2015-2016年江苏省无锡市北塘区八年级(上)期末数学试卷及参考答案
- 格式:pdf
- 大小:569.22 KB
- 文档页数:21
2015-2016学年度第一学期八年级数学期末考试试卷一、精心选一选(本大题共8小题。
每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内. 1.下列运算中,计算结果正确的是( ).A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。
点P (-2,3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC 。
BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE的中点 6.在以下四个图形中。
对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).FEDC BAA. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式23m a b 与n ab -是同类项,则22m n -= .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上,请在小方格的顶点上标出一个点P 。
使点P 落在∠AOB 的平分线上.BOA13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891 = × ;(2)24×231 = × .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ; (2)第n 个图案中白色瓷砖块数是 .第1个图案 第2个图案 第3个图案三、耐心求一求(本大题共4小题.每小题6分。
江苏省无锡市八年级(上)期末数学试卷一、选择题1.的值是()A.4B.2C.±4D.±22.若2x﹣5没有平方根,则x的取值范围为()A.x B.x C.x D.x3.把29500精确到1000的近似数是()A.2.95×103B.2.95×104C.2.9×104D.3.0×1044.下列图案中的轴对称图形是()A.B.C.D.5.等腰三角形的两边长分别为5和11,则这个三角形的周长为()A.16B.27C.16或27D.21或276.以下各组数为边长的三角形,其中构成直角三角形的一组是()A.4、5、6B.3、5、6C.D.2,7.在平面直角坐标系中,点(﹣3,4)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.下列函数中,y是x的正比例函数的是()A.y=﹣B.y=﹣2x﹣2C.y=2(x﹣2)D.y=9.给出下列4个命题:①两边及其中一边上的中线对应相等的两个三角形全等;②两边及其中一边上的高对应相等的两个三角形全等;③两边及一角对应相等的两个三角形全等;④有两角及其中一角的角平分线对应相等的两个三角形全等.其中正确的个数有()A.1个B.2个C.3个D.4个10.如图,在四边形ABCD中,对角线AC⊥BD,垂足为点O,且∠OAB=45°,OC=2OA=8,∠OCB=∠ODA,则四边形ABCD的面积为()A.32B.36C.42D.48二、填空题11.27的立方根为.12.若某个正数的两个平方根是a﹣3与a+5,则a=.13.如果等腰三角形的一个外角为80°,那么它的底角为度.14.如果正比例函数y=3x的图象沿y轴方向向下平移2个单位,则所得图象所对应的函数表达式是.15.如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=105°,则∠ADC=°.16.如图,已知一次函数y1=x+b与一次函数y2=mx﹣n的图象相交于点P(﹣2,1),则关于不等式x+b ≥mx﹣n的解集为.17.如图,在平面直角坐标系中,以A(2,0),B(0,t)为顶点作等腰直角△ABC(其中∠ABC=90°,且点C落在第一象限内),则点C关于y轴的对称点C’的坐标为.(用t的代数式表示)18.在平面直角坐标系中,坐标原点O到一次函数y=kx﹣2k+1图象的距离的最大值为.三、计算题19.(8分)(1)计算﹣()﹣1+20090(2)求(x+1)2﹣49=0中x的值20.(8分)如图,点B、F、C、E在同一直线上,且BF=CE,∠B=∠E,AC,DF相交于点O,且OF =OC,求证:(1)△ABC≌△DEF;(2)OA=OD.21.(6分)如图,已知△ABC(AC<AB<BC),请用无刻度的直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹);(1)在AB边上寻找一点M,使得点M到AC、BC的距离相等;(2)在BC边上寻找一点N,使得NA+NB=BC.22.(8分)如图,点B、C、D在一直线上,△ABC和△ADE都是等边三角形(1)请找出图中的全等三角形,并说明理由;(2)求证:EB∥AC.23.(8分)如图,在平面直角坐标系中,△ABC的顶点分别为A(﹣8,0)、B(6,0)、C(0,6),点D 是OC中点,连接BD并延长交AC于点E,求四边形AODE的面积.24.(8分)某农户以1500元/亩的单价承包了15亩地种植板栗,每亩种植80株优质板栗嫁接苗,购买嫁接苗,购买价格为5元/株,且每亩地的管理费用为800元,一年下来喜获丰收平均每亩板栗产量为600kg,已知当地板栗的批发和;零售价格分别如下表所示:销售方式批发零售售价(元/kg)1014通过市场调研发现,批发与零售的总销量只能达到总产量的70%,其中零售量不高于总销售量的40%,经多方协调当地食品加工厂承诺以7元/kg的价格收购该农户余下的板栗,设板栗全部售出后的总利润为y元,其中零售xkg.(1)求y与x之间的函数关系;(2)求该农户所收获的最大利润.(总利润=总销售额﹣总承包费用﹣购买板栗苗的费用﹣总管理费用)25.(10分)如图,四边形ABCD中,∠ABC=∠ADC=45°,将△BCD绕点C顺时针旋转一定角度后,点B的对应点恰好与点A重合,得到△ACE.(1)求证:AE⊥BD;(2)若AD=2,CD=3,试求出四边形ABCD的对角线BD的长.26.(10分)如图,已知一次函数y=﹣x+b的图象与x轴交于A(﹣6,0)与y轴相交于点B,动点P 从A出发,沿x轴向x轴的正方向运动.(1)求b的值,并求出△PAB为等腰三角形时点P的坐标;(2)在点P出发的同时,动点Q也从点A出发,以每秒个单位的速度,沿射线AB运动,运动时间为t(s)①求点Q的坐标;(用含t的表达式表示)②若点P的运动速度为每秒k个单位,请直接写出当△APQ为等腰三角形时k的值.江苏省无锡市八年级(上)期末数学试卷参考答案与试题解析一、选择题1.的值是()A.4B.2C.±4D.±2【解答】解:∵42=16,∴16的算术平方根是4,即=4,故选:A.2.若2x﹣5没有平方根,则x的取值范围为()A.x B.x C.x D.x【解答】解:由题意知2x﹣5<0,解得x<,故选:D.3.把29500精确到1000的近似数是()A.2.95×103B.2.95×104C.2.9×104D.3.0×104【解答】解:把29500精确到1000的近似数是3.0×104.故选:D.4.下列图案中的轴对称图形是()A.B.C.D.【解答】解:A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、是轴对称图形,本选项正确;D、不是轴对称图形,本选项错误.故选:C.5.等腰三角形的两边长分别为5和11,则这个三角形的周长为()A.16B.27C.16或27D.21或27【解答】解:①11是腰长时,三角形的三边分别为11、11、5,能组成三角形,周长=11+11+5=27;②11是底边时,三角形的三边分别为11、5、5,∵5+5=10<11,∴不能组成三角形,综上所述,三角形的周长为27.故选:B.6.以下各组数为边长的三角形,其中构成直角三角形的一组是()A.4、5、6B.3、5、6C.D.2,【解答】解:A、52+42≠62,故不是直角三角形,故不正确;B、52+32≠62,故不是直角三角形,故不正确;C、()2+()2=()2,故是直角三角形,故正确;D、22+()2≠()2,故不是直角三角形,故不正确.故选:C.7.在平面直角坐标系中,点(﹣3,4)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点(﹣3,4)所在的象限是第二象限,故选:B.8.下列函数中,y是x的正比例函数的是()A.y=﹣B.y=﹣2x﹣2C.y=2(x﹣2)D.y=【解答】解:A、该函数是正比例函数,故本选项正确.B、该函数是一次函数,故本选项错误.C、该函数是一次函数,故本选项错误.D、该函数是反比例函数,故本选项错误.故选:A.9.给出下列4个命题:①两边及其中一边上的中线对应相等的两个三角形全等;②两边及其中一边上的高对应相等的两个三角形全等;③两边及一角对应相等的两个三角形全等;④有两角及其中一角的角平分线对应相等的两个三角形全等.其中正确的个数有()A.1个B.2个C.3个D.4个【解答】解:①两边及其中一边上的中线对应相等的两个三角形全等,正确;②两边及其中一边上的高对应相等的两个三角形不一定全等,错误;③两边及一角对应相等的两个三角形全等,如SSA不能判定全等,错误;④有两角及其中一角的角平分线对应相等的两个三角形全等,正确;故选:B.10.