB,GK∥AB,JH∥AB因为AB∥CD所以,AB∥CD∥ IF∥GK∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠KGF=∠解析:【详解】作IF∥AB,GK∥AB,JH∥AB因为AB∥CD所以,AB∥CD∥ IF∥GK∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠KGF=∠GFI=80°所以,∠HGK=150°-∠KGF=70°所以,∠JHG=∠HGK=70°同理,∠2=90°-∠JHG=20°所以,∠1=90°-∠2=70°故答案为70【点睛】本题考查了平行线的性质,正确作出辅助线是关键,注意掌握平行线的性质:两直线平行,内错角相等.16.【分析】延长AB ,交两平行线与C 、D ,根据平行线的性质和领补角的性质计算即可;【详解】延长AB ,交两平行线与C 、D ,∵直线l1∥l2,∠A =125°,∠B =85°,∴,,,∴,∴,解析:17︒【分析】延长AB ,交两平行线与C 、D ,根据平行线的性质和领补角的性质计算即可;【详解】延长AB ,交两平行线与C 、D ,∵直线l 1∥l 2,∠A =125°,∠B =85°,∴4285∠+∠=︒,13125∠+∠=︒,34180∠+∠=︒,∴852*******︒-∠+︒-∠=︒,∴1230∠+∠=︒,又∵∠1比∠2大4°,∴2=14∠∠-︒,∴2134∠=︒,∴117∠=︒;故答案是17 .【点睛】本题主要考查了平行线的性质应用,准确计算是解题的关键.17.30或150【分析】分两种情况,根据ED∥AB,利用平行线的性质,即可得到∠BAD的度数.【详解】解:如图1所示:当ED∥AB时,∠BAD=∠D=30°;如图2所示,当ED∥AB时,∠D解析:30或150【分析】分两种情况,根据ED∥AB,利用平行线的性质,即可得到∠BAD的度数.【详解】解:如图1所示:当ED∥AB时,∠BAD=∠D=30°;如图2所示,当ED∥AB时,∠D=∠BAD=180°,∵∠D=30°∴∠BAD=180°-30°=150°;故答案为:30°或150°.【点睛】本题主要考查了平行线的判定,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由直线的平行关系来寻找角的数量关系.18.3【分析】(1)根据平行线的性质即可得到答案;(2)根据平行线的性质得到:∠AEF=180°-∠EFB=180°-32°=148°,又因为∠AEF=∠AEC+∠GEF,可得∠AEC<148°,解析:3【分析】(1)根据平行线的性质即可得到答案;(2)根据平行线的性质得到:∠AEF=180°-∠EFB=180°-32°=148°,又因为∠AEF=∠AEC+∠GEF,可得∠AEC<148°,即可判断是否正确;(3)根据翻转的性质可得∠GEF=∠C′EF,又因为∠C′EG=64°,根据平行线性质即可得到∠BGE=∠C′EG=64°,即可判断是否正确;(4)根据对顶角的性质得:∠CGF=∠BGE=64°,根据平行线得性质即可得:∠BFD=180°-∠CGF即可得到结果.【详解】AE BG,∠EFB=32°,解:(1)∵//∴∠C′EF=∠EFB=32°,故本小题正确;(2)∵AE∥BG,∠EFB=32°,∴∠AEF=180°-∠EFB=180°-32°=148°,∵∠AEF=∠AEC+∠GEF,∴∠AEC<148°,故本小题错误;(3)∵∠C′EF=32°,∴∠GEF=∠C′EF=32°,∴∠C′EG=∠C′EF+∠GEF=32°+32°=64°,∵AC′∥BD′,∴∠BGE=∠C′EG=64°,故本小题正确;(4)∵∠BGE=64°,∴∠CGF=∠BGE=64°,DF CG,∵//∴∠BFD=180°-∠CGF=180°-64°=116°,故本小题正确.故正确的为:(1)(3)(4)共3个,故答案为:3.