SPWM逆变原理及控制方法
- 格式:pdf
- 大小:1.18 MB
- 文档页数:78
对于大多数应用场合需要的是工频电源,例如我们的电冰箱,洗衣机,电风扇等都需要正弦波的220伏、50赫兹电源,各种动力设备,远距离输电也都需要正弦波的交流电。
更多的太阳能光伏发电装置输出的是正弦波交流电,目前生成正弦波仍采用前面介绍的全桥电路,只是对开关晶体管的控制采用PWM脉宽调制或移相控制或调频控制等方式。
这里仅介绍最常用的PWM脉宽调制方式。
面积等效原理转换把直流电转换成正弦波交流电是根据根据面积等效原理,在图1上图中的正弦半波(红线)分成n等份,把正弦半波看成是由n个彼此相连的矩形脉冲组成的波形,为简单清晰,划分为7等份。
7个脉冲的幅值按正弦规律变化,每个脉冲面积与相对应的正弦波部分面积相同,这一连续脉冲就等效正弦波。
图1 用面积等效原理转换为SPWM波形如果把上述脉冲序列改为相同数量的等幅而不等宽的矩形脉冲(图1下图),脉冲中心位置不变,并且使该矩形脉冲面积和上图对应的矩形脉冲相同,得到图1下图所示的脉冲序列,脉冲宽度按正弦波规律变化,这就是PWM波形。
根据面积等效原理,PWM波形和正弦半波是等效的,图中红线就是该序列波形的平均值。
对于正弦波的负半周,也可以用同样的方法得到PWM 波形。
这种脉冲的宽度按正弦规律变化而和正弦波等效的PWM波形,也称SPWM波形。
要改变等效输出的正弦波的幅值时,只需按照同一比例系数改变上述各脉冲的宽度即可。
SPWM波形的生成输出SPWM波形仍需全桥逆变电路,在“光伏用DC-DC变换器”课件中已介绍过这种电路,通过控制开关晶体管的通与断在负载上产生交变电压,见图2。
s图2 全桥逆变电路的工作状态输出SPWM波形的矩形波必须生成序列的控制信号来控制桥式电路中开关晶体管的通与断,普遍使用的是调制法来生成控制信号,可采取单极性调制也可采用双极性调制来生成控制信号,下面介绍常用的单极性调制方式。
图3上部分是SPWM波形控制信号生成的原理图,下部分是生成的SPWM波形。
单极性倍频spwm原理_单极性倍频SPWM调制的逆变电源系统详解随着电力电子技术的发展,人们对逆变电源的要求也越来越高。
在大功率逆变电源场合,流过主电路上的器件电流非常大,作为开关管的IGBT 上流过的电流可达几百安,所以一般所选的开关管容量比较大,这就导致调制时的开关频率不能过高。
本文首先介绍了主电路与三环控制,其次介绍了单极性倍频SPWM调制,最后阐述了系统实验分析wNN,具体的跟随小编一起来了解一下。
一、主电路与三环控制逆变器主电路结构如图1所示,主电路采用全桥结构,输出端连接了LC 滤波器滤除高次谐波。
开关管的驱动信号由三角波和正弦波比较匹配得到。
三环控制结构图如图2所示,由内到外分别为瞬时值电容电流环、瞬时值电压环和电压有效值环。
其中:瞬时值电流环的主要作用是校正输出电压波形;瞬时值电压环主要作用是校正输出电压的相位,并提高系统的动态性能;电压有效值环的主要作用是使输出电压稳定在所需要的电压幅值。
电流瞬时值内环和电压瞬时值外环均采用P调节器,最外环电压有效值环采用PI 调节器。
图3和图4 分别为采用三环控制的逆变电源系统从满载到空载和空载到满载的波形仿真图,图3中Uo为输出电流。
由图3-4 可知,切载时电压幅值基本保持不变,说明系统具有较好的动态特性。
在常规SPMW波调制中,开关频率和输出脉冲频率是相等的,但是在大功率条件下,开关频率不能过高,原因主要:
①开关频率过高会导致开关损耗增大;
②会使开关管发热严重,长时间运行会损坏开关器件;
③开关频率过高,出现擎住效应的几率增大;
④大容量开关器件高速通断,会产生很高的电压尖峰,有可能造成开关管或其他元件被击。
计算机仿真实验报告专业:电气工程及其自动化班级:11电牵4班姓名:江流在班编号:26指导老师:叶满园实验日期:2014年5月22日一、实验名称:单、三相双极性SPWM逆变电路MATLAB仿真二、目的及要求了解并掌握单、三相双极性SPWM逆变电路的工作原理; 2.进一步熟悉MATLAB中对Simulink的使用及模块封装、参数设置等技能; 3.进一步熟悉掌握用MA TLAB绘图的技巧。