如图,在四边形ABCD中,对角线AC⊥BD,垂足为点O,且∠OAB=45°,OC=2OA=8,∠OCB=∠ODA,则四边形ABCD的面积为()A.32B.36C.42D.48【解答】解:在OC上截取OE=OD,连接BE,如图所示:∵OC=2OA=8,∴OA=4,∵AC⊥BD,∠OAB=45°,∴∠AOD=∠BOE=90°,△OAB是等腰直角三角形,∴OB=OA=4,∴AC=OA+OC=12,在△AOD和△BOE中,,∴△AOD≌△BOE(SAS),∴∠ODA=∠OEB,∵∠OCB=∠ODA,∴∠OEB=∠ODA=2∠OCB,∵∠OEB=∠OCB+∠EBC,∴∠OCB=∠ECB,∴BE=CE,设BE=CE=x,则OE=8﹣x,在Rt△OBE中,由勾股定理得:42+(8﹣x)2=x2,解得:x=5,∴CE=5,OD=OE=3,∴BD=OB+OD=4+3=7,∵AC⊥BD,∴四边形ABCD的面积=AC×BD=×12×7=42;故选:C.二、填空题11.27的立方根为3.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.12.若某个正数的两个平方根是a﹣3与a+5,则a=﹣1.【解答】解:由题意知a﹣3+a+5=0,解得:a=﹣1,故答案为:﹣1.13.如果等腰三角形的一个外角为80°,那么它的底角为40度.【解答】解:∵等腰三角形的一个外角为80°,∴相邻角为180°﹣80°=100°,∵三角形的底角不能为钝角,∴100°角为顶角,∴底角为:(180°﹣100°)÷2=40°.故答案为:40.14.如果正比例函数y=3x的图象沿y轴方向向下平移2个单位,则所得图象所对应的函数表达式是y =3x﹣2.【解答】解:将函数y=3x的图象沿y轴向下平移2个单位长度后,所得图象对应的函数关系式为:y =3x﹣2.故答案为:y=3x﹣2.15.如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=105°,则∠ADC=50°.【解答】解:∵AC=AD=DB,∴∠B=∠BAD,∠ADC=∠C,设∠ADC=α,∴∠B=∠BAD=,∵∠BAC=105°,∴∠DAC=105°﹣,在△ADC中,∵∠ADC+∠C+∠DAC=180°,∴2α+105°﹣=180°,解得:α=50°.故答案为:50.16.如图,已知一次函数y1=x+b与一次函数y2=mx﹣n的图象相交于点P(﹣2,1),则关于不等式x+b ≥mx﹣n的解集为x≥﹣2.【解答】解:∵一次函数y1=x+b与一次函数y2=mx﹣n的图象相交于点P(﹣2,1),∴不等式x+b≥mx﹣n的解集是x≥﹣2.故答案为:x≥﹣2.17.如图,在平面直角坐标系中,以A(2,0),B(0,t)为顶点作等腰直角△ABC(其中∠ABC=90°,且点C落在第一象限内),则点C关于y轴的对称点C’的坐标为(﹣t,t+2).(用t的代数式表示)【解答】解:过C作CE⊥y轴于E,并作C关于y轴的对称点C',∵A(2,0),B(0,t),∴OA=2,OB=t,∵△ABC是等腰直角三角形,∴AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠CBE+∠BCE=90°,∴∠ABO=∠BCE,∵∠AOB=∠BEC,∴△AOB≌△BEC(AAS),∴AO=BE=2,OB=CE=t,∴C(t,t+2),∴C'(﹣t,t+2),故答案为:(﹣t,t+2).18.在平面直角坐标系中,坐标原点O到一次函数y=kx﹣2k+1图象的距离的最大值为.【解答】解:y=kx﹣2k+1=k(x﹣2)+1,即该一次函数经过定点(2,1),设该定点为P,则P(2,1),当直线OP与直线y=kx﹣2k+1垂直时,坐标原点O到一次函数y=kx﹣2k+1的距离最大,如下图所示:最大距离为:=,故答案为:.三、计算题19.(8分)(1)计算﹣()﹣1+20090(2)求(x+1)2﹣49=0中x的值【解答】解:(1)原式=﹣2﹣2+1=﹣3;(2)(x+1)2﹣49=0则x+1=±7,解得:x=6或﹣8.20.(8分)如图,点B、F、C、E在同一直线上,且BF=CE,∠B=∠E,AC,DF相交于点O,且OF =OC,求证:(1)△ABC≌△DEF;(2)OA=OD.【解答】证明:(1)∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵OF=OC,∴∠OCF=∠OFC,在△ABC与△DEF中,∴△ABC≌△DEF(ASA);(2)∵△ABC≌△DEF,∴AC=DF,∵OF=OC,∴AC﹣OC=DF﹣OF,即OA=OD.21.(6分)如图,已知△ABC(AC<AB<BC),请用无刻度的直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹);(1)在AB边上寻找一点M,使得点M到AC、BC的距离相等;(2)在BC边上寻找一点N,使得NA+NB=BC.【解答】解:(1)如图所示:(2)如图所示:22.(8分)如图,点B、C、D在一直线上,△ABC和△ADE都是等边三角形(1)请找出图中的全等三角形,并说明理由;(2)求证:EB∥AC.【解答】解:(1)△ACD≌△ABE,理由如下:∵△ABC,△ADE为等边三角形,∴AB=AC,AE=AD,∠BAC=∠DAE=60°,∴∠BAC+∠BAD=∠DAE+∠BAD,即∠CAD=∠BAE,在△ACD与△ABE中,∴△ACD≌△ABE(SAS),(2)∵△ACD≌△ABE,∴∠ABE=∠C=60°,∴∠ABE=∠BAC,∴EB∥AC.23.(8分)如图,在平面直角坐标系中,△ABC的顶点分别为A(﹣8,0)、B(6,0)、C(0,6),点D 是OC中点,连接BD并延长交AC于点E,求四边形AODE的面积.【解答】解:∵D是OC中点,C(0,6),∴D(0,3),设直线AC的解析式为:y=kx+b,∵A(﹣8,0)、C(0,6),∴,∴,∴直线AC的解析式为:y=x+6,直线BD的解析式为:y=mx+n,∵B(6,0)、D(0,2),∴,∴,∴直线BD的解析式为:y=﹣x+3;解得,,∴E(﹣,),∴SAODE=S△ABE﹣S△OBD=×14×﹣×6×3=.四边形24.(8分)某农户以1500元/亩的单价承包了15亩地种植板栗,每亩种植80株优质板栗嫁接苗,购买嫁接苗,购买价格为5元/株,且每亩地的管理费用为800元,一年下来喜获丰收平均每亩板栗产量为600kg,已知当地板栗的批发和;零售价格分别如下表所示:销售方式批发零售售价(元/kg)1014通过市场调研发现,批发与零售的总销量只能达到总产量的70%,其中零售量不高于总销售量的40%,经多方协调当地食品加工厂承诺以7元/kg的价格收购该农户余下的板栗,设板栗全部售出后的总利润为y元,其中零售xkg.(1)求y与x之间的函数关系;(2)求该农户所收获的最大利润.(总利润=总销售额﹣总承包费用﹣购买板栗苗的费用﹣总管理费用)【解答】解:(1)由题意得y=14x+10(600×15×70%﹣x)+7×600×15×30%﹣(1500+800+80×5)×15整理得y=4x+41400故y与x之间的函数关系式为y=4x+41400(2)∵零售量不高于总销售量的40%∴x≤600×15×70%×40%即:x≤2520又∵4>0,∴对于y=4x+41400而言,y随着x的增大而增大,∴当x取最大值2520时,y得最大值为51480答:该农户所收获的最大利润为51480元.25.(10分)如图,四边形ABCD中,∠ABC=∠ADC=45°,将△BCD绕点C顺时针旋转一定角度后,点B的对应点恰好与点A重合,得到△ACE.(1)求证:AE⊥BD;(2)若AD=2,CD=3,试求出四边形ABCD的对角线BD的长.【解答】解:(1)如图,设AC与BD的交点为点M,BD与AE的交点为点N,∵旋转∴AC=BC,∠DBC=∠CAE又∵∠ABC=45°,∴∠ABC=∠BAC=45°,∴∠ACB=90°,∵∠DBC+∠BMC=90°∴∠AMN+∠CAE=90°∴∠AND=90°∴AE⊥BD,(2)如图,连接DE,∵旋转∴CD=CE=3,BD=AE,∠DCE=∠ACB=90°∴DE==3,∠CDE=45°∵∠ADC=45°∴∠ADE=90°∴EA==∴BD=26.(10分)如图,已知一次函数y=﹣x+b的图象与x轴交于A(﹣6,0)与y轴相交于点B,动点P 从A出发,沿x轴向x轴的正方向运动.(1)求b的值,并求出△PAB为等腰三角形时点P的坐标;(2)在点P出发的同时,动点Q也从点A出发,以每秒个单位的速度,沿射线AB运动,运动时间为t(s)①求点Q的坐标;(用含t的表达式表示)②若点P的运动速度为每秒k个单位,请直接写出当△APQ为等腰三角形时k的值.【解答】解:(1)把A(﹣6,0)代入y=﹣x+b得,b=﹣2,∴B(0,﹣2),AO=6,OB=2,AB===2,∵△PAB为等腰三角形,∴当AP=AB时,AP=2,∴P(2﹣6,0);当BP=BA时,OP=OA=6,∴P(6,0);当PA=PB时,设OP=x,则PA=PB=6﹣x,在Rt△OPB中,∵OP2+OB2=PB2,∴x2+22=(6﹣x)2,解得:x=,∴P(﹣,0);综上所述,当△PAB为等腰三角形时点P的坐标为(2﹣6,0)或(6,0)或(﹣,0);(2)①∵点Q在直线y=﹣x+b上,∴设Q(a,﹣a﹣2),作QH⊥x轴于H,则QH=a+2,AH=6+a,∴AQ==(a+2),∵AQ=t,∴t=a+2,∴a=3t﹣6,∴Q(3t﹣6,﹣t);②由题意得,AQ=t,AP=kt,∵△APQ为等腰三角形,∴当AP=AQ时,t=kt,∴k=,当AQ=PQ时,即AH=AP,∴3t=kt,∴k=6;当PA=PQ时,在Rt△PQH中,∵HP2+HQ2=PQ2,∴(3t﹣kt)2+t2=(kt)2,∴k=,综上所述,当△APQ为等腰三角形时k的值为或6或.。