【点睛】本题考查的是平行线的性质及翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.19.56°【分析】由折叠的性质可得∠3=∠1=28°,从而求得∠4=56°,再根据平行线的性质定理求出∠EBD =180°﹣∠4=124°,最后再根据平行线性质定理求出∠2=56°.【详解】解:如解析:56°【分析】由折叠的性质可得∠3=∠1=28°,从而求得∠4=56°,再根据平行线的性质定理求出∠EBD =180°﹣∠4=124°,最后再根据平行线性质定理求出∠2=56°.【详解】解:如图,由折叠的性质,可得∠3=∠1=28°,∴∠4=∠1+∠3=56°,∵CD ∥BE ,AC ∥BD ,∴∠EBD =180°﹣∠4=124°,又∵CD ∥BE ,∴∠2=180°﹣∠CBD =180°﹣124°=56°.故答案为:56°.【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系. 20.90°【分析】过P1作P1Q ∥AB ,则P1Q ∥CD ,根据平行线的性质得到∠AEF+∠CFE=180°,∠AEP1=∠EP1Q ,∠CFP1=∠FP1Q ,结合角平分线的定义可计算∠E解析:90°902n︒ 【分析】过P 1作P 1Q ∥AB ,则P 1Q ∥CD ,根据平行线的性质得到∠AEF +∠CFE =180°,∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q ,结合角平分线的定义可计算∠EP 1F ,再同理求出∠P 2,∠P 3,总结规律可得n P ∠.【详解】解:过P 1作P 1Q ∥AB ,则P 1Q ∥CD ,∵AB ∥CD ,∴∠AEF +∠CFE =180°,∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q ,∵AEF ∠和CFE ∠的角平分线交于点1P ,∴∠EP 1F =∠EP 1Q +∠FP 1Q =∠AEP 1+∠CFP 1=12(∠AEF +∠CFE )=90°;同理可得:∠P 2=14(∠AEF +∠CFE )=45°, ∠P 3=18(∠AEF +∠CFE )=22.5°, ...,∴902n nP ︒∠=, 故答案为:90°,902n ︒.【点睛】本题主要考查了平行线的性质,角平分线的定义,规律性问题,解决问题的关键是作辅助线构造内错角,依据两直线平行,内错角相等进行计算求解.三、解答题21.(1)证明见解析;(2)证明见解析;(3)120°.【分析】(1)过点A 作AD ∥MN ,根据两直线平行,内错角相等得到∠MCA =∠DAC ,∠PBA =∠DAB ,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到∴、∠CAB +∠ACD =180°,由邻补角定义得到∠ECM +∠ECN =180°,再等量代换即可得解;(3)由平行线的性质得到,∠FAB =120°﹣∠GCA ,再由角平分线的定义及平行线的性质得到∠GCA ﹣∠ABF =60°,最后根据三角形的内角和是180°即可求解.【详解】解:(1)证明:如图1,过点A 作AD ∥MN ,∵MN ∥PQ ,AD ∥MN ,∴AD ∥MN ∥PQ ,∴∠MCA =∠DAC ,∠PBA =∠DAB ,∴∠CAB =∠DAC +∠DAB =∠MCA +∠PBA ,即:∠CAB =∠MCA +∠PBA ;(2)如图2,∵CD ∥AB ,∴∠CAB +∠ACD =180°,∵∠ECM +∠ECN =180°,∵∠ECN =∠CAB∴∠ECM =∠ACD ,即∠MCA +∠ACE =∠DCE +∠ACE ,∴∠MCA =∠DCE ;(3)∵AF ∥CG ,∴∠GCA +∠FAC =180°,∵∠CAB =60°即∠GCA +∠CAB +∠FAB =180°,∴∠FAB =180°﹣60°﹣∠GCA =120°﹣∠GCA ,由(1)可知,∠CAB =∠MCA +∠ABP ,∵BF 平分∠ABP ,CG 平分∠ACN ,∴∠ACN =2∠GCA ,∠ABP =2∠ABF ,又∵∠MCA =180°﹣∠ACN ,∴∠CAB =180°﹣2∠GCA +2∠ABF =60°,∴∠GCA ﹣∠ABF =60°,∵∠AFB +∠ABF +∠FAB =180°,∴∠AFB =180°﹣∠FAB ﹣∠FBA=180°﹣(120°﹣∠GCA )﹣∠ABF=180°﹣120°+∠GCA ﹣∠ABF=120°.