最新人教版高中数学必修1 3.1.2
- 格式:doc
- 大小:259.00 KB
- 文档页数:5
3.1.2 表示函数的方法课程标准学习目标(1)在实际情境中, 会根据不同的需要选择恰当的方法(如图象法、列表法、解析法) 表示函数, 理解函数图象的作用。
(1)会求函数的解析式; (难点)(2)列表法表示函数(3)图象法表示函数。
知识点01 解析法把常量和表示自变量的字母用一系列运算符号连接起来得到的式子,叫作解析式(也叫作函数表达式或函数关系式),解析法就是用解析式来表示函数的方法。
比如正方形周长C 与边长a 间的解析式为C =4a ,圆的面积S 与半径r 的解析式S =πr 2等.求函数解析式的方法① 配凑法 ② 待定系数法③ 换元法④ 构造方程组法 ⑤ 代入法【即学即练1】已知函数f (x )=1x ,则f (x +1)=( )A .f (x +1)=1x+1B .f (x +1)=1x―1C .f (x +1)=2x―1D .f (x +1)=2x+1知识点02 列表法如上表,我们很容易看到y与r之间的函数关系.在初中刚学画一次函数时,想了解其图像是一直线,第一步就是列表,其实就是用表格法表示一次函数.【即学即练2】函数f(x)与g(x)的对应关系如下表.x―101x123f(x)132g(x)0―11则g(f(―1))的值为()A.0B.3C.1D.―1知识点03 图象法如上图,很清晰的看到某天空气质量指数I与时间t两个变量之间的关系,特别是其趋势.数学中的“数形结合”也就是这回事,它是数学一大思想,在高中解题中识图和画图尤为重要.【即学即练3】购买某种饮料x听,所需钱数是y元.若每听2元,试分别用解析法、列表法、图象法将y表示成x(x∈{1,2,3,4})的函数.【题型一:解析法表示函数】例1.若函数y=f(x)对任意x∈R,均有f(x+y)=f(x)+f(y),则下列函数可以为y=f(x)解析式的是()A.f(x)=x+1B.f(x)=2x―1C.f(x)=2x D.f(x)=x2+x变式1-1.一个等腰三角形的周长为20,底边长y是一腰长x的函数,则()A.y=10―x(0<x≤10)B.y=10―x(0<x<10)C.y=20―2x(5≤x≤10)D.y=20―2x(5<x<10)变式1-2.下列函数中,对任意x,不满足2f(x)=f(2x)的是()A.f(x)=|x|B.f(x)=―2xC.f(x)=x―|x|D.f(x)=x―1变式1-3.定义在R上的函数f(x)满足f(xy)=f(x)+f(y),且f(4)=8,则f()A B.2C.4D.6变式1-4.若函数f(x)满足f(a+b)=f(a)+f(b)1―f(a)f(b),且f(2)=12,f(3)=13,则f(7)=A.1B.3C.43D.83【方法技巧与总结】理解函数解析式y=f(x),仅是用一系列运算符号连接起来得到的式子,它对定义域内任何一个值都是成立的;比如①函数f(x)=x2(x>0),可取任何大于0的值进行赋值;②若函数f(x)满足f(xy)=f(x)+f(y),则x ,y 取任何实数均可使得等式成立.【题型二:求函数的解析式】方法1 待定系数法例2.若二次函数f(x)满足f(x +1)―f(x)=2x ,且f(0)=1,则f(x)的表达式为( )A .f(x)=―x 2―x ―1B .f(x)=―x 2+x ―1C .f(x)=x 2―x ―1D .f(x)=x 2―x +1变式2-1.已知f(x)是一次函数,且2f(2)―3f(1)=5,2f(0)―f(―1)=3,则f(x)=( )A .3x ―2B .3x +2C .92x ―12D .4x ―1变式2-2.已知函数f(x)是一次函数,且f[f(x)―2x]=3,则f(5)=( )A .11B .9C .7D .5变式2-3.已知二次函数f (x )满足f(2)=―1,f(1―x)=f(x),且f (x )的最大值是8,则此二次函数的解析式为f(x)=( )A .―4x 2+4x +7B .4x 2+4x +7C .―4x 2―4x +7D .―4x 2+4x ―7方法2 换元法例3.已知函数f 2)=x ―,则f(x)的解析式为( )A .f(x)=x 2+1(x ≥0)B .f(x)=x 2+1(x ≥―2)C .f(x)=x 2(x ≥0)D .f(x)=x 2(x ≥―2)变式3-1.已知函数f(1―x)=1―x2x2(x≠0),则f(x)=()A.1(x―1)2―1(x≠0)B.1(x―1)2―1(x≠1)C.4(x―1)2―1(x≠0)D.4(x―1)2―1(x≠1)变式3-2.设函数f1+=2x+1,则f(x)的表达式为()A.1+x1―x (x≠1)B.1+xx―1(x≠1)C.1―x1+x (x≠―1)D.2xx+1(x≠―1)变式3-3.已知f1)=x+3,则f(x)=()A.x2―2x+2(x≥0)B.x2―2x+4(x≥1)C.x2―2x+4(x≥0)D.x2―2x+2(x≥1)方法3 方程组法例4.已知定义在(0,+∞)上的函数f(x)满足f(x)=―15x,则f(2)的值为()A.152B.154C.174D.172变式4-1.若函数f(x),g(x)满足f(x)―=3x―4x,且f(x)+g(x)=2x+6,则f(2)+g(―1)=()A.6B.7C.8D.9变式4-2.已知函数f(x)满足f(x)+2f(2―x)=1x―1,则f(3)的值为()A.―73B.―109C.―415D.―16变式4-3.已知定义在R上的函数f(x),满足f(x)+2f(―x)=2x+12.(1)求f(x)的解析式;(2)若点P(a,b)在y=f(x)图像上自由运动,求4a+2b的最小值.【方法技巧与总结】求函数解析式,可视情况而定,1 若已知函数类型,可用待定系数法;2 若求f(g(x))型函数解析式,可用换元法,此时要注意新自变量的取值范围;3 若求满足某函数方程的函数解析式,则用方程组的方法.