2015-2016学年八年级(上)期末数学试卷一、选择题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.2.在下列实数中,无理数是()A. 5 B. C. 0 D.3.点M(﹣3,2)关于y轴对称的点的坐标为()A.(﹣3,﹣2) B.(3,﹣2) C.(3,2) D.(﹣3,2)4.下列可以判定两个直角三角形全等的条件是()A.斜边相等 B.面积相等C.两对锐角对应相等 D.两对直角边对应相等5.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB 的长度为()A. 5 B. 6 C. 7 D. 256.如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何()A. 45 B. 52.5 C. 67.5 D. 757.一辆货车从甲地匀速使往乙地,到达后用半个小时卸货,随即匀速返回.已知货车返回的速度是它从甲地驶往乙地的速度的1.5倍,货车离甲地的距离y(千米)关于时间x(小时)的函数图象如图所示,则a的值为()A. 4.5 B. 4.9 C. 5 D. 68.平面直角坐标系中,已知A(6,0),△AOP为等腰三角形且面积为12,满足条件的P点有()A. 4个 B. 8个 C. 10个 D. 12个二、填空题9.4的平方根是.10.取圆周率π=3.1415926…的近似值时,若要求精确到0.01,则π≈.11.若+(y﹣1)2=0,则x,y为边长的等腰三角形的周长为.12.点P的坐标是(2,﹣3),则点P在第象限.13.如图,△ABC≌△DEF,请根据图中提供的信息,写出x= .14.如图,在△ABC中,BC边的垂直平分线交BC于D,交AD于E,若CE平分∠ACB,∠B=40°,则∠A= 度.15.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为.16.把直线y=﹣2x向上平移后得到直线AB,直线AB经过点(m,n),且2m+n=6,则直线AB的解析式为.17.如图,在直角三角形ABC中,∠BCA=90°,BC=3,D为AB上一点,连接CD,如果三角形BCD沿直线CD翻折后,点B恰好与边AC的中点E重合,那么点D到直线AC的距离为.18.如图,点A的坐标为(8,0),点B是y轴负半轴上的任意一点,分别以OB,AB为直角边的第三第四象限作等腰Rt△ABE,连接EF交y轴于P点,当点B在y轴上移动时,则BP 的长度为.三、解答题19.计算:(1)++20150;(2)求3(x﹣1)2=48中x的值.20.已知2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4,求a+2b的平方根.21.如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.22.(1)在下列网格图中画出△ABC关于直线l的轴对称图形△A′B′C′.(2)如图,校园有两条路OA、OB,在交叉口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你用直尺和圆规画出灯柱的位置点P.(不必写出作图步骤,但须保留适当的作图痕迹,并标注必要的字母)23.如图,在平面直角坐标系xOy中,直线与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长和点C的坐标;(2)求直线CD的解析式.24.课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.(1)求证:△ADC≌△CEB;(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).25.一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动,快车离乙地的路程y1(km)与行使的时间x(h)之间的函数关系,如图中AB所示;慢车离乙地的路程y2(km)与行使的时间x(h)之间的函数关系,如图中线段OC所示,根据图象进行以下研究.解读信息:(1)甲,乙两地之间的距离为km;(2)线段AB的解析式为;线段OC的解析式为;问题解决:(3)设快,慢车之间的距离为y(km),求y与慢车行驶时间x(h)的函数关系式,并画出函数图象.26.如图①,A,D分别在x轴,y轴上,AB∥y轴,DC∥x轴.点P从点D出发,以1个单位长度/秒的速度,沿五边形OABCD的边匀速运动一周,若顺次连接P,O,D三点所围成的三角形的面积为S,点P运动的时间为t秒,已知S与t之间的函数关系如图②中折线O′EFGHM所示.(1)点B的坐标为;点C的坐标为;(2)若直线PD将五边形OABCD的周长分为11:15两部分,求PD的解析式.2015-2016学年八年级(上)期末数学试卷参考答案与试题解析一、选择题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.考点:轴对称图形.分析:根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.点评:本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.在下列实数中,无理数是()A. 5 B. C. 0 D.考点:无理数.分析:根据无理数是无限不循环小数,可得答案.解答:解:A、5是有理数,故A错误;B、是无理数,故B正确;C、0是有理数,故C错误;D、是有理数,故D错误;故选:B.点评:本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.3.点M(﹣3,2)关于y轴对称的点的坐标为()A.(﹣3,﹣2) B.(3,﹣2) C.(3,2) D.(﹣3,2)考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y),可以直接得到答案.解答:解:点M(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:C.点评:此题主要考查了考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容,比较基础,关键是熟记点的坐标变化规律.4.下列可以判定两个直角三角形全等的条件是()A.斜边相等 B.面积相等C.两对锐角对应相等 D.两对直角边对应相等考点:直角三角形全等的判定.分析:根据判定直角三角形全等的条件:SAS、ASA、AAS、HL进行分析即可.解答:解:A、斜边相等,缺少一个条件,不能证明两个直角三角形全等,故此选项错误;B、面积相等,不能证明两个直角三角形全等,故此选项错误;C、两对锐角对应相等,缺少边相等的条件,不能证明两个直角三角形全等,故此选项错误;D、两对直角边对应相等,可利用SAS定理证明两个直角三角形全等,故此选项正确;故选:D.点评:此题主要考查了直角三角形全等的判定定理,关键是掌握判定直角三角形全等的条件.5.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB 的长度为()A. 5 B. 6 C. 7 D. 25考点:勾股定理.专题:网格型.分析:建立格点三角形,利用勾股定理求解AB的长度即可.解答:解:如图所示:AB==5.故选:A.点评:本题考查了勾股定理的知识,解答本题的关键是掌握格点三角形中勾股定理的应用.6.如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何()A. 45 B. 52.5 C. 67.5 D. 75考点:等腰三角形的性质;三角形内角和定理.专题:计算题.分析:根据AB=AC,利用三角形内角和定理求出∠ABC的度数,再利用等腰三角形的性质和三角形内角和定理求出∠DBC=30°,然后即可求出∠BDE的度数.解答:解:∵AB=AC,∴∠ABC=∠ACB,∵∠A=30°,∴∠ABC=∠ACB=(180°﹣30°)=75°,∵以B为圆心,BC长为半径画弧,∴BE=BD=BC,∴∠BDC=∠AC B=75°,∴∠CBD=180°﹣75°﹣75°=30°,∴∠DBE=75°﹣30°=45°,∴∠BED=∠BDE=(180°﹣45°)=67.5°.故选C.点评:本题考查了学生对等腰三角形的性质和三角形内角和定理等知识点的理解和掌握,此题的突破点是利用等腰三角形的性质和三角形内角和定理求出∠DBC=45°,然后即可求得答案.7.一辆货车从甲地匀速使往乙地,到达后用半个小时卸货,随即匀速返回.已知货车返回的速度是它从甲地驶往乙地的速度的1.5倍,货车离甲地的距离y(千米)关于时间x(小时)的函数图象如图所示,则a的值为()A. 4.5 B. 4.9 C. 5 D. 6考点:一次函数的应用.分析:由图可知,从一辆货车从甲地匀速驶往乙地,到达所用时间为3.2﹣0.5=2.7小时,而返回的速度是它从甲地驶往乙地的速度的1.5倍,路程一样,回到甲地的时间也就是原来时间的,求得返回用的时间为2.7÷1.5=1.8小时,由此求得a=3.2+1.8=5小时.解答:解:由题意可知:从甲地匀速驶往乙地,到达所用时间为3.2﹣0.5=2.7小时,返回的速度是它从甲地驶往乙地的速度的1.5倍,返回用的时间为2.7÷1.5=1.8小时,所以a=3.2+1.8=5小时.故选:C.点评:此题考查利用函数图象解决有关实际问题,注意利用路程、时间、速度之间三者的关系解决问题.8.平面直角坐标系中,已知A(6,0),△AOP为等腰三角形且面积为12,满足条件的P点有()A. 4个 B. 8个 C. 10个 D. 12个考点:等腰三角形的判定;坐标与图形性质.分析:先利用△AOP的面积为12,求得边OA上的高,然后分三种情况考虑:①当AO=AP 时,②当OA=OP时,③当OP=AP时,分别求得点P的个数,即可得出答案.解答:解:∵A(6,0),∴OA=6,设△AOP的边OA上的高是h,则×6×h=12,解得:h=4,在x轴的两侧作直线a和直线b都和x轴平行,且到x轴的距离都等于4,如图:①当AO=AP时,以点A为圆心,以6为半径画弧,交直线a和直线b分别有两个点,即共4个点符合,②当OA=OP时,以O为圆心,以6为半径画弧,交直线a和直线b分别有两个点,即共4个点符合,③当OP=AP时,作AO的垂直平分线分别交直线a、b于一点,即共2个点符合,4+4+2=10.