【点睛】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键.22.(1)见解析;(2)见解析;(3)︒=∠105EBC .【分析】(1)先根据平行线的性质得到C BDA ∠=∠,然后结合AB BC ⊥即可证明;(2)过B 作//BH DM ,先说明ABD CBH ∠=∠,然后再说明//BH NC 得到CBH C ∠=∠,最后运用等量代换解答即可;(3)设∠DBE =a ,则∠BFC =3a ,根据角平分线的定义可得∠ABD =∠C =2a ,∠FBC =12∠DBC =a +45°,根据三角形内角和可得∠BFC +∠FBC +∠BCF =180°,可得∠AFC =∠BCF 的度数表达式,再根据平行的性质可得∠AFC +∠NCF =180°,代入即可算出a 的度数,进而完成解答.【详解】(1)证明:∵//AM CN ,∴C BDA ∠=∠,∵AB BC ⊥于B , ∴90B ∠=︒,∴90A BDA ∠+∠=︒,∴90A C ∠+∠=︒;(2)证明:过B 作//BH DM ,∵BD MA ⊥,∴90ABD ABH ∠+∠=︒,又∵AB BC ⊥,∴90ABH CBH ∠+∠=︒,∴ABD CBH ∠=∠,∵//BH DM ,//AM CN∴//BH NC ,∴CBH C ∠=∠,∴ABD C ∠=∠;(3)设∠DBE =a ,则∠BFC =3a ,∵BE 平分∠ABD ,∴∠ABD =∠C =2a ,又∵AB ⊥BC ,BF 平分∠DBC ,∴∠DBC =∠ABD +∠ABC =2a +90,即:∠FBC =12∠DBC =a +45°又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+45°+∠BCF=180°∴∠BCF=135°-4a,∴∠AFC=∠BCF=135°-4a,又∵AM//CN,∴∠AFC+∠NCF=180°,即:∠AFC+∠BCN+∠BCF=180°,∴135°-4a+135°-4a+2a=180,解得a=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键.23.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E 的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.【详解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=12∠QCF+12∠FCE=12∠ECQ=40°;(2)∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=12(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x,①当点G、F在点E的右侧时,则∠ECG=x,∠PCF=∠PCD=32 x,∵∠ECD=80°,∴x+x+32x+32x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+32x=56°;②当点G、F在点E的左侧时,则∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=12∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.24.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=1 1802β︒-.【分析】(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证;(2)结论:∠APB=∠DAP+∠FBP.