【题型三:列表法表示函数】例5.设已知函数f(x),g(x)如下表所示:x12345f(x)54321g(x)43215则不等式f(g(x))>g(f(x))的解集为()A.{1,3}B.{5,3}C.{2,3,4}D.{5}变式5-1.已知函数f(x),g(x)分别由下表给出:则f[g(2)]的值是()x123f(x)131g(x)321A.1B.2C.3D.1和2变式5-2.观察下表:x―3―2―1123f(x)51―1―335g(x)1423―2―4则f[f(―1)―g(3)]=()A.―4B.―3C.3D.5变式5-3.德国数学家狄利克在1837年时提出:“如果对于x的每一个值,y总有一个完全确定的值与之对应,则y是x的函数,”这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y和它对应就行了,不管这个对应的法则是公式、图象,表格或是其它形式.已知函数f(x)由下表给出,则f10f)x x≤11<x<2x≥2y123A.0B.1C.2D.3【方法技巧与总结】表格法表示函数,要注意看清楚变量数值之间的对应关系.【题型四:图象法表示函数】例6.如图所示的4个图象中,与所给3个事件最吻合的顺序为()①我离开家后,心情愉快,缓慢行进,但最后发现快迟到时,加速前进;②我骑着自行车上学,但中途车坏了,我修理好又以原来的速度前进;③我快速的骑着自行车,最后发现时间充足,又减缓了速度.A.③①②B.③④②C.②①③D.②④③变式6-1.小明骑车上学,开始时匀速行驶,中途因车流量大而减速行驶,后为了赶时间加速行驶,与以上事件吻合得最好的图象是()A.B.C.D.变式6-2.俗话说,“一分耕耘,一分收获”.那么,在实际生活中,如果把收获看成付出的函数,它们之间的关系可以怎样描述呢?情境甲:当以匀速的方式驾驶汽车时,行驶的里程与所用的时间之间的关系;情境乙:家长过分宠爱孩子,有时还有可能付出增加会导致收获减少;情境丙:在我们学习新的知识时,可能一开始效率会比较高,单位时间的付出得到的收获会比较大,但随着付出的时间越来越多,单位时间的付出得到的收获会变少.请问依次与下面三个图象所表示的收获与付出的关系相对应的情境正确的一项是()A.甲、乙、丙B.丙、甲、乙C.甲、丙、乙D.乙、丙、甲变式6-3.已知完成某项任务的时间t与参加完成此项任务的人数x之间满足关系式t=ax+bx(a∈R,b∈R),当x=2时,t=100;当x=4时,t=53,且参加此项任务的人数不能超过8.(1)写出t关于x的解析式;(2)用列表法表示此函数;(3)画出此函数的图象.【方法技巧与总结】图象法表示函数,达到“一目了然”的效果,对于函数图象还注意函数的定义域,函数图象的上升下降趋势,增减趋势的缓急等等!一、单选题1.已知定义在[―2,2]上的函数y=f(x)表示为:x[―2,0)0(0,2]y10―2设f(1)=m,f(x)的值域为M,则()A.m=1,M={―2,0,1}B.m=―2,M={―2,0,1}C.m=1,M={y|―2≤y≤1}D.m=1,M={y|―2≤y≤1}2.函数y=g(x)的对应关系如下表所示,函数y=f(x)的图象是如图所示的曲线ABC,则g(f(3)―1)的值为()x123g(x)20230―2023A.2023B.0C.―1D.―20233.设f(x)=xx2+1,则( )A.f(x)B.―f(x)C.1f(x)D.―1f(x)4.如图,公园里有一处扇形花坛,小明同学从A点出发,沿花坛外侧的小路顺时针方向匀速走了一圈(A→B→O→A),则小明到O点的直线距离y与他从A点出发后运动的时间t之间的函数图象大致是()A.B.C.D.5.已知函数f(x)=x3+ax2+bx+c,且0<f(―1)=f(―2)=f(―3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>96.已知f+1)=x+3,则f(x)的解析式为f(x)=()A.x2―2x+4B.x2+3C.x2―2x+4(x≥1)D.x2+3(x≥1)7.函数f(x)满足2f(x)―f(1―x)=x,则函数f(x)=()A.x―2B.x+13C.x―13D.―x+28.某农贸市场出售西红柿,当价格上涨时,供给量相应增加,而需求量相应减少,具体调查结果如下表:表一市场供给量单价(元/kg)2 2.4 2.8 3.2 3.64供给量(1000kg)506070758090表一市场需求量单价(元/kg)4 3.4 2.9 2.6 2.32需求量(1000kg)506065707580根据以上提供的信息,市场供需平衡点(即供给量和需求量相等时的单价)应在区间( )A.(2.3,2.6)内B.(2.4,2.6)内C.(2.6,2.8)内D.(2.8,2.9)内二、多选题9.某工厂8年来某产品产量y与时间t的函数关系如图,则以下说法中正确的是()A.前2年的产品产量增长速度越来越快B.前2年的产品产量增长速度越来越慢C.第2年后,这种产品停止生产D.第2年后,这种产品产量保持不变10.下列说法正确的是()A.函数f(x+1)的定义域为[―2,2),则函数f(x)的定义域为[―1,3)B.f(x)=x2x和g(x)=x表示同一个函数C.函数y=1x2+3的值域为0D.定义在R上的函数f(x)满足2f(x)―f(―x)=x+1,则f(x)=x3+111.已知f(0)=12,f(x+y)=f(x)f(1―y)+f(y)f(1―x),则()A.f(1)=12B.f(x)=12恒成立C.f(x+y)=2f(x)f(y)D.满足条件的f(x)不止一个三、填空题12.下列表示函数y=f(x),则f(11)=.x0<x<55≤x<1010≤x<1515≤x≤20y234513.