故选:C.点评:本题主要考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.二、填空题9.4的平方根是±2 .考点:平方根.专题:计算题.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.解答:解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.取圆周率π=3.1415926…的近似值时,若要求精确到0.01,则π≈ 3.14 .考点:近似数和有效数字.分析:把3.1415926…的千分位上的数字进行四舍五入即可.解答:解:π≈3.14(精确到0.01).故答案为3.14.点评:本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.11.若+(y﹣1)2=0,则x,y为边长的等腰三角形的周长为7 .考点:等腰三角形的性质;非负数的性质:偶次方;非负数的性质:算术平方根;三角形三边关系.专题:计算题;分类讨论.分析:首先利用非负数的性质可以得到x﹣3=0且y﹣1=0,进而求得x=3,y=1,然后分两种情况并运用三角形的三边关系进行解答即可.解答:解:∵+(y﹣1)2=0,∴x﹣3=0且y﹣1=0,解得x=3,y=1,当等腰三角形的腰为3时,三角形的三边为3,3,1,符合三角形的三边关系,此时三角形的周长为3+3+1=7;当等腰三角形的腰为1时,三角形的三边为3,1,1,由于1+1<3,所以不符合三角形的三边关系,不能构成三角形;所以x,y为边长的等腰三角形的周长为7.故答案为:7.点评:本题考查了非负数的性质,等腰三角形的性质,三角形的三边关系等知识,解答本题的关键是利用非负数的性质求出x与y的值,同时注意分类讨论思想的运用.12.点P的坐标是(2,﹣3),则点P在第四象限.考点:点的坐标.分析:根据题意,结合各个象限点的坐标特点可得答案.解答:解:对于点P(2,﹣3),横坐标为2>0,纵坐标﹣3<0;则点P在第四象限.故填:四.点评:解决本题解决的关键是记住各象限内点的坐标的符号,进而对号入座.13.如图,△ABC≌△DEF,请根据图中提供的信息,写出x= 20 .考点:全等三角形的性质.专题:压轴题.分析:先利用三角形的内角和定理求出∠A=70°,然后根据全等三角形对应边相等解答.解答:解:如图,∠A=180°﹣50°﹣60°=70°,∵△ABC≌△DEF,∴EF=BC=20,即x=20.故答案为:20.点评:本题考查了全等三角形的性质,根据角度确定出全等三角形的对应边是解题的关键.14.(3分)(2014秋•宜兴市期末)如图,在△ABC中,BC边的垂直平分线交BC于D,交AD于E,若CE平分∠ACB,∠B=40°,则∠A= 60 度.考点:线段垂直平分线的性质.分析:由线段垂直平分线和角平分线的定义可得∠B=∠ECB=∠ACE=40°,在△ABC中由三角形内角和定理可求得∠A.解答:解:∵E在线段BC的垂直平分线上,∴BE=CE,∴∠ECB=∠B=40°,∵CE平分∠ACB,∴∠ACD=2∠ECB=80°,又∵∠A+∠B+∠ACB=180°,∴∠A=180°﹣∠B﹣∠ACB=60°,故答案为:60.点评:本题主要考查线段垂直平分线的性质,掌握垂直平分线上的点到线段两端点的距离相等是解题的关键.15.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为12 .考点:勾股定理;直角三角形斜边上的中线.分析:根据直角三角形斜边上的中线等于斜边的一半可得AB=2DE,再利用勾股定理列式计算即可得解.解答:解:∵BE⊥AC,D为AB中点,∴AB=2DE=2×10=20,在Rt△ABE中,BE===12.故答案为:12.点评:本题考查了勾股定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记性质与定理是解题的关键.16.把直线y=﹣2x向上平移后得到直线AB,直线AB经过点(m,n),且2m+n=6,则直线AB的解析式为y=﹣2x+6 .考点:一次函数图象与几何变换.分析:由题意知,直线AB的斜率,又已知直线AB上的一点(m,n),所以用直线的点斜式方程y﹣y0=k(x﹣x0)求得解析式即可.解答:解:∵直线AB是直线y=﹣2x平移后得到的,∴直线AB的k是﹣2(直线平移后,其斜率不变)∴设直线AB的方程为y﹣y0=﹣2(x﹣x0)①把点(m,n)代入①并整理,得y=﹣2x+(2m+n)②∵2m+n=6 ③把③代入②,解得y=﹣2x+6即直线AB的解析式为y=﹣2x+6.点评:本题是关于一次函数的图象与它平移后图象的转变的题目,在解题时,紧紧抓住直线平移后,斜率不变这一性质,再根据题意中的已知条件,来确定用哪种方程(点斜式、斜截式、两点式等)来解答.17.如图,在直角三角形ABC中,∠BCA=90°,BC=3,D为AB上一点,连接CD,如果三角形BCD沿直线CD翻折后,点B恰好与边AC的中点E重合,那么点D到直线AC的距离为 2 .考点:翻折变换(折叠问题).分析:首先过点D作DN⊥AC于N,过点D作DM⊥AB,由折叠的性质可得:∠BCD=∠ACD,CE=CB=3,由角平分线的性质,可得DM=DN,然后利用三角形的面积,即可求得答案.解答:解:过点D作DN⊥AC于N,过点D作DM⊥AB,由折叠的性质可得:∠BCD=∠ACD,CE=CB=3,∴DM=DN,∵E是AC的中点,∴AC=2AE=6,∵S△BAC=S△BCD+S△ACD,即AB•AC=BC•DM+AC•DN,∴×3×6=×DN×3+×6×DN,解得:DN=2,∴点D到AC的距离是2.故答案为:2.点评:此题考查了折叠的性质以及三角形面积问题,注意掌握辅助线的作法是解此题的关键.18.如图,点A的坐标为(8,0),点B是y轴负半轴上的任意一点,分别以OB,AB为直角边的第三第四象限作等腰Rt△ABE,连接EF交y轴于P点,当点B在y轴上移动时,则BP 的长度为 4 .考点:全等三角形的判定与性质;坐标与图形性质;等腰直角三角形.分析:作EN⊥y轴于N,求出∠NBE=∠BAO,证△ABO≌△BEN,求出∠OBF=∠FBP=∠BNE=90°,证△BFP≌△NEP,推出BP=NP,即可得出答案.解答:解:如图,作EN⊥y轴于N,∵∠ENB=∠BOA=∠ABE=90°,∴∠OBA+∠NBE=90°,∠OBA+∠OAB=90°,∴∠NBE=∠BAO,在△ABO和△BEN中,,∴△ABO≌△BEN(AAS),∴OB=NE=BF,∵∠OBF=∠FBP=∠BNE=90°,在△BFP和△NEP中,,∴△BFP≌△NEP(AAS),∴BP=NP,又∵点A的坐标为(8,0),∴OA=BN=8,∴BP=NP=4.故答案为:4.点评:本题考查了全等三角形的性质和判定,坐标与图形性质等知识点的应用,主要考查学生综合运用性质进行推理和计算的能力,有一定的难度,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等,对应边相等.三、解答题19.计算:(1)++20150;(2)求3(x﹣1)2=48中x的值.考点:实数的运算;平方根;零指数幂.专题:计算题.分析:(1)原式利用平方根,立方根的定义,以及零指数幂法则计算即可得到结果;(2)方程变形后,利用平方根定义开方即可求出解.解答:解:(1)原式=2﹣2+1=1;(2)方程变形得:(x﹣1)2=16,开方得:x﹣1=4或x﹣1=﹣4,解得:x=5或x=﹣3.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.已知2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4,求a+2b的平方根.考点:算术平方根;平方根.专题:探究型.分析:先根据2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4求出ab的值,再求出a+2b 的值,由平方根的定义进行解答即可.解答:解:∵2a﹣1的平方根为±3,∴2a﹣1=9,解得,2a=10,a=5;∵3a+b﹣1的算术平方根为4,∴3a+b﹣1=16,即15+b﹣1=16,解得b=2,∴a+2b=5+4=9,∴a+2b的平方根为:±3.点评:本题考查的是平方根及算术平方根的定义,熟知一个数的平方根有两个,这两个数互为相反数是解答此题的关键.21.如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.考点:全等三角形的判定与性质;等腰三角形的性质.专题:证明题.分析:根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.解答:证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM,∵M是BC的中点,∴BM=CM,在△BDM和△CEM中,,∴△BDM≌△CEM(SAS),∴MD=ME.点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质.22.(1)在下列网格图中画出△ABC关于直线l的轴对称图形△A′B′C′.(2)如图,校园有两条路OA、OB,在交叉口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你用直尺和圆规画出灯柱的位置点P.(不必写出作图步骤,但须保留适当的作图痕迹,并标注必要的字母)考点:作图-轴对称变换;作图—应用与设计作图.