三、实验原理1.单相双极性SPWM逆变的电路原理2、单相双极性SPWM逆变电路工作方式单相桥式逆变电路双极性PWM控制方式:在Ur的半个周期内,三角波载波有正有负,所得PWM波也有正有负,其幅值只有±Ud两种电平。
同样在调制信号Ur和载波信号Uc 的交点时刻控制器件的通断。
Ur正负半周,对各开关器件的控制规律相同。
当Ur>Uc时,给V1和V4导通信号,给V2和V3关断信号。
如I0>0,V1和V4通,如I0<0,VD1和VD4通,U0=Ud 。
当Ur<Uc时,给V2和V3导通信号,给V1和V4关断信号。
如I0<0,V2和V3通,如I0>0,VD2和VD3通,U0=-Ud 。
这样就得到如下所示的双极性的SPWM波双极性SPWM控制方式波形3.三相双极性SPWM逆变的电路原理图三相SPWM逆变电路4、三相双极性SPWM逆变电路工作方式为:四、实验步骤及电路图1、建立单相双极性SPWM逆变电路MA TLAB仿真模型。
以下分别是主电路和控制电路(触发电路)模型:2、单相双极性SPWM逆变电路参数设置本实验设置三角载波的周期为t,通过改变t的值改变输出SPWM矩形波的稠密,从而调节负载获取电压的质量。
设置正弦波周期为0.02s,幅值为1。
直流电源幅值为97V,三角载波幅值为1.2V,三角载波必须依次交替输出正三角波和负三角波,这可以通过让三角载波同与之周期相同的、依次交替输出1和-1的矩形波相乘实现。
SPWM 逆变器原理所谓的SPWM 波形就是与正弦波形等效的一系列等幅不等宽的矩形脉冲波形如图1 所示,等效的原则是每一区间的面积相等1 概述逆变器是将直流变为定频定压或调频调压交流电的变换器,传统方法是利用晶闸管组成的方波逆变电路实现,但由于其含有较大成分低次谐波等缺点,近十余年来,由于电力电子技术的迅速发展,全控型快速半导体器件BJT,IGBT,GTO 等的发展和PWM 的控制技术的日趋完善,使SPWM 逆变器得以迅速发展并广泛使用。
PWM 控制技术是利用半导体开关器件的导通与关断把直流电压变成电压脉冲列,并通过控制电压脉冲宽度和周期以达到变压目的或者控制电压脉冲宽度和脉冲列的周期以达到变压变频目的的一种控制技术,SPWM 控制技术又有许多种,并且还在不断发展中,但从控制思想上可分为四类,即等脉宽PWM 法,正弦波PWM 法(SPWM 法),磁链追踪型PWM 法和电流跟踪型PWM 法,其中利用SPWM 控制技术做成的SPWM 逆变器具有以下主要特点:(1)逆变器同时实现调频调压,系统的动态响应不受中间直流环节滤波器参数的影响。
(2)可获得比常规六拍阶梯波更接近正弦波的输出电压波形,低次谐波减少,在电气传动中,可使传动系统转矩脉冲的大大减少,扩大调速范围,提高系统性能。
(3)组成变频器时,主电路只有一组可控的功率环节,简化了结构,由于采用不可控整流器,使电网功率因数接近于1,且与输出电压大小无关。
2 SPWM 逆变器原理2.1 SPWM 波形所谓的SPWM 波形就是与正弦波形等效的一系列等幅不等宽的矩形脉冲波形如图 1 所示,等效的原则是每一区间的面积相等。
如图把一个正弦波分作几等分(如图1a 中,n=12)然后把每一等分的正弦曲线与横轴所包围的面积都用一个与此面积相等的矩形脉冲来代替,矩形脉冲的幅值不变,各脉冲的中点与正弦波每一等分的中点相重合(如图1b),这样由几个等幅不等宽的矩形脉冲所组成的波形就与正弦波等效,称作SPWM 波形。
spwm原理
脉宽调制(SPWM)是一种用于控制交流电源输出的方法。
其原理是通过调整脉冲宽度来控制电源输出的平均值。
脉宽调制通常被用于变频器、电机控制和逆变器等应用中。
脉宽调制的原理是将一个固定频率的正弦波信号与一个可调节脉冲宽度的方波信号进行比较。
比较的结果可以用来调整输出的脉冲宽度,从而实现对电源输出电压或电流的控制。
在SPWM中,首先需要确定一个基准正弦波信号,其频率通
常与所需要的输出电源频率相同。
然后,通过一个比较器来将基准正弦波信号与方波信号进行比较。
比较器的输出结果可以用来控制开关电路的开关状态。
当基准正弦波信号的幅值大于方波信号的幅值时,开关电路闭合;当基准正弦波信号的幅值小于方波信号的幅值时,开关电路断开。