已知y=f(x)是二次函数,且f(0)=1,f(x+1)―f(x)=2x,则y=f(x)=.14.若正整数m,n只有1为公约数,则称m,n互质.对于正整数n,φ(n)是小于或等于n的正整数中与n互质的数的个数,函数φ(n)以其首位研究者欧拉命名,称为欧拉函数,例如:φ(3)=2,φ(7)=6,φ(9)=6,则下列说法正确的序号是.①φ(5)=φ(10);②φ(2n―1)=1;③φ(32)=16;④φ(2n+2)>φ(2n),n是正整数.四、解答题15.下图所示为某市一天24小时内的气温变化图,根据图象回答下列问题.(1)全天的最高气温、最低气温分别是多少?(2)大约在什么时刻,气温为0°C?(3)大约在什么时刻内,气温在0°C以上?(4)变量Q是关于变量t的函数吗?16.已知f(x)=1(x∈R,且x≠―1),g(x)=x2+2(x∈R).1+x(1)求f(2),g(2)的值;(2)求f(g(2)),g(f(2))的值;(3)求f(x)和g(x―1)的值域.17.已知二次函数f(x)满足f(x)=f(2―x),且f(0)=―3,f(1)=―4.(1)求函数f(x)的解析式;(2)若g(x)=x+1,比较f(x)与g(x)的大小.18.已知二次函数f(x)=ax2+bx+c(a,b,c∈R)只能同时满足下列三个条件中的两个:①a=2;②不等式f(x)>0的解集为{x|―1<x<3 };③函数f(x)的最大值为4.(1)请写出满足题意的两个条件的序号,并求出函数f(x)的解析式;(2)求关于x的不等式f(x)≥(m―1)x2+2(m∈R)的解集.19.已知函数y=f(x)与y=g(x)的定义域均为D,若对任意的x1、x2∈D(x1≠x2)都有|g(x1)―g(x2)|<|f(x1)―f(x2)|成立,则称函数y=g(x)是函数y=f(x)在D上的“L函数”.(1)若f(x)=3x+1,g(x)=x,D=R,判断函数y=g(x)是否是函数y=f(x)在D上的“L函数”,并说明理由;(2)若f(x)=x2+2,g(x)==[0,+∞),函数y=g(x)是函数y=f(x)在D上的“L函数”,求实数a的取值范围;(3)若f(x)=x,D=[0,2],函数y=g(x)是函数y=f(x)在D上的“L函数”,且g(0)=g(2),求证:对任意的x1、x2∈D(x1≠x2)都有|g(x1)―g(x2)|<1.。
高中数学必修一同步训练及解析1.定义在R上地奇函数f(x)( )A.未必有零点B.零点地个数为偶数C.至少有一个零点D.以上都不对解析:选C.∵函数f(x)是定义在R上地奇函数,∴f(0)=0,∴f(x)至少有一个零点,且f(x)零点地个数为奇数.2.已知函数f(x)地图象是连续不断地曲线,有如下地x与f(x)地对应值表那么,函数()在区间[1,6]上地零点至少有( ) A.5个B.4个C.3个D.2个解析:选C.观察对应值表可知,f(1)>0,f(2)>0,f(3)<0,f(4)>0,f(5)<0,f(6)<0,f(7)>0,∴函数f(x)在区间[1,6]上地零点至少有3个,故选C.3.用二分法研究函数f(x)=x3+3x-1地零点时,第一次算得f(0)<0,f(0.5)>0,可得其中一个零点x0∈________,第二次应计算________.答案:(0,0.5) f(0.25)4.用二分法求函数f(x)=3x-x-4地一个零点,其参考数据如下:030.0290.060据此数据,可得()=3x--4地一个零点地近似值(精确度0.01)为________.解析:由参考数据知,f(1.5625)≈0.003>0,f(1.55625)≈-0.029<0,即f(1.5625)·f(1.55625)<0,且 1.5625-1.55625=0.00625<0.01,∴f(x)=3x-x-4地一个零点地近似值可取为1.5625.答案:1.5625[A级基础达标]1.用二分法求函数f(x)=3x3-6地零点时,初始区间可选为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:选B.∵f (1)=-3,f (2)=18,∴f (1)·f (2)<0.∴可选区间为(1,2).2.下列函数中,有零点但不能用二分法求零点近似值地是( )①y =3x 2-2x +5②y =⎩⎪⎨⎪⎧ -x +1,x ≥0x +1,x <0③y =2x+1,x ∈(-∞,0) ④y =x 3-2x +3⑤y=12x2+4x+8A.①③B.②⑤C.⑤D.①④解析:选C.二分法只适用于在给定区间上图象连续不间断地函数变号零点地近似值地求解.题中函数①无零点,函数②③④都有变号零点.函数⑤有不变号零点-4,故不能用二分法求零点近似值,应选C.3.设f(x)=3x+3x-8,用二分法求方程3x+3x-8=0在x∈(1,2)内近似解地过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程地根落在区间( )A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D. 不能确定解析:选B.由已知f(1)<0,f(1.5)>0,f(1.25)<0,∴f(1.25)f(1.5)<0,因此方程地根落在区间(1.25,1.5)内,故选B.4.用二分法求函数y=f(x)在区间(2,4)上地近似解.验证f(2)·f(4)<0,给定精确度ε=0.01,取区间(2,4)地中点,x1=2+42=3.计算f(2)·f(x1)<0,则此时零点x0∈________(填区间).解析:∵f(2)·f(4)<0,f(2)·f(3)<0,f(3)·f(4)>0,故x0∈(2,3).答案:(2,3)5.在26枚崭新地金币中,有一枚外表与真金币完全相同地假币(质量小一点),现在只有一台天平,则应用二分法地思想,最多称________次就可以发现这枚假币.