分析:(1)根据轴对称的性质画出△ABC关于直线l的轴对称图形△A′B′C′即可;(2)作出∠AOB的角平分线,线段CD的垂直平分线,两条线的交点即为P点.解答:解:(1)如图1所示:(2)如图2所示:点评:本题考查的是作图﹣轴对称变换,熟知轴对称图形的作法是解答此题的关键.23.如图,在平面直角坐标系xOy中,直线与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长和点C的坐标;(2)求直线CD的解析式.考点:一次函数综合题.专题:探究型.分析:(1)先根据A、B两点是直线与两坐标轴的交点求出两点坐标,再由勾股定理求出AB的长,由图形翻折变换的性质得出AC=AB,故可得出C点坐标;(2)设点D的坐标为D(0,y),由图形翻折变换的性质可知CD=BD,在Rt△OCD中由勾股定理可求出y的值,进而得出D点坐标,利用待定系数法即可求出直线CD的解析式.解答:解:(1)∵直线y=﹣x+8与x轴,y轴分别交于点A,点B,∴A(6,0),B(0,8),在Rt△OAB中,∠AOB=90°,OA=6,OB=8,∴AB==10,∵△DAB沿直线AD折叠后的对应三角形为△DAC,∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上,∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0),由题意可知CD=BD,CD2=BD2,在Rt△OCD中,由勾股定理得162+y2=(8﹣y)2,解得y=﹣12.∴点D的坐标为D(0,﹣12),可设直线CD的解析式为 y=kx﹣12(k≠0)∵点C(16,0)在直线y=kx﹣12上,∴16k﹣12=0,解得k=,∴直线CD的解析式为y=x﹣12.点评:本题考查的是一次函数综合题,涉及到图形翻折变换的性质、勾股定理及用待定系数法求一次函数的解析式,难度适中.24.课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.(1)求证:△ADC≌△CEB;(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).考点:全等三角形的应用;勾股定理的应用.专题:几何图形问题.分析:(1)根据题意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,再证明△ADC≌△CEB即可.(2)由题意得:AD=4a,BE=3a,根据全等可得DC=BE=3a,根据勾股定理可得(4a)2+(3a)2=252,再解即可.解答:(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);(2)解:由题意得:∵一块墙砖的厚度为a,∴AD=4a,BE=3a,由(1)得:△ADC≌△CEB,∴DC=BE=3a,在Rt△AC D中:AD2+CD2=AC2,∴(4a)2+(3a)2=252,∵a>0,解得a=5,答:砌墙砖块的厚度a为5cm.点评:此题主要考查了全等三角形的应用,以及勾股定理的应用,关键是正确找出证明三角形全等的条件.25.一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动,快车离乙地的路程y1(km)与行使的时间x(h)之间的函数关系,如图中AB所示;慢车离乙地的路程y2(km)与行使的时间x(h)之间的函数关系,如图中线段OC所示,根据图象进行以下研究.解读信息:(1)甲,乙两地之间的距离为450 km;(2)线段AB的解析式为y1=450﹣150x(0≤x≤3);线段OC的解析式为y2=75x (0≤x≤6);问题解决:(3)设快,慢车之间的距离为y(km),求y与慢车行驶时间x(h)的函数关系式,并画出函数图象.考点:一次函数的应用.专题:压轴题.分析:(1)利用A点坐标为(0,450),可以得出甲,乙两地之间的距离;(2)利用A点坐标为(0,450),B点坐标为(3,0),代入y1=kx+b求出即可,利用线段OC解析式为y2=ax 求出a即可;(3)利用(2)中所求得出,y=|y1﹣y2|进而求出函数解析式,得出图象即可.解答:解:(1)根据左图可以得出:甲、乙两地之间的距离为450km;故答案为:450km;(2)问题解决:线段AB的解析式为:y1=kx+b,根据A点坐标为(0,450),B点坐标为(3,0),得出:,解得:故y1=450﹣150x(0≤x≤3);将(6,450)代入y2=ax 求出即可:y2=75x,故线段OC的解析式为 y2=75x (0≤x≤6);(3)根据(2)得出:y=|y1﹣y2|=|450﹣150x﹣75x|=,∵y1=450﹣150x(0≤x≤3);y2=75x,∴D(2,150),利用函数解析式y=450﹣225x(0≤x≤2),当x=0,y=450,x=2,y=0,画出线段AE,利用函数解析式y=225x﹣450(2≤x<3),当x=2,y=0,x=3,y=225,画出线段EF,利用函数解析式y=75x(3≤x≤6),当x=3,y=225,x=6,y=450,画出线段FC,求出端点,画出图象,其图象为折线图AE﹣EF﹣FC.点评:此题主要考查了一次函数的应用和待定系数法求解析式,根据已知图象上的点得出函数解析式以及利用分段函数分析是解题关键.26.如图①,A,D分别在x轴,y轴上,AB∥y轴,DC∥x轴.点P从点D出发,以1个单位长度/秒的速度,沿五边形OABCD的边匀速运动一周,若顺次连接P,O,D三点所围成的三角形的面积为S,点P运动的时间为t秒,已知S与t之间的函数关系如图②中折线O′EFGHM所示.(1)点B的坐标为(8,2);点C的坐标为(5,6);(2)若直线PD将五边形OABCD的周长分为11:15两部分,求PD的解析式.考点:一次函数综合题.分析:(1)由于点P从点D出发,根据图②中S与t的图象可知,点P按顺时针方向沿五边形OABCD的边作匀速运动,又运动速度为1个单位长度/秒,所以DC=5,BC=5,AB=2,AO=8,OD=6,由此得到点C的坐标;过点B作BP⊥OD于P,过点C作CQ⊥BP于Q,根据矩形的性质、勾股定理求出点B的坐标;(2)先求出五边形OABCD的周长为26,根据直线PD将五边形OABCD的周长分为11:15两部分,确定点P的位置有两种可能的情况:①在AB的中点;②在OA上,并且距离点A3个单位长度.再分别表示出点P的坐标,然后运用待定系数法求出PD的解析式.解答:解:(1)由题意,可知点P的运动路线是:D→C→B→A→O→D,DC=5,BC=10﹣5=5,AB=12﹣10=2,AO=20﹣12=8,OD=26﹣20=6,所以点C的坐标为(5,6);如图①,过点B作BP⊥OD于P,过点C作CQ⊥BP于Q,则四边形DCQP、ABPO均为矩形,PQ=DC=5,CQ=DP=OD﹣AB=6﹣2=4,在Rt△BCQ中,∵∠BQC=90°,∴BQ===3,∴BP=BQ+PQ=3+5=8,∴点B的坐标为(8,2);(2)设PD的解析式为y=kx+b.∵五边形OABCD的周长为:5+5+2+8+6=26,∴直线PD将五边形OABCD的周长分为11:15两部分时,点P的位置有两种可能的情况:①如果点P在AB的中点,那么DC+CB+BP=5+5+1=11,PA+AO+OD=1+8+6=15,点P的坐标为(8,1).∵P(8,1),D(0,6),∴,解得,∴PD的解析式为y=﹣x+6;②如果点P在OA上,并且距离点A3个单位长度,那么DC+CB+BA+AP=5+5+2+3=15,PO+OD=8﹣3+6=11,点P的坐标为(5,0).∵P(5,0),D(0,6),∴,解得,∴PD的解析式为y=﹣x+6.综上所述,PD的解析式为y=﹣x+6或y=﹣x+6.故答案为(8,2),(5,6).点评:本题结合动点问题考查了矩形的性质,勾股定理,三角形的面积,五边形的周长,一次函数的图象与性质,运用待定系数法求一次函数的解析式等知识,综合性较强,难度适中.从函数图象中准确获取信息及利用分类讨论思想是解题的关键.。
某某省某某市新区2015-2016学年度八年级数学上学期期末试题一、选择题(每题3分,共24分)1.下面图案中是轴对称图形的有()A.1个B.2个C.3个D.4个2.在Rt△ABC中,∠C=90°,周长为60,斜边与一条直角边之比为13:5,则这个三角形三边长分别是()A.25、23、12 B.13、12、5 C.10、8、6 D.26、24、103.已知点P在第四象限,且到x轴的距离为2,则点P的坐标为()A.(4,﹣2)B.(﹣4,2)C.(﹣2,4)D.(2,﹣4)4.点(x1,y1)、(x2,y2)在直线y=﹣x+b上,若x1<x2,则y1与y2大小关系是()A.y1<y2B.y1=y2 C.y1>y2D.无法确定5.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7 B.11 C.7或11 D.7或106.在某某全民健身越野赛中,甲、乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.下列四种说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.正确的有()A.①②③④ B.①②③C.①②④D.②③④7.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50 B.62 C.65 D.688.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对二、填空题(每空2分,共24分)9.16的算术平方根是.函数y=中自变量x的取值X围是.10.等腰三角形的一个角为40°,则它的底角为.11.3184900精确到十万位的近似值是.12.若一次函数y=(m+1)x+m2﹣l是正比例函数.