(3)①根据(2)的规律和角平分线定义解答;②根据①的规律可得∠APB =∠DAP +∠FBP ,∠AP 2B =∠CAP 2+∠EBP 2,然后根据角平分线的定义和平角等于180°列式整理即可得解.【详解】(1)证明:过P 作PM ∥CD ,∴∠APM =∠DAP .(两直线平行,内错角相等),∵CD ∥EF (已知),∴PM ∥CD (平行于同一条直线的两条直线互相平行),∴∠MPB =∠FBP .(两直线平行,内错角相等),∴∠APM +∠MPB =∠DAP +∠FBP .(等式性质) 即∠APB =∠DAP +∠FBP =40°+70°=110°. (2)结论:∠APB=∠DAP +∠FBP .理由:见(1)中证明.(3)①结论:∠P=2∠P 1;理由:由(2)可知:∠P =∠DAP +∠FBP ,∠P 1=∠DAP 1+∠FBP 1,∵∠DAP =2∠DAP 1,∠FBP =2∠FBP 1,∴∠P =2∠P 1.②由①得∠APB =∠DAP +∠FBP ,∠AP 2B =∠CAP 2+∠EBP 2,∵AP 2、BP 2分别平分∠CAP 、∠EBP ,∴∠CAP 2=12∠CAP ,∠EBP 2=12∠EBP ,∴∠AP 2B =12∠CAP +12∠EBP , = 12(180°-∠DAP )+ 12(180°-∠FBP ),=180°- 12(∠DAP +∠FBP ),=180°- 12∠APB ,=180°- 12β.【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线.25.(1)见解析;(2)10°;(3)18015α︒-【分析】(1)过点E 作EF ∥CD ,根据平行线的性质,两直线平行,内错角相等,得出,CDE DEF ∠=∠结合已知条件180DEB ABE CDE ∠+∠-∠=︒,得出180,FEB ABE ∠+∠=︒即可证明;(2)过点E 作HE ∥CD ,设,,GEF x FEB EFB y ∠=∠=∠= 由(1)得AB ∥CD ,则AB ∥CD ∥HE ,由平行线的性质,得出20,DEF D EFB y ∠=∠+∠=︒+再由EG 平分DEB ∠,得出,DEG GEB GEF FEB x y ∠=∠=∠+∠=+则2DEF DEG GEF x y ∠=∠+∠=+,则可列出关于x 和y 的方程,即可求得x ,即GEF ∠的度数;(3)过点N 作NP ∥CD ,过点M 作QM ∥CD ,由(1)得AB ∥CD ,则NP ∥CD ∥AB ∥QM ,根据14CDM CDE ∠=∠和CDM α∠=,得出3,MDE α∠=根据CD ∥PN ∥QM ,DE ∥NB ,得出,PND CDM DMQ α∠=∠=∠=3,EDM BNM α∠=∠=即4,BNP α∠=根据NP ∥AB ,得出4,PNB ABN α∠=∠=再由14ABN ABE ∠=∠,得出16,ABM α∠=由AB ∥QM ,得出18016,QMB α∠=︒-因为NMB NMQ QMB ∠=∠+∠,代入α的式子即可求出BMN ∠.【详解】(1)过点E 作EF ∥CD ,如图,∵EF ∥CD ,∴,CDE DEF ∠=∠∴,DEB CDE DEB DEF FEB ∠-∠=∠-∠=∠∵180DEB ABE CDE ∠+∠-∠=︒,∴180,FEB ABE ∠+∠=︒∴EF ∥AB ,∴CD ∥AB ;(2)过点E 作HE ∥CD ,如图,设,,GEF x FEB EFB y ∠=∠=∠=由(1)得AB ∥CD ,则AB ∥CD ∥HE ,∴20,,D DEH HEF EFB y ∠=∠=︒∠=∠=∴20,DEF DEH HEF D EFB y ∠=∠+∠=∠+∠=︒+又∵EG 平分DEB ∠,∴,DEG GEB GEF FEB x y ∠=∠=∠+∠=+∴2,DEF DEG GEF x y x x y ∠=∠+∠=++=+即220,x y y +=︒+解得:10,x =︒即10GEF ∠=︒;(3)过点N 作NP ∥CD ,过点M 作QM ∥CD ,如图,由(1)得AB ∥CD ,则NP ∥CD ∥AB ∥QM ,∵NP ∥CD ,CD ∥QM ,,CDM α∠=∴PND CDM DMQ α∠=∠=∠=,又∵14CDM CDE ∠=∠, ∴33,MDE CDM α∠=∠=∵//BN DE ,∴3,MDE BNM α∠=∠=∴34,PNB PND BNM ααα∠=∠+∠=+=又∵PN ∥AB ,∴4,PNB NBA α∠=∠= ∵14ABN ABE ∠=∠, ∴44416,ABM ABN αα∠=∠=⨯=又∵AB ∥QM ,∴180,ABM QMB ∠+∠=︒∴18018016,QMB ABM α∠=︒-∠=︒-∴1801618015NMB NMQ QMB ααα∠=∠+∠=+︒-=-.【点睛】本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系.。
2--平行与相交-习题(附答案)相交线与平行线测试题(一)一、选择题 1.下列说法中,正确的是( ) A .一条射线把一个角分成两个角,这条射线叫做这个角的平分线; B .P 是直线L 外一点,A 、B 、C 分别是L 上的三点,已知PA=1,PB=2,PC=3,则点P•到L 的距离一定是1; C .相等的角是对顶角; D .钝角的补角一定是锐角. 2.如图1,直线AB 、CD 相交于点O ,过点O 作射线OE ,则图中的邻补角一共有( ) A .3对 B .4对 C .5对 D .6对 (1) (2) (3) 3.若∠1与∠2的关系为内错角,∠1=40°则∠2等于( ) A .40° B .140°C .40°或140°D .不确定5.a ,b ,c 为平面内不同的三条直线,若要a ∥b ,条件不符合的是( )A .a ∥b ,b ∥c;B .a ⊥b ,b ⊥c;C .a ⊥c ,b ∥c;D .c 截a ,b 所得的内错角的邻补角相等 6.如图2,直线a 、b 被直线c 所截,现给出下列四个条件:(1)∠1=∠5;(2)∠1=•∠7;(3)∠2+∠3=180°;(4)∠4=∠7,其中能判定a ∥b 的条件的序号是( ) A .(1)、(2) B .(1)、(3)C .(1)、(4)D .(3)、(4)7.如图3,若AB ∥CD ,则图中相等的内错角是( ) A .∠1与∠5,∠2与∠6; B .∠3与∠7,∠4与∠8; C .∠2与∠6,∠3与∠7;D .∠1与∠5,∠4与∠8 8.如图4,AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,ED 平分∠BEF .若∠1=72°,•则∠2的度数为( ) A .36° B .54° C .45° D .68°(4) (5)(6)9.已知线段AB 的长为10cm ,点A 、B 到直线L 的距离分别为6cm 和4cm ,•则符合条件的直线L 的条数为( )A .1B .2C .3D .410.如图5,四边形ABCD 中,∠B=65°,∠C=115°,∠D=100°,则∠A 的度数为(• )A .65°B .80°C .100°D .115°11.如图6,AB ⊥EF ,CD ⊥EF ,∠1=∠F=45°,那么与∠FCD相等的角有( ) A .1个 B .2个 C .3个 D .4个12.若∠A 和∠B 的两边分别平行,且∠A 比∠B 的2倍少30°,则∠B 的度数为( ) A .30° B .70°C .30°或70°D .100°二、填空题13.如图,一个合格的弯形管道,经过两次拐弯后保持平行(即AB ∥DC ).•如果∠C=60°,那么∠B 的度数是________.14.已知,如图,∠1=∠ABC=∠ADC ,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°.将下列推理过程补充完整:(1)∵∠1=∠ABC (已知),∴AD ∥______(2)∵∠3=∠5(已知),∴AB∥_____,(___________)(3)∵∠ABC+∠BCD=180°(已知),∴_______∥________,(_____ _____)16.