解析:将26枚金币平均分成两份,放在天平上,则假币一定在质量小地那13枚金币里面;从这13枚金币中拿出1枚,然后将剩下地12枚金币平均分成两份,放在天平上,若天平平衡,则假币一定是拿出地那一枚;若不平衡,则假币一定在质量小地那6枚金币里面;将这6枚金币平均分成两份,放在天平上,则假币一定在质量小地那3枚金币里面;从这3枚金币中任拿出2枚放在天平上,若天平平衡,则剩下地那一枚即是假币;若不平衡,则质量小地那一枚即是假币.综上可知,最多称4次就可以发现这枚假币. 答案:46.方程x 2-1x=0在(-∞,0)内是否存在实数解?并说明理由.解:令f (x )=x 2-1x,则当x ∈(-∞,0)时,x 2>0,1x <0,所以-1x>0, 所以f (x )=x 2-1x>0恒成立, 所以x 2-1x=0在(-∞,0)内无实数解. [B 级 能力提升]7.方程log 2x +x 2=2地解一定位于区间( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:选B.设f (x )=log 2x +x 2-2,∵f (1)=0+1-2=-1<0,f(2)=1+4-2=3>0,∴f(1)f(2)<0,x2=2地解一定由根地存在性定理知,方程log2x+位于区间(1,2),故选B.8.某方程在区间D=(2,4)内有一无理根,若用二分法求此根地近似值,要使所得近似值地精确度达到0.1,则应将D分( )A.2次B.3次C.4次D.5次解析:选D.等分1次,区间长度为1.等分2次区间长度为0.5,…,等分4次,区间长度为0.125,等分5次,区间长度为0.0625<0.1.9.关于“二分法”求方程地近似解,下列说法正确地有________.①“二分法”求方程地近似解一定可将y=f(x)在[a,b]内地所有零点得到②“二分法”求方程地近似解有可能得到f(x)=0在[a,b]内地重根③“二分法”求方程地近似解y=f(x)在[a,b]内有可能没有零点④“二分法”求方程地近似解可能得到f(x)=0在[a,b]内地精确解解析:利用二分法求函数y=f(x)在[a,b]内地零点,那么在区间[a,b]内肯定有零点存在,而对于重根无法求解出来,且所得地近似解可能是[a,b]内地精确解.答案:④10.如果在一个风雨交加地夜里查找线路,从某水库闸房(设为A)到防洪指挥部(设为B)地电话线路发生了故障.这是一条10 km长地线路,如何迅速查出故障所在?如果沿着线路一小段一小段查找,困难很多.每查一个点要爬一次电线杆子,10 km长,大约有200多根电线杆子呢?想一想,维修线路地工人师傅怎样工作最合理?要把故障可能发生地范围缩小到50 m~100 m左右,即一两根电线杆附近,最多要查多少次?解:(1)如图所示,他首先从中点C检查,用随身带地话机向两端测试时,假设发现AC段正常,断定故障在BC段,再到BC段中点D查,这次若发现BD段正常,可见故障在CD段,再到CD段中点E来查.依次类推……(2)每查一次,可以把待查地线路长度缩减一半,因此只要7次就够了.11.求方程2x3+3x-3=0地一个近似解(精确度为0.1).解:设f(x)=2x3+3x-3,经试算,f(0)=-3<0,f(1)=2>0,所以函数在(0,1)内存在零点,即方程2x3+3x-3=0在(0,1)内有实数根.取(0,1)地中点0.5,经计算f(0.5)<0,又f(1)>0,所以方程2x3+3x-3=0在(0.5,1)内有实数根.如此继续下去,得到方程地一个实数根所在地区间,如下表:因为|0.6875-0.75|=0.0625<0.1,所以方程23+3x-3=0地一个精确度为0.1地近似解可取为0.75.。
3.1.2函数的表示法(一)学习目标 1.了解函数的三种表示法及各自的优缺点.2.掌握求函数解析式的常见方法.3.尝试作图并从图象上获取有用的信息.知识点函数的表示方法思考函数三种表示法的优缺点?答案1.任何一个函数都可以用解析法表示.(×)2.任何一个函数都可以用图象法表示.(×)3.函数f(x)=2x+1不能用列表法表示.(√)4.函数的图象一定是一条连续不断的曲线.(×)一、函数的表示方法例1某商场新进了10台彩电,每台售价3 000元,试求售出台数x(x为正整数)与收款数y 之间的函数关系,分别用列表法、图象法、解析法表示出来.解(1)列表法:x/台12345678910 y/元 3 000 6 0009 00012 00015 00018 00021 00024 00027 00030 000(2)图象法:如图所示.(3)解析法:y=3 000x,x∈{1,2,3,…,10}.反思感悟应用函数三种表示方法应注意以下三点(1)解析法必须注明函数的定义域;(2)列表法必须罗列出所有的自变量与函数值的对应关系;(3)图象法必须清楚函数图象是“点”还是“线”.跟踪训练1由下表给出函数y=f(x),则f(f(1))等于()x 12345y 4532 1A.1 B.2 C.4 D.5答案 B解析由题中表格可知f(1)=4,所以f(f(1))=f(4)=2.二、求函数解析式例2求下列函数的解析式:(1)已知函数f(x+1)=x+2x,求f(x);(2)已知函数f(x)是二次函数,且f(0)=1,f(x+1)-f(x)=2x,求f(x).解(1)方法一(换元法)设t=x+1,则x=(t-1)2(t≥1).∴f(t)=(t-1)2+2(t-1)=t2-2t+1+2t-2=t2-1,∴f(x)=x2-1(x≥1).方法二(配凑法)∵x+2x=(x)2+2x+1-1=(x+1)2-1,∴f(x+1)=(x+1)2-1(x+1≥1),∴f(x)=x2-1(x≥1).(2)设f(x)=ax2+bx+c(a≠0).∵f(0)=1,∴c=1.又∵f(x+1)-f(x)=2x,∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x,整理,得2ax +(a +b )=2x .