则m的值是;若一次函数y=(m+1)x+m2﹣1的图象上有两个点(x1,y1),(x2,y2),当x1>x2时,y1<y2,则m的取值X围是.13.当b为时,直线y=2x+b与直线y=3x﹣4的交点在x轴上.14.已知直线AB经过点A(0,5),B(2,0),若将这条直线向左平移,恰好过坐标原点,则平移后的直线解析式为.15.如图,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是(只添一个条件即可).16.如图,已知Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,现将△ABC进行折叠,使顶点A、B重合,则折痕DE=cm.17.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积为50和39,则△EDF的面积为.18.如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,=3,则MN的长为.三、解答题19.计算题:(1)已知:(x+5)2=16,求x;(2)计算:.20.如图,在平面直角坐标系xOy中,点A(1,3),点B(5,1).(1)只用直尺(无刻度)和圆规,求作一个点P,使点P同时满足下列两个条件:①点P到A,B 两点的距离相等;②点P到∠xOy的两边的距离相等.(要求保留作图痕迹,不必写出作法)(2)在(1)作出点P后,点P的坐标为.21.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=,DB=2,求BE的长.22.如图,在△ABC中,BC=AC,∠ACB=90°,D是AC上一点,AE⊥BD交BD的延长线于点E,且AE=BD,求证:BD是∠ABC的角平分线.23.南方A市欲将一批容易变质的水果运往B市销售,若有飞机、火车、汽车三种运输方式,现只选择其中一种,这三种运输方式的主要参考数据见如表.运输工具途中速度/(km/h)途中费用/(元/km)装卸费用/元装卸时间/h飞机200 16 1000 2火车100 4 2000 4汽车50 8 1000 2若这批水果在运输(包括装卸)过程中的损耗为200元/h,记A、B两市间的距离为x km.(1)如果用W1,W2,W3分别表示使用飞机、火车、汽车运输时的总支出费用(包括损耗),求W1,W2,W3与x间的关系式.(2)当x=250时,应采用哪种运输方式,才使运输时的总支出费用最小?24.如图,在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,点D在线段AB上从点B出发,以2cm/s 的速度向终点A运动,设点D的运动时间为t0.(1)AB=cm,AB边上的高为cm;(2)点D在运动过程中,当△BCD为等腰三角形时,求t的值.25.如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),与x轴以及y=x+1的图象分别交于点C、D,且点D的坐标为(1,n),(1)则n=,k=,b=;(2)函数y=kx+b的函数值大于函数y=x+1的函数值,则x的取值X围是(3)求四边形AOCD的面积;(4)在x轴上是否存在点P,使得以点P,C,D为顶点的三角形是直角三角形?若存在求出点P的坐标;若不存在,请说明理由.26.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:;(2)若△DEF三边的长分别为、、,请在图1的正方形网格中画出相应的△DEF,并利用构图法求出它的面积;(3)如图2,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13,10,17,且△PQR、△BCR、△DEQ、△AFP的面积相等,求六边形花坛ABCDEF的面积.某某省某某市新区2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题(每题3分,共24分)1.下面图案中是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:第1,2个图形沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,故轴对称图形一共有2个.故选:B.【点评】此题主要考查了轴对称图形,轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.在Rt△ABC中,∠C=90°,周长为60,斜边与一条直角边之比为13:5,则这个三角形三边长分别是()A.25、23、12 B.13、12、5 C.10、8、6 D.26、24、10【考点】勾股定理.【分析】由斜边与一直角边比是13:5,设斜边是13k,则直角边是5k,根据勾股定理,得另一条直角边是12k,根据题意,求得三边的长即可.【解答】解:设斜边是13k,直角边是5k,根据勾股定理,得另一条直角边是12k.∵周长为60,∴13k+5k+12k=60,解得:k=2.∴三边分别是26,24,10.故选D.【点评】本题考查的是勾股定理,用一个未知数表示出三边,根据已知条件列方程即可,要求能熟练运用勾股定理.3.已知点P在第四象限,且到x轴的距离为2,则点P的坐标为()A.(4,﹣2)B.(﹣4,2)C.(﹣2,4)D.(2,﹣4)【考点】点的坐标.【分析】根据第四象限的横坐标大于零,纵坐标小于零,可得答案.【解答】解:由点P在第四象限,且到x轴的距离为2,则点P的横坐标为2,纵坐标小于零,故D正确.故选:D.【点评】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.点(x1,y1)、(x2,y2)在直线y=﹣x+b上,若x1<x2,则y1与y2大小关系是()A.y1<y2B.y1=y2 C.y1>y2D.无法确定【考点】一次函数图象上点的坐标特征.【专题】探究型.【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2,则可得出y1与y2大小关系.【解答】解:∵直线y=﹣x+b中k=﹣1<0,∴y随x的增大而减小,∵x1<x2,∴y1>y2.故选C.【点评】本题考查的是一次函数图象上点的坐标特征,先根据题意判断出一次函数的增减性是解答此题的关键.5.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7 B.11 C.7或11 D.7或10【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】题中给出了周长关系,要求底边长,首先应先想到等腰三角形的两腰相等,寻找问题中的等量关系,列方程求解,然后结合三角形三边关系验证答案.【解答】解:设等腰三角形的底边长为x,腰长为y,则根据题意,得①或②解方程组①得:,根据三角形三边关系定理,此时能组成三角形;解方程组②得:,根据三角形三边关系定理此时能组成三角形,即等腰三角形的底边长是11或7;故选C.【点评】本题考查等腰三角形的性质及相关计算.学生在解决本题时,有的同学会审题错误,以为15,12中包含着中线BD的长,从而无法解决问题,有的同学会忽略掉等腰三角形的分情况讨论而漏掉其中一种情况;注意:求出的结果要看看是否符合三角形的三边关系定理.故解决本题最好先画出图形再作答.6.在某某全民健身越野赛中,甲、乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.下列四种说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.正确的有()A.①②③④ B.①②③C.①②④D.②③④【考点】一次函数的应用.【分析】由图象可知起跑后1小时内,甲在乙的前面;在跑了1小时时,乙追上甲,此时都跑了10千米;乙比甲先到达终点;求得乙跑的直线的解析式,即可求得两人跑的距离,则可求得答案.【解答】解:根据图象得:起跑后1小时内,甲在乙的前面;故①正确;在跑了1小时时,乙追上甲,此时都跑了10千米,故②正确;乙比甲先到达终点,故③错误;设乙跑的直线解析式为:y=kx,将点(1,10)代入得:k=10,∴解析式为:y=10x,∴当x=2时,y=20,∴两人都跑了20千米,故④正确.所以①②④三项正确.故选:C.【点评】此题考查了函数图形的意义.解题的关键是根据题意理解各段函数图象的实际意义,正确理解函数图象横纵坐标表示的意义,理解问题的过程.7.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50 B.62 C.65 D.68【考点】全等三角形的判定与性质.【专题】压轴题.【分析】由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;同理证得△BGC≌△DHC,GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.【解答】解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故选A.【点评】本题考查的是全等三角形的判定的相关知识,是2016届中考常见题型.8.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对【考点】全等三角形的判定;线段垂直平分线的性质;等腰三角形的性质.【专题】压轴题.【分析】根据已知条件“AB=AC,D为BC中点”,得出△ABD≌△ACD,然后再由AC的垂直平分线分别交AC、AD、AB于点E、O、F,推出△AOE≌△EOC,从而根据“SSS”或“SAS”找到更多的全等三角形,要由易到难,不重不漏.