通过调整方波信号的脉冲宽度和占空比,可以控制开关电路开关的时间比例。
因此,通过调整方波信号的脉冲宽度,就可以实现对输出电压或电流的控制。
脉宽调制技术具有高效、精确和可靠的特点。
它可以通过调整脉冲宽度来实现对输出功率的精确控制,从而充分利用电源的能量。
此外,脉宽调制技术还可以有效减小电源的谐波失真,提高电源的功率因数,以及降低电源的噪声和干扰。
总之,脉宽调制技术是一种有效的电源控制方法,通过调整脉冲宽度来实现对输出电压或电流的精确控制。
它在各种应用中
都有广泛的应用,为电力系统的稳定运行和节能减排提供了重要的支持。
单极性全桥逆变SPWM控制方法以及解决过零点振荡的方案引言当前众多电源应用领域对交流电源的要求越来越高,传统的电网直接供电方式在很多场合已无法满足要求,因此,需要对电网或者其他能源处理后逆变输出。
高质量的逆变电源已经成为电源技术的重要研究对象。
全桥架构又是逆变器中非常重要的架构。
全桥逆变控制方式主要分为双极性控制方式和单极性控制方式。
双极性控制是对角的一对开关为同步开关,桥臂上下管之间除死区时间外为互补开关,控制相对简单,但是它的开关损耗高,存在很大的开关谐波,电磁干扰大,而单极性控制可以很好地解决这些问题。
全桥逆变器单极性控制仅用一对高频开关,相对于双极性控制具有损耗低、电磁干扰小、无开关频率级谐波等优点,正在取代双极性逆变控制方式。
但由于控制环路的延时作用,单极性控制方式的逆变器仍然受一个问题的困扰,即在过零点存在一个明显的振荡。
单极性控制方式又包括单边方式和双边方式,双边方式相对于单边方式在抑止过零点振荡方面有一定优势,但仍然无法做到过零点的平滑过渡。
为了提高逆变器的输出波形质量,本文分析了,单极性双边控制方式,分析了其振荡产生原因,并介绍一种解决过零点振荡的方案。
1 主电路拓扑单极性SPWM逆变器如图1所示,由2组桥臂构成,一组桥臂(S3,S4)以高频开关工作频率工作,称为高频臂;另一组桥臂(S1,S2)以输出的正弦波频率进行切换,称为低频臂。
2 单极性双边SPWM控制方式单极性逆变有两种产生SPWM的方法,分为单极性单边SPWM控制方式和单极性双边SPWM控制方式,文献l对此有比较详尽的介绍,这里只介绍过零点特性较好的双边控制方式,这种方式对于单边控制方式仍然有效。
在单极性双边SPSM控制方式中,给定的载波信号按正弦方式变化,三角调制波信号,当输出电压为正时三角波为正,输出电压为负时三角波为负,如图2所示。
高频臂上管S3的开关由载波与调制波相比较决定,载波幅值大于调制波则开通,载波幅值小于调制波则关断,除去死区时间,高频臂上管S3与高频臂下管S4的开关完全互补。
单极性SPWM的两种控制方法与过零点输出特性比较作者:于文涛来源:《科学与财富》2010年第12期[摘要] 本文分别对单极性逆变中的单边与双边SPWM的产生方法及控制方法以及其在正弦波电压过零点附近的振荡情况进行了分析。
理论分析表明,并通过仿真与电路试验证明,双边SPWM中的控制器输出,因没有在过零点附近发生大的突变,其性能更为优越。
[关键词] SPWM控制逆变过零震荡随着控制技术的发展和对设备性能要求的不断提高,许多行业的用电设备不再直接接入交流电网,而是通过电力电子功率变换得到电能,它们的幅值、频率、稳定度及变化形式因用电设备的不同而不尽相同。
如通信电源、电弧焊电源、电动机变频调速器、加热电源、汽车电源、绿色照明电源、不间断电源、医用电源、充电器等等,它们所使用的电能都是通过对电网电能进行整流和逆变变换后得到的。
因此,高质量的逆变电源已经成为电源技术的重要研究对象。
1、工作原理1.1主电路拓扑与SPWM的产生单极性SPWM逆变电路的拓扑如图1所示,由全桥4个开关管组成的2路桥臂所构成,一路以高频开关工作频率工作,称为高频臂(S3,S4);另一路以输出的正弦波频率进行切换,成为低频臂(S1,S2)。
单极性逆变有两种产生SPWM的方法。
第一种控制方法是将给定的载波(正弦波)整流成正的,调制波(三角波)也是正的,如图2(a)所示,称为单边SPWM控制;第二种控制方法是给定的载波(正弦波)是一个完整的正弦波,调制波(三角波)当正弦波为正时是正的,当正弦波为负时是负的,如图2(b)所示,称为双边SPWM控制。