由恒等式的性质,知上式中对应项的系数相等,∴⎩⎪⎨⎪⎧ 2a =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1,∴f (x )=x 2-x +1. 反思感悟 求函数解析式的常用方法(1)换元法(有时可用“配凑法”):已知函数f (g (x ))的解析式求f (x )的解析式可用换元法(或“配凑法”),即令g (x )=t ,反解出x ,然后代入f (g (x ))中求出f (t ),从而求出f (x ).(2)待定系数法:若已知函数的类型,可用待定系数法求解,即由函数类型设出函数解析式,再根据条件列方程(组),通过解方程(组)求出待定系数,进而求出函数解析式. 跟踪训练2 (1)已知f (x 2+2)=x 4+4x 2,则f (x )的解析式为________________. 答案 f (x )=x 2-4(x ≥2)解析 因为f (x 2+2)=x 4+4x 2=(x 2+2)2-4, 令t =x 2+2(t ≥2),则f (t )=t 2-4(t ≥2), 所以f (x )=x 2-4(x ≥2).(2)已知f (x )是一次函数,且f (f (x ))=4x -1,则f (x )=________. 答案 2x -13或-2x +1解析 因为f (x )是一次函数,设f (x )=ax +b (a ≠0), 则f (f (x ))=f (ax +b )=a (ax +b )+b =a 2x +ab +b . 又因为f (f (x ))=4x -1,所以a 2x +ab +b =4x -1.所以⎩⎪⎨⎪⎧a 2=4,ab +b =-1,解得⎩⎪⎨⎪⎧a =2,b =-13或⎩⎪⎨⎪⎧a =-2,b =1. 所以f (x )=2x -13或f (x )=-2x +1.三、函数的图象例3 作出下列函数的图象. (1)y =2x +1,x ∈[0,2]; (2)y =2x ,x ∈[2,+∞);(3)y =x 2+2x ,x ∈[-2,2].解 (1)当x ∈[0,2]时,图象是直线y =2x +1的一部分.(2)当x ∈[2,+∞)时,图象是反比例函数y =2x的一部分.(3)当-2≤x ≤2时,图象是抛物线y =x 2+2x 的一部分.延伸探究 根据作出的函数图象求其值域. 解 观察图象可知: (1)中函数的值域为[1,5]. (2)中函数的值域为(0,1]. (3)中函数的值域为[-1,8].反思感悟 作函数y =f (x )图象的方法(1)若y =f (x )是已学过的函数,则描出图象上的几个关键点,直接画出图象即可,有些可能需要根据定义域进行取舍.(2)若y =f (x )不是所学过的函数之一,则要按:①列表;②描点;③连线三个基本步骤作出y =f (x )的图象.跟踪训练3 作出下列函数的图象: (1)y =1-x (x ∈Z ); (2)y =x 2-4x +3,x ∈[1,3]. 解 (1)因为x ∈Z ,所以图象为直线y =1-x 上的孤立点,其图象如图①所示. (2)y =x 2-4x +3=(x -2)2-1, 当x =1,3时,y =0;当x =2时,y =-1,其图象如图②所示.函数图象的应用典例(1)已知f(x)的图象如图所示,则f(x)的定义域为________,值域为________.考点函数图象题点函数图象的应用答案[-2,4]∪[5,8][-4,3]解析函数的定义域对应图象上所有点横坐标的取值集合,值域对应纵坐标的取值集合.(2)若函数f(x)=x2-4x+3(x≥0)的图象与y=m有两个交点,求实数m的取值范围.考点函数图象题点函数图象的应用解f(x)=x2-4x+3(x≥0)的图象如图,f(x)的图象与直线y=m有2个不同交点,由图易知-1<m≤3.[素养提升](1)函数图象很直观,在解题过程中常用来帮助理解问题的数学本质,依托函数图象可以更直观地寻求问题的解决思路和要点.(2)借助几何直观认识事物的位置关系,形态变化与运动规律;利用图形分析数学问题,是直观想象的核心内容,也是数学的核心素养.1.已知函数f(x)由下表给出,则f(f(3))等于()x 123 4f(x)324 1A.1 B.2 C.3 D.4考点函数的表示法题点函数的表示法答案 A2.已知函数f (2x +1)=6x +5,则f (x )的解析式是( ) A .f (x )=3x +2 B .f (x )=3x +1 C .f (x )=3x -1 D .f (x )=3x +4答案 A解析 方法一 令2x +1=t ,则x =t -12.所以f (t )=6×t -12+5=3t +2,所以f (x )=3x +2.方法二 因为f (2x +1)=3(2x +1)+2, 所以f (x )=3x +2.3.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时间为t ,离开家里的路程为d ,下面图形中,能反映该同学的行程的是( )考点 函数图象题点 函数图象的判断与理解 答案 C 4.设函数f ⎝⎛⎭⎪⎫1-x 1+x =x ,则f (x )的表达式为( )A.1+x 1-x(x ≠-1) B.1+x x -1(x ≠-1) C.1-x 1+x (x ≠-1) D.2x x +1(x ≠-1) 答案 C解析 令t =1-x 1+x ,则x =1-t1+t ,∴f (t )=1-t1+t ,即f (x )=1-x1+x.5.已知二次函数f (x )的图象经过点(-3,2),顶点是(-2,3),则函数f (x )的解析式为__________. 答案 f (x )=-x 2-4x -1解析 设f (x )=a (x +2)2+3(a ≠0),由y=f(x)过点(-3,2),得a=-1,∴f(x)=-(x+2)2+3=-x2-4x-1.1.