【解答】解:∵AB=AC,D为BC中点,∴CD=BD,∠BDO=∠CDO=90°,在△ABD和△ACD中,,∴△ABD≌△ACD;∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE;在△BOD和△COD中,,∴△BOD≌△COD;在△AOC和△AOB中,,∴△AOC≌△AOB;故选:D.【点评】本题考查的是全等三角形的判定方法;这是一道考试常见题,易错点是漏掉△ABO≌△ACO,此类题可以先根据直观判断得出可能全等的所有三角形,然后从已知条件入手,分析推理,对结论一个个进行论证.二、填空题(每空2分,共24分)9.16的算术平方根是 4 .函数y=中自变量x的取值X围是x≥3.【考点】函数自变量的取值X围;算术平方根;二次根式有意义的条件.【分析】根据算术平方根的定义,以及二次根式有意义的条件是被开方数是非负数即可求解.【解答】解:∵42=16∴16的算术平方根是4;根据题意得:x﹣3≥0解得:x≥3.故答案是:4和x≥3.【点评】本题主要考查了算术平方根的定义以及二次根式有意义的条件,都是需要熟记的内容.10.等腰三角形的一个角为40°,则它的底角为40°或70°.【考点】等腰三角形的性质.【分析】由于不明确40°的角是等腰三角形的底角还是顶角,故应分40°的角是顶角和底角两种情况讨论.【解答】解:当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故答案为:40°或70°.【点评】此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,由于不明确40°的角是等腰三角形的底角还是顶角,所以要采用分类讨论的思想.11.3184900精确到十万位的近似值是 3.2×106.【考点】近似数和有效数字.【分析】首先利用科学记数法表示,然后对十万位后的数进行四舍五入即可.【解答】解:3184900=3.1849×106≈3.2×106.故答案是:3.2×106.【点评】本题考查了近似数,注意精确到十位或十位以前的数位时,要先用科学记数法表示出这个数,这是经常考查的内容.12.若一次函数y=(m+1)x+m2﹣l是正比例函数.则m的值是 1 ;若一次函数y=(m+1)x+m2﹣1的图象上有两个点(x1,y1),(x2,y2),当x1>x2时,y1<y2,则m的取值X围是m<﹣1 .【考点】一次函数图象上点的坐标特征;正比例函数的定义.【专题】推理填空题.【分析】根据一次函数如果是正比例函数,则k≠0,b=0;一次函数中当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小,从而可以解答本题.【解答】解:∵若一次函数y=(m+1)x+m2﹣l是正比例函数,∴解得,m=1;∵若一次函数y=(m+1)x+m2﹣1的图象上有两个点(x1,y1),(x2,y2),当x1>x2时,y1<y2,∴m+1<0,得m<﹣1;故答案为:1;m<﹣1.【点评】本题考查一次函数图象上点的坐标特征、正比例函数的定义,解题的关键是明确正比例函数的性质和一次函数的性质.13.当b为时,直线y=2x+b与直线y=3x﹣4的交点在x轴上.【考点】两条直线相交或平行问题.【专题】计算题.【分析】把y=0代入y=3x﹣4求出x,得出交点坐标,再把交点坐标代入y=2x+b即可求出b.【解答】解:把y=0代入y=3x﹣4得:0=3x﹣4,解得:x=,即(,0),∵直线y=2x+b与直线y=3x﹣4的交点在x轴上,∴直线y=2x+b与直线y=3x﹣4的交点坐标是(,0),把(,0)代入y=2x+b得:0=2×+b,解得:b=﹣,故答案为:﹣.【点评】本题考查一次函数的基本性质,与数轴结合,掌握好基本性质即可.14.已知直线AB经过点A(0,5),B(2,0),若将这条直线向左平移,恰好过坐标原点,则平移后的直线解析式为y=﹣x .【考点】一次函数图象与几何变换;待定系数法求一次函数解析式.【专题】待定系数法.【分析】先根据待定系数法求出函数解析式,然后再根据平移时k的值不变,只有b发生变化计算平移后的函数解析式.【解答】解:可设原直线解析式为y=kx+b,则点A(0,5),B(2,0)适合这个解析式,则b=5,2k+b=0.解得k=﹣2.5.平移不改变k的值,∴y=﹣x.【点评】本题考查用待定系数法求函数解析式,注意细心运算.15.如图,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是CD=BD (只添一个条件即可).【考点】全等三角形的判定.【分析】由已知条件具备一角一边分别对应相等,还缺少一个条件,可添加DB=DC,利用SAS判定其全等.【解答】解:需添加的一个条件是:CD=BD,理由:∵∠1=∠2,∴∠ADC=∠ADB,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).故答案为:CD=BD.【点评】本题考查了三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.16.如图,已知Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,现将△ABC进行折叠,使顶点A、B重合,则折痕DE= 1.875 cm.【考点】翻折变换(折叠问题);勾股定理;轴对称的性质;相似三角形的判定与性质.【专题】压轴题.【分析】根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.【解答】解:在直角△ABC中AB===5cm.则AE=AB÷2=2.5cm.设DE=x,易得△ADE∽△ABC,故有=;∴=;解可得x=1.875.故答案为:1.875.【点评】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.17.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积为50和39,则△EDF的面积为 5.5 .【考点】面积及等积变换.【专题】数形结合.【分析】作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为三角形DNM的面积来求.【解答】解:作DM=DE交AC于M,作DN⊥AC,∵DE=DG,DM=DE,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,∴△DEF≌△DNM(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,S△DNM=S△DEF=S△MDG=故答案为:5.5.【点评】本题考查了角平分线的性质及全等三角形的判定及性质,解题的关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求.18.如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,=3,则MN的长为.【考点】旋转的性质;全等三角形的判定与性质;等腰直角三角形.【分析】将△ABM逆时针旋转90°得到△ACF,连接NF,由条件可以得出△NCF为直角三角形,利用勾股定理就可以求出NF,通过证明三角形全等就可以MN=NF,求出NF即可.【解答】解:将△AMB逆时针旋转90°到△ACF,连接NF,∴CF=BM,AF=AM,∠B=∠ACF.∠2=∠3,∵△ABC是等腰直角三角形,AB=AC,∴∠B=∠ACB=45°,∠BAC=90°,∵∠MAN=45°,∴∠NAF=∠1+∠3=∠1+∠2=90°﹣45°=45°=∠NA F,在△MAN和△FAN中∴△MAN≌△FAN,∴MN=NF,∵∠ACF=∠B=45°,∠ACB=45°,∴∠F=90°,∵CF=BM=1,=3,∴在Rt△CFN中,由勾股定理得:MN=NF==,故答案为:.【点评】本题考查了旋转的性质的运用,勾股定理的运用,全等三角形的判定与性质,能正确作出辅助线是解此题的关键,难度适中.三、解答题19.计算题:(1)已知:(x+5)2=16,求x;(2)计算:.【考点】实数的运算;平方根;负整数指数幂.【专题】计算题;实数.【分析】(1)方程利用平方根定义开方即可求出x的值;(2)原式第一项利用负整数指数幂法则计算,第二项利用算术平方根定义计算,第三项利用立方根定义计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:(1)开方得:x+5=4或x+5=﹣4,解得:x=﹣1或x=﹣9;(2)原式=4+5+3﹣3+=9+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,在平面直角坐标系xOy中,点A(1,3),点B(5,1).(1)只用直尺(无刻度)和圆规,求作一个点P,使点P同时满足下列两个条件:①点P到A,B 两点的距离相等;②点P到∠xOy的两边的距离相等.(要求保留作图痕迹,不必写出作法)(2)在(1)作出点P后,点P的坐标为(4,4).【考点】作图—复杂作图;坐标与图形性质;角平分线的性质;线段垂直平分线的性质.【分析】(1)利用AB中垂线与∠XOY平分线的交点即为P点;(2)结合点A(1,3),点B(5,1),再利用(1)中条件进而得出P点坐标.【解答】解:(1)如图所示:P点即为所求;(2)如图所示:P(4,4).故答案为:(4,4).【点评】此题主要考查了复杂作图,利用线段垂直平分线以及角平分线的性质分析是解题关键.21.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=,DB=2,求BE的长.【考点】翻折变换(折叠问题).【分析】(1)由矩形的性质可知AB=DC,∠A=∠C=90°,由翻折的性质可知∠AB=BF,∠A=∠F=90°,于是可得到∠F=∠C,BF=DC,然后依据AAS可证明△DCE≌△BFE;(2)先依据勾股定理求得BC的长,由全等三角形的性质可知BE=DE,最后再△EDC中依据勾股定理可求得ED的长,从而得到BE的长.