上述两种控制方法产生SPWM的机理不一样,各自的控制电路也有所不同。
1.2单极性SPWM的两种控制方法1.2.1单边SPWM控制单边SPWM的控制电路如图3所示。
图3中的Sg3及Sg4分别对应高频臂上下管的驱动信号;Sg1及Sg2分别对应低频臂上下管的驱动信号。
由于低频臂的切换作用,高频臂PWM 输出性质随之改变。
SPWMSPWM(Sinusoidal PWM)法是一种比较成熟的,目前使用较广泛的PWM法.前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同.SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值.定义我们先说说什么叫PWMPWM的全称是Pulse Width Modulation(脉冲宽度调制),它是通过改变输出方波的占空比来改变等效的输出电压。
广泛地用于电动机调速和阀门控制,比如我们现在的电动车电机调速就是使用这种方式。
所谓SPWM,就是在PWM的基础上改变了调制脉冲方式,脉冲宽度时间占空比按正弦规率排列,这样输出波形经过适当的滤波可以做到正弦波输出。
它广泛地用于直流交流逆变器等,比如高级一些的UPS就是一个例子。
三相SPWM是使用SPWM模拟市电的三相输出,在变频器领域被广泛的采用。
该方法的实现有以下几种方案。
1.3.1等面积法该方案实际上就是SPWM法原理的直接阐释,用同样数量的等幅而不等宽的矩形脉冲序列代替正弦波,然后计算各脉冲的宽度和间隔,并把这些数据存于微机中,通过查表的方式生成PWM信号控制开关器件的通断,以达到预期的目的.由于此方法是以SPWM控制的基本原理为出发点,可以准确地计算出各开关器件的通断时刻,其所得的的波形很接近正弦波,但其存在计算繁琐,数据占用内存大,不能实时控制的缺点.1.3.2硬件调制法硬件调制法是为解决等面积法计算繁琐的缺点而提出的,其原理就是把所希望的波形作为调制信号,把接受调制的信号作为载波,通过对载波的调制得到所期望的PWM波形。
通常采用等腰三角波作为载波,当调制信号波为正弦波时,所得到的就是SPWM波形。
实验五十一DC/AC SPWM单相全桥逆变电路设计及研究(信号与系统—自动控制理论—检测技术-电力电子学综合实验)一、实验原理SPWM单相全桥逆变电路的主要工作原理是依靠四个开关管的通、断状态配合,利用冲量等效原理,采用正弦脉宽调制(SPWM)策略将输入的直流电压变换成正弦波电压输出。
SPWM的调制原理是通过对每个周期内输出的脉冲个数和每个脉冲宽度来调节逆变器输出电压的频率和幅值。
要使输出的电压波形接近标准的正弦波,就要尽量保证SPWM电压波在每一时间段都与该时段中正弦电压等效。
除要求每一时间段的面积相等外,每个时间段的电压脉冲宽度还必须很窄,这就需要在一个正弦波形内脉冲的数量很多。
脉波数量越多,不连续的按正弦规律改变宽度的多脉冲电压就越等效于正弦电压。
目前,在电力电子控制技术中,SPWM技术应用极为广泛,SPWM波形的形成一般有自然采样法、规则采样法等等。
前者主要用于模拟控制中,后者适用数字控制。
本实验采用的是DSP控制的单相全桥逆变电路,采用对称规则采样法。
对称规则采样的基本思想是使SPWM波的每个脉冲均以三角载波中心线为轴线对称,因此在每个载波周期内只需一个采样点就可确定两个开关切换点时刻。
具体算法是过三角波的对称轴与正弦波的交点,做平行于时间轴的平行线,该平行线与三角波的两个腰的交点作为SPWM波“开通”和“关断”的时刻。
由于在每个三角载波周期中只需要进行一次采样,因此使得计算公式得到简化,并且可以根据脉宽计算公式实时计算出SPWM波的脉宽时间,可以实现数字化控制。
图51-1 对称规则采样法生成SPWM波根据相似三角形定理,可以分析出图1对称规则采样法生成的SPWM波脉宽时间T n为:()21sin n n T T MN Nπ−= (51-1) 式中,M 为调制度,T 为正弦调制波周期,N 为载波比。
本实验中程序采用DSP 控制方式,载波频率固定为10KHZ ,调制波频率为50HZ 频率。