知识清单:(1)函数的表示方法.(2)求函数解析式.(3)函数的图象.2.方法归纳:(1)待定系数法、换元法.(2)数形结合法.3.常见误区:求函数解析式时易忽视定义域.1.已知函数f(x-1)=x2-3,则f(2)的值为()A.-2 B.6 C.1 D.0答案 B解析令t=x-1,则x=t+1,∴f(t)=(t+1)2-3=t2+2t-2,∴f(2)=22+2×2-2=6.2.已知函数y=f(x)的对应关系如表所示,函数y=g(x)的图象是如图的曲线ABC,其中A(1,3),B(2,1),C(3,2),则f(g(2))的值为()x 123f(x)230A.3 B.2 C.1 D.0答案 B解析∵g(2)=1,∴f(g(2))=f(1)=2.3.从甲市到乙市t min的电话费由函数g(t)=1.06·(0.75[t]+1)给出,其中t>0,[t]为不超过t的最大整数,则从甲市到乙市5.5 min 的电话费为( ) A .5.04元 B .5.43元 C .5.83元 D .5.38元 答案 A解析 依题意知g (5.5)=1.06(0.75×5+1) =5.035≈5.04,故选A.4.如果f ⎝⎛⎭⎫1x =x1-x ,则当x ≠0,1时,f (x )等于( ) A.1x B.1x -1 C.11-x D.1x -1 考点 求函数的解析式 题点 换元法求函数解析式 答案 B解析 令1x =t ,则x =1t ,代入f ⎝⎛⎭⎫1x =x 1-x , 则有f (t )=1t1-1t =1t -1,故f (x )=1x -1.故选B.5.函数y =x1+x的大致图象是( )考点 函数图象题点 求作或判断函数的图象 答案 A解析 方法一 y =x1+x 的定义域为{x |x ≠-1},排除C ,D ,当x =0时,y =0,排除B. 方法二 y =x 1+x =1-1x +1,由函数的平移性质可知A 正确.6.已知函数f (x )=x -mx ,且此函数图象过点(5,4),则实数m 的值为________.答案 5解析 将点(5,4)代入f (x )=x -mx,得m =5.7.某航空公司规定,乘客所携带行李的重量x (kg)与其运费y (元)由如图的一次函数图象确定,那么乘客可免费携带行李的最大重量为________kg.答案 19解析 设一次函数解析式为y =ax +b (a ≠0),代入点(30,330)与点(40,630)得⎩⎪⎨⎪⎧330=30a +b ,630=40a +b ,解得⎩⎪⎨⎪⎧a =30,b =-570.即y =30x -570,若要免费,则y ≤0,所以x ≤19.8.已知a ,b 为常数,若f (x )=x 2+4x +3,f (ax +b )=x 2+10x +24,则5a -b =________. 答案 2解析 ∵f (x )=x 2+4x +3, ∴f (ax +b )=(ax +b )2+4(ax +b )+3 =a 2x 2+(2ab +4a )x +b 2+4b +3 =x 2+10x +24,∴⎩⎪⎨⎪⎧a 2=1,2ab +4a =10,b 2+4b +3=24,∴⎩⎪⎨⎪⎧ a =1,b =3或⎩⎪⎨⎪⎧a =-1,b =-7.∴5a -b =2.9.如图所示,有一块边长为a 的正方形铁皮,将其四角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出此盒子的体积V 以x 为自变量的函数式,并指明这个函数的定义域.解 由题意可知该盒子的底面是边长为(a -2x )的正方形,高为x , 所以此盒子的体积V =(a -2x )2·x =x (a -2x )2,其中自变量x 应满足⎩⎪⎨⎪⎧a -2x >0,x >0,即0<x <a 2.所以此盒子的体积V 以x 为自变量的函数式为V =x (a -2x )2,定义域为⎝⎛⎭⎫0,a2. 10.画出函数f (x )=-x 2+2x +3的图象,并根据图象回答下列问题: (1)比较f (0),f (1),f (3)的大小; (2)若x 1<x 2<1,比较f (x 1)与f (x 2)的大小; (3)求函数f (x )的值域. 考点 函数图象 题点 函数图象的应用解 函数f (x )=-x 2+2x +3的定义域为R , 列表:x -1 0 1 3 y34描点,连线,得函数图象如图:(1)根据图象,容易发现f (0)=3, f (1)=4,f (3)=0, 所以f (3)<f (0)<f (1).(2)根据图象,容易发现当x 1<x 2<1时,有f (x 1)<f (x 2).(3)根据图象,可以看出函数的图象是以(1,4)为顶点,开口向下的抛物线,因此,函数的值域为(-∞,4].11.若一次函数的图象经过点A (1,6)和B (2,8),则该函数的图象还经过的点的坐标为( ) A.⎝⎛⎭⎫12,5 B.⎝⎛⎭⎫14,4 C .(-1,3)D .(-2,1)答案 A解析 设一次函数的解析式为y =kx +b (k ≠0),则该函数的图象经过点A (1,6)和B (2,8),得⎩⎪⎨⎪⎧ k +b =6,2k +b =8,解得⎩⎪⎨⎪⎧k =2,b =4,所以此函数的解析式为y =2x +4,只有A 选项的坐标符合此函数的解析式.故选A.12.设函数f ⎝⎛⎭⎫1+1x =2x +1,则f (x )的表达式为( ) A.1+x1-x(x ≠1) B.1+xx -1(x ≠1) C.1-x 1+x (x ≠-1) D.2x x +1(x ≠-1) 答案 B解析 令1+1x =t ,则t ≠1,∴x =1t -1,t ≠1,∴f (t )=2t -1+1=1+t t -1,t ≠1,∴f (x )=1+xx -1(x ≠1),故选B.13.已知函数F (x )=f (x )+g (x ),其中f (x )是x 的正比例函数,g (x )是x 的反比例函数,且F ⎝⎛⎭⎫13=16,F (1)=8,则F (x )的解析式为________. 