已知直线AB、CD相交于点O,∠AOC-∠BOC=50°,则∠AOC=_____度,•∠BOC=___度.17.如图7,已知B、C、E在同一直线上,且CD∥AB,若∠A=105°,∠B=40°,则∠ACE 为_________.(7)(8)18.如图8,已知∠1=∠2,∠D=78°,则∠BCD=______度19.如图9,直线L1∥L2,AB⊥L1,垂足为O,BC与L2相交于点E,若∠1=43°,•则∠2=_______度.(9)(10)20.如图10,∠ABD=•∠CBD,•DF•∥AB,•DE•∥BC,•则∠1•与∠2•的大小关系是________.三、解答题22.如图,AB∥A′B′,BC∥B′C′,BC交A′B′于点D,∠B与∠B•′有什么关系?为什么?23.如图,已知AB∥CD,试再添上一个条件,使∠1=∠2成立(•要求给出两个答案).24.如图,AB∥CD,∠1:∠2:∠3=1:2:3,说明BA平分∠EBF的道理.25.如图,CD⊥AB于D,点F 是BC上任意一点,FE⊥AB于E,且∠1=∠2,•∠3=80°.求∠BCA的度数.26.如图,EF⊥GF于F.∠AEF=150°,∠DGF=60°,试判断AB和CD的位置关系,并说明理由.1、∵直线AB、CD相交于点O,∴∠AOC和∠BOD是对顶角,∴∠AOC=∠BOD.∵∠AOC+∠BOD=240°,∴∠AOC=∠BOD=120°.又∵∠AOC和∠BOC是邻补角,∴∠BOC=180°-∠AOC,∴∠BOC=60°..2、[点拨] 观察图形,∠AOF与∠BOF是邻补角,∠BOF 与∠AOE是对顶角,利用它们的性质可求出∠EOC的度数.[解答] 设∠BOF=x,则∠AOF=3x,∵∠AOF+∠BOF=180°∴x+3x=180°∴x=45°,即∠BOF=45°∴∠AOE=∠BOF=45°∴∠EOC=∠AOC-∠AOE=90°-45°=45°.[方法规律] 通过设未知数列方程求解,是求角的度数一种常用的方法.3、[点拨]过一点画射线或线段的垂线时,是指画它们所在直线的垂线,垂足有时在射线反向延长线或在线段的延长线上.本题垂足分别在射线OB的反向延长线上和线段AO的延长线上.[解答]如图5.1.2-3所示,直线AE为过点A与OB垂直的直线,垂足为E;直线BD为过点B与OA垂直的直线,垂足为D.图5.1.2-3[方法规律] ①所有的垂足都要作垂直标记;②垂线画实线,延长线画虚线.5、 [方法规律] 判断两条直线平行要抓住两个关键一个前提.两个关键:一是“在同一平面内”;二是“不相交”. 一个前提:两条直线.6、[点拨]运用平行公理的推论加以判断.[解答]因为a∥b,b∥c,所以a∥c,又因为c∥d,所以a∥d.[方法规律] 对于n条直线l1,l2,l3…l n,若l1∥l2,l2∥l3,…,ln-1∥l n,那么这n 条直线互相平行.7、[点拨]由∠1=∠2,及角平分线定义,可得∠EAQ=∠ABN,从而可证PQ∥MN.[解答] ∵AF平分∠EAQ,BC平分∠ABN,∴∠1=12∠EAQ,∠2=12∠ABN∵∠1=∠2,∴∠EAQ=∠ABN∴PQ∥MN[方法规律]本题不能直接判定PQ∥MN,要经过转化才能成为直接条件.8、[点拨]从标出的3个角可知:∠1与∠3是同位角,若∠1=∠3,则AB∥CD,由图可知,∠1+∠2=180°,已知∠2=3∠1,故可求出∠1,又由∠1+∠3=90°,可求出∠3.[解答] ∵∠1+∠2=180°,∠2=3∠1∴∠1+3∠1=180°,∴∠1=45°∵∠1+∠3=90°,∴∠3=45°∴∠1=∠3,∴AB∥CD.[方法规律] 利用角的关系和邻补角定义,求角定线.9、点拨] ∠1和∠3,∠2和∠3分别是l1与l3被l所截而成的内错角及l2与l3被l所截而成的同旁内角,若它们满足平行的判定条件再由平行公理推论即可得到l1∥l2.[解答] ∵∠1=∠3=80°∴l1∥l3∵∠2=100°∴∠2+∠3=180°∴l2∥l3∴l1∥l2[方法规律] 这里l3为l1与l2平行架起了桥梁,这就是转化,它为已知与求证结论铺平了道路[点拨] ∠1与∠3是AD、DC被AC所截的同旁内角,由∠1=∠3并不能推出两条直线平行,但∠2=∠1所以能代换得到∠2=∠3,这时∠2与∠3是AB与DC被AC所截得的内错角,由内错角相等可推出AB ∥CD.10、[解答]由已知条件可判断AB∥CD,理由如下:∵AC平分∠DAB(已知),∴∠1=∠2(角平分线定义).