答案 F (x )=3x +5x(x ≠0)解析 设f (x )=kx (k ≠0),g (x )=m x (m ≠0,且x ≠0),则F (x )=kx +mx .由F ⎝⎛⎭⎫13=16,F (1)=8,得⎩⎪⎨⎪⎧13k +3m =16,k +m =8,解得⎩⎪⎨⎪⎧k =3,m =5,所以F (x )=3x +5x(x ≠0).14.已知函数f (x ),g (x )分别由下表给出:则满足f (g (x ))=g (f (x ))的x 的值为________.考点 函数的表示法题点 函数的表示法 答案 2或4解析 当x =1时,f (g (1))=f (3)=1,g (f (1))=g (1)=3. 当x =2时,f (g (2))=f (2)=3,g (f (2))=g (3)=3. 当x =3时,f (g (3))=f (3)=1,g (f (3))=g (1)=3. 当x =4时,f (g (4))=f (2)=3,g (f (4))=g (3)=3. 满足f (g (x ))=g (f (x ))的x 的值只有2或4.15.已知f (x )+3f (-x )=2x +1,则f (x )的解析式是________. 考点 求函数的解析式 题点 方程组法求函数解析式 答案 f (x )=-x +14解析 因为f (x )+3f (-x )=2x +1,①所以把①中的x 换成-x ,得f (-x )+3f (x )=-2x +1.② 由①②解得f (x )=-x +14.16.某企业生产某种产品时的能耗y 与产品件数x 之间的关系式为y =ax +bx .且当x =2时,y=100;当x =7时,y =35.且此产品生产件数不超过20件. (1)写出函数y 关于x 的解析式; (2)用列表法表示此函数,并画出图象.解 (1)将⎩⎪⎨⎪⎧ x =2,y =100与⎩⎪⎨⎪⎧x =7,y =35代入y =ax +bx 中,得⎩⎨⎧2a +b2=100,7a +b7=35⇒⎩⎪⎨⎪⎧ 4a +b =200,49a +b =245⇒⎩⎪⎨⎪⎧a =1,b =196. 所以所求函数解析式为y =x +196x (x ∈N,0<x ≤20).(2)当x ∈{1,2,3,4,5,…,20}时,列表:x 1 2 3 4 5 6 7 8 9 10 y 197 100 68.3 53 44.2 38.7 35 32.5 30.8 29.6x 11 12 13 14 15 16 17 18 19 20 y28.828.328.12828.128.2528.528.929.329.8依据上表,画出函数y的图象如图所示,是由20个点构成的点列.。
3.1.2用二分法求方程的近似解
课时目标 1.理解二分法求方程近似解的原理.2.能根据具体的函数,借助于学习工具,用二分法求出方程的近似解.3.知道二分法是求方程近似解的一种常用方法,体会“逐步逼近”的思想.
1.二分法的概念
对于在区间[a,b]上连续不断且____________的函数y=f(x),通过不断地把函数f(x)的零点所在的区间__________,使区间的两个端点______________,进而得到零点近似值的方法叫做二分法.由函数的零点与相应方程根的关系,可用二分法来求________________________________________________________________________.2.用二分法求函数f(x)零点近似值的步骤:
(1)确定区间[a,b],验证____________,给定精确度ε;
(2)求区间(a,b)的中点____;
(3)计算f(c);
①若f(c)=0,则________________;
②若f(a)·f(c)<0,则令b=c(此时零点x0∈________);
③若f(c)·f(b)<0,则令a=c(此时零点x0∈________).
(4)判断是否达到精确度ε:即若|a-b|<ε,则得到零点近似值a(或b);否则重复(2)~(4).
一、选择题
1.用“二分法”可求近似解,对于精确度ε说法正确的是()
A.ε越大,零点的精确度越高
B.ε越大,零点的精确度越低
C.重复计算次数就是ε
D.重复计算次数与ε无关
2.下列图象与x轴均有交点,其中不能用二分法求函数零点的是()
3.对于函数f(x)在定义域内用二分法的求解过程如下:f(2 007)<0,f(2 008)<0,f(2 009)>0,则下列叙述正确的是()
A.函数f(x)在(2 007,2 008)内不存在零点
B.函数f(x)在(2 008,2 009)内不存在零点
C.函数f(x)在(2 008,2 009)内存在零点,并且仅有一个
D.函数f(x)在(2 007,2 008)内可能存在零点
4.设f(x)=3x+3x-8,用二分法求方程3x+3x-8=0在x∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间()
A.(1,1.25) B.(1.25,1.5)
C.(1.5,2) D.不能确定
5
A.(0.6,1.0) B.(1.4,1.8)
C.(1.8,2.2) D.(2.6,3.0)
6.已知x0是函数f(x)=2x+
1
1-x
的一个零点.若x1∈(1,x0),x2∈(x0,+∞),则()
A.f(x1)<0,f(x2)<0 B.f(x1)<0,f(x2)>0
C.f(x1)>0,f(x2)<0 2)>0
二、填空题
7.若函数f(x)的图象是连续不间断的,根据下面的表格,可以断定f(x)的零点所在的区间为________.(只填序号)
①(-∞,1]②[1,2]③[2,3]④[3,4]
⑤[4,5]⑥[5,6]⑦[6,+∞)
8.x0=2.5,那么下一个有根的区间是________.
9.在用二分法求方程f(x)=0在[0,1]上的近似解时,经计算,f(0.625)<0,f(0.75)>0,f(0.687
5)<0,即可得出方程的一个近似解为____________(精确度为0.1).
三、解答题
10.确定函数f(x)=
1
2
log x+x-4的零点所在的区间.
11.证明方程6-3x=2x在区间[1,2]内有唯一一个实数解,并求出这个实数解.(精确度0.1)
能力提升
12.下列是关于函数y=f(x),x∈[a,b]的命题:
①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;
②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;
③函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点;
④用二分法求方程的根时,得到的都是近似值.
那么以上叙述中,正确的个数为()
A.0 B.1 C.3 D.4
13.在26枚崭新的金币中,混入了一枚外表与它们完全相同的假币(重量稍轻),现在只有一台天平,请问:你最多称几次就可以发现这枚假币?
知识梳理
1.f (a )·f (b )<0 一分为二 逐步逼近零点 方程的近似解
2.(1)f (a )·f (b )<0 (2)c (3)①c 就是函数的零点 ②(a ,c )
③(c ,b )
作业设计
1.B [依“二分法”的具体步骤可知,ε越大,零点的精确度越低.]
2.A [由选项A 中的图象可知,不存在一个区间(a ,b ),使f (a )·f (b )<0,即A 选项中的零点不是变号零点,不符合二分法的定义.]
3.D
4.B [∵f (1)·f (1.5)<0,x 1=1+1.52
=1.25. 又∵f (1.25)<0,∴f (1.25)·f (1.5)<0,
则方程的根落在区间(1.25,1.5)内.]
5.C [设f (x )=2x -x 2,根据列表有f (0.2)=1.149-0.04>0,
f (0.6)>0,f (1.0)>0,f (1.4)>0,f (1.8)>0,f (2.2)<0,f (2.6)<0,f (3.0)<0,f (3.4)<0.因此方程的一个根在区间(1.8,2.2)内.]
6.B [∵f (x )=2x -1x -1,f (x )由两部分组成,2x 在(1,+∞)上单调递增,-1x -1
在(1,+∞)上单调递增,∴f (x )在(1,+∞)上单调递增.∵x 1<x 0,∴f (x 1)<f (x 0)=0,
又∵x 2>x 0,∴f (x 2)>f (x 0)=0.]
7.③④⑤
8.[2,2.5)
解析 令f (x )=x 3-2x -5,则f (2)=-1<0,f (3)=16>0,
f (2.5)=15.625-10=5.625>0.
∵f (2)·f (2.5)<0,∴下一个有根的区间为[2,2.5).
9.0.75或0.687 5
解析 因为|0.75-0.687 5|=0.062 5<0.1,
所以0.75或0.687 5都可作为方程的近似解.
10.解 (答案不唯一)
设y 1=12
log x ,y 2=4-x ,则f (x )的零点个数即y 1与y 2的交点个数,作出两函数图象,
如图.
由图知,y 1与y 2在区间(0,1)内有一个交点,
当x =4时,y 1=-2,y 2=0,f (4)<0,
当x =8时,y 1=-3,y 2=-4,f (8)=1>0,
∴在(4,8)内两曲线又有一个交点.
故函数f (x )的两零点所在的区间为(0,1),(4,8).
11.证明 设函数f (x )=2x +3x -6,
∵f(1)=-1<0,f(2)=4>0,
又∵f(x)是增函数,
∴函数f(x)=2x+3x-6在区间[1,2]内有唯一的零点,
则方程6-3x=2x在区间[1,2]内有唯一一个实数解.
设该解为x0,则x0∈[1,2],
取x1=1.5,f(1.5)≈1.33>0,f(1)·f(1.5)<0,
∴x0∈(1,1.5),
取x2=1.25,f(1.25)≈0.128>0,
f(1)·f(1.25)<0,∴x0∈(1,1.25),
取x3=1.125,f(1.125)≈-0.444<0,
f(1.125)·f(1.25)<0,∴x0∈(1.125,1.25),
取x4=1.187 5,f(1.187 5)≈-0.16<0,
f(1.187 5)·f(1.25)<0,
∴x0∈(1.187 5,1.25).
∵|1.25-1.187 5|=0.062 5<0.1,
∴1.187 5可作为这个方程的实数解.
12.A[∵①中x0∈[a,b]且f(x0)=0,∴x0是f(x)的一个零点,而不是(x0,0),∴①错误;
②∵函数f(x)不一定连续,∴②错误;③方程f(x)=0的根一定是函数f(x)的零点,∴③错
误;④用二分法求方程的根时,得到的根也可能是精确值,∴④也错误.]
13.解第一次各13枚称重,选出较轻一端的13枚,继续称;
第二次两端各6枚,若平衡,则剩下的一枚为假币,否则选出较轻的6枚继续称;
第三次两端各3枚,选出较轻的3枚继续称;
第四次两端各1枚,若不平衡,可找出假币;若平衡,则剩余的是假币.
∴最多称四次.。