又∵∠1=∠3(已知),∴∠2=∠3(等量代换).∴AB∥CD(内错角相等,两直线平行).[方法规律] 要判断两条直线平行,得寻找同位角、内错角相等或同旁内角互补.[点拨] 本题直接求∠C 不容易,如果过点C作FC∥AB,就可以把问题转化为求已知的∠B及∠D的同旁内角,进而求得∠C.11、[解答] 过点C作FC ∥AB,∵AB∥ED,∴FC∥ED,∴∠1+∠B=180°,∠2+∠D=180°,∴∠1+∠2+∠B+∠D=360°.∵∠B=140°,∠D=120°,∴∠1+∠2=360°-140°-120°=120°[方法规律]此类题型,一般都是过拐点作已知直线的平行线,从而把未知问题转化为已知问题.12、点拨]利用对顶角相等,转化为同旁内角互补,得l1∥l2,再根据平行性质和对顶角相等即可求出∠4的度数.[解答]∵∠1=60°,∠2=120°,∴∠1+∠2=180°∵∠1=∠6,∴∠6+∠2=180°,∴l1∥l2∴∠7=∠3=70°,∵∠4=∠7,∴∠4=70°.[方法规律]本题的切入点是对顶角相等,再根据平行的判定和性质,可求出∠4的度数.点拨] 由∠2=∠EBD,∠1=∠2,得∠1=∠EBD,从而得FG∥CD,再由平行线的性质和∠3=55°,可求出∠4的度数.[解答] ∵∠2=∠EBD,∠1=∠2,∴∠1=∠EBD∴GF∥CD,∴∠4=∠ABD∵∠3=55°,∴∠ABD=125°,∴∠4=125°,∴选D.13、[方法规律]本题综合运用了平行线的判定和性质,在解题过程中应由未知想已知,不断促使问题的转化.[点拨]由CD⊥AB,EF⊥AB,得DC∥EF,从而得∠1=∠BCD,再由∠1=∠2,可得DG∥BC.[解答] DG∥BC.∵CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°∴CD∥EF.(同位角相等,两直线平行)∴∠1=∠BCD.(两直线平行,同位角相等)又∵∠1=∠2,∴∠2=∠BCD.∴DG∥BC.(内错角相等,两直线平行)[方法规律]本题抓住垂直证平行,促使已知条件向未知条件转换.相交线平行线答案1.D2.D 点拨:图中的邻补角分别是:∠AOC与∠BOC,∠AOC 与∠AOD,∠COE与∠DOE,∠BOE与∠AOE,∠BOD与∠BOC,∠AOD与∠BOD,共6对,故选D.3.D 4.C 5.C 6.A 7.C 点拨:本题的题设是AB ∥CD,解答过程中不能误用AD ∥BC这个条件.8.B 点拨:∵AB∥CD,∠1=72°,∴∠BEF=180°-∠1=108°.∵ED平分∠BEF,∴∠BED=12∠BEF=54°.∵AB∥CD,∴∠2=∠BED=54°.故选B.9.C 点拨:如答图,L1,L2两种情况容易考虑到,但受习惯性思维的影响,L3这种情况容易被忽略.10.B11.D 点拨:∠FCD=∠F=∠A=∠1=∠ABG=45°.故选D.12.C 点拨:由题意,知,230A BA B∠=∠⎧⎨∠=∠-︒⎩或180,230A BA B∠+∠=︒⎧⎨∠=∠-︒⎩解之得∠B=30°或70°.故选C.13.120°14.(1)BC;同位角相等,两直线平行(2)CD;内错角相等,两直线平行(3)AB;CD;同旁内角互补,两直线平行15.(2),(3),(5)16.115;65点拨:设∠BOC=x°,则∠AOC=x°+50°.∵∠AOC+∠BOC=180°.∴x+50+x=180,解得x=65.∴∠AOC=115°,∠BOC=65°.17.145°18.10219.133点拨:如答图,延长AB交L2于点F.∵L1∥L2,AB⊥L1,∴∠BFE=90°.∴∠FBE=90°-∠1=90°-43°=47°.∴∠2=180°-∠FBE=133°.20.∠1=∠221.解:如答图,由邻补角的定义知∠BOC=100°.∵OD,OE分别是∠AOB ,∠BOC的平分线,。