【解答】(1)∵四边形ABCD为矩形,∴AB=CD,∠A=∠C=90°∵由翻折的性质可知∠F=∠A,BF=AB,∴BF=DC,∠F=∠C.在△DCE与△BEF中,∴△DCE≌△BFE.(2)在Rt△BDC中,由勾股定理得:BC==3.∵△DCE≌△BFE,∴BE=DE.设BE=DE=x,则EC=3﹣x.在Rt△CDE中,CE2+CD2=DE2,即(3﹣x)2+()2=x2.解得:x=2.∴BE=2.【点评】本题主要考查的是翻折的性质、勾股定理的应用、矩形的性质,依据勾股定理列出关于x 的方程是解题的关键.22.如图,在△ABC中,BC=AC,∠ACB=90°,D是AC上一点,AE⊥BD交BD的延长线于点E,且AE=BD,求证:BD是∠ABC的角平分线.【考点】线段垂直平分线的性质;全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】延长AE、BC交于点F.根据同角的余角相等,得∠DBC=∠FAC;在△BCD和△ACF中,根据ASA证明全等,得AF=BD,从而AE=EF,根据线段垂直平分线的性质,得AB=BF,再根据等腰三角形的三线合一即可证明.【解答】证明:延长AE、BC交于点F.∵AE⊥BE,∴∠BEF=90°,又∠ACF=∠ACB=90°,∴∠DBC+∠AFC=∠FAC+∠AFC=90°,∴∠DBC=∠FAC,在△ACF和△BCD中,∴△ACF≌△BCD(ASA),∴AF=BD.又AE=BD,∴AE=EF,即点E是AF的中点.∴AB=BF,∴BD是∠ABC的角平分线.【点评】此题综合运用了全等三角形的判定以及性质、线段垂直平分线的性质以及等腰三角形的性质.23.南方A市欲将一批容易变质的水果运往B市销售,若有飞机、火车、汽车三种运输方式,现只选择其中一种,这三种运输方式的主要参考数据见如表.运输工具途中速度/(km/h)途中费用/(元/km)装卸费用/元装卸时间/h飞机200 16 1000 2火车100 4 2000 4汽车50 8 1000 2若这批水果在运输(包括装卸)过程中的损耗为200元/h,记A、B两市间的距离为x km.(1)如果用W1,W2,W3分别表示使用飞机、火车、汽车运输时的总支出费用(包括损耗),求W1,W2,W3与x间的关系式.(2)当x=250时,应采用哪种运输方式,才使运输时的总支出费用最小?【考点】一次函数的应用.【专题】应用题.【分析】(1)每种运输工具总支出费用=途中所需费用(含装卸费用)+损耗费用;(2)将x=250代入,即可判断哪种运输方式合适.【解答】解:(1)W1=16x+1000+(+2)×200=17x+1400;W2=4x+2000+(+4)×200=6x+2800;W3=8x+1000+(+2)×200=12x+1400;(2)当x=250时,W1=5650元,W2=4300元,W3=4400元.答:应采用火车运输,使总支出的费用最小.【点评】本题考查了一次函数的应用,关键是根据题意列出函数关系式,难度一般.24.如图,在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,点D在线段AB上从点B出发,以2cm/s 的速度向终点A运动,设点D的运动时间为t0.(1)AB= 50 cm,AB边上的高为24 cm;(2)点D在运动过程中,当△BCD为等腰三角形时,求t的值.【考点】勾股定理.【专题】动点型.【分析】(1)在Rt△ABC中,由勾股定理即可求出AB;由直角三角形的面积即可求出斜边上的高;(2)分三种情况:①当BD=BC=30cm时,得出2t=30,即可得出结果;②当CD=CB=30cm时,作CE⊥AB于E,则BE=DE=BD=t,由(1)得出CE=24,由勾股定理求出BE,即可得出结果;③当DB=DC时,∠BCD=∠B,证明DA=DC,得出AD=DB=AB,即可得出结果.【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,∴AB===50(cm);作AB边上的高CE,如图1所示:∵Rt△ABC的面积=AB•CE=AC•BC,∴CE===24(cm);故答案为:50,24;(2)分三种情况:①当BD=BC=30cm时,2t=30,∴t=15(s);②当CD=CB=30cm时,作CE⊥AB于E,如图2所示:则BE=DE=BD=t,由(1)得:CE=24,在Rt△BCE中,由勾股定理得:BE===18(cm),∴t=18s;③当DB=DC时,∠BCD=∠B,∵∠A=90°﹣∠B,∠ACD=90°﹣∠BCD,∴∠ACD=∠A,∴DA=DC,∴AD=DB=AB=25(cm),∴2t=25,∴t=12.5(s);综上所述:t的值为15s或18s或12.5s.【点评】本题考查了勾股定理、等腰三角形的判定与性质、三角形面积的计算;本题综合性强,有一定难度,特别是(2)中,需要进行分类讨论,运用勾股定理和等腰三角形的性质才能得出结果.25.如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),与x轴以及y=x+1的图象分别交于点C、D,且点D的坐标为(1,n),(1)则n= 2 ,k= 3 ,b= ﹣1 ;(2)函数y=kx+b的函数值大于函数y=x+1的函数值,则x的取值X围是x>1(3)求四边形AOCD的面积;(4)在x轴上是否存在点P,使得以点P,C,D为顶点的三角形是直角三角形?若存在求出点P的坐标;若不存在,请说明理由.【考点】一次函数综合题.【专题】综合题;一次函数及其应用.【分析】(1)对于直线y=x+1,令x=0求出y的值,确定出A的坐标,把B坐标代入y=kx+b中求出b的值,再将D坐标代入y=x+1求出n的值,进而将D坐标代入求出k的值即可;(2)由两一次函数解析式,结合图象确定出x的X围即可;(3)过D作DE垂直于x轴,如图1所示,四边形AOCD面积等于梯形AOED面积减去三角形CDE面积,求出即可;(4)在x轴上存在点P,使得以点P,C,D为顶点的三角形是直角三角形,理由为:分两种情况考虑:①DP′⊥DC;②DP⊥CP,分别求出P坐标即可.【解答】解:(1)对于直线y=x+1,令x=0,得到y=1,即A(0,1),把B(0,﹣1)代入y=kx+b中,得:b=﹣1,把D(1,n)代入y=x+1得:n=2,即D(1,2),把D坐标代入y=kx﹣1中得:2=k﹣1,即k=3,故答案为:2,3,﹣1;(2)∵一次函数y=x+1与y=3x﹣1交于D(1,2),∴由图象得:函数y=kx+b的函数值大于函数y=x+1的函数值时x的取值X围是x>1;故答案为:x>1;(3)过D作DE⊥x轴,垂足为E,如图1所示,则S四边形AOCD=S梯形AOED﹣S△CDE=(AO+DE)•OE﹣CE•DE=×(1+2)×1﹣××2=﹣=;(4)在x轴上存在点P,使得以点P,C,D为顶点的三角形是直角三角形,理由为:如图2所示,分两种情况考虑:①当P′D⊥DC时,可得k P′D•k DC=﹣1,∵直线DC斜率为3,∴直线P′D斜率为﹣,∵D(1,2),∴直线P′D解析式为y﹣2=﹣(x﹣1),令y=0,得到x=7,即P′(7,0);②当DP⊥CP时,由D横坐标为1,得到P横坐标为1,∵P在x轴上,∴P的坐标为(1,0).【点评】此题属于一次函数综合题,涉及的知识有:一次函数与坐标轴的交点,直角三角形的性质,坐标与图形性质,待定系数法确定一次函数解析式,利用了数形结合的思想,熟练掌握一次函数的性质是解本题的关键.26.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△A BC的面积为:;(2)若△DEF三边的长分别为、、,请在图1的正方形网格中画出相应的△DEF,并利用构图法求出它的面积;(3)如图2,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13,10,17,且△PQR、△BCR、△DEQ、△AFP的面积相等,求六边形花坛ABCDEF的面积.【考点】作图—应用与设计作图.【专题】网格型.【分析】(1)画出格子后可以根据格子的面积很容易的算出三角形的面积,大矩形的面积减去矩形内除去所求三角形的面积即可.(2)构造时取(1,3)(2,2)(1,4)即可.(3)根据PRQ的长度取(1,3)(1,4)(2,3)在网格中画图,求出其面积.【解答】解:(1)根据格子的数可以知道面积为S=3×3﹣=;(2)画图为计算出正确结果S△DEF=2×4﹣(1×2+1×4+2×2)=3;(3)利用构图法计算出S△PQR=,△PQR、△BCR、△DEQ、△AFP的面积相等,计算出六边形花坛ABCDEF的面积为S正方形PRBA+S正方形RQDC+S正方形QPFE+4S△PQR=13+10+17+4×=62.【点评】本题是一种简单的求解三角形面积的算法,可以求出任意三角形的面积,方便省时.。
选择题1.在﹣2,0,3,6这四个数中,最大的数是 【 】A .﹣2B .0C . 3D .6【答案】C【解析】试题分析:正数大于零大于负数,-2<0<3.考点:实数的大小比较.2.下列“数字”图形中,有且仅有一条对称轴的是 【 】【答案】A【解析】试题分析:A 轴对称图形,一条对称轴;B 不是轴对称图形;C 是轴对称图形,有两条对称轴;D 是轴对称图形,有两条对称轴.考点:轴对称图形.3.下列各式中,与2是同类二次根式的是 【 】A .6B .a 2(a >0)C .23 D .21 【答案】D考点:同类二次根式4.当0,0<<b k 时,函数y kx b =+的图像大致是 【 】【答案】B【解析】试题分析:对于一次函数y=kx+b,k<0,b<0时,图形经过二、三、四象限.考点:一次函数图象的性质.5.如图,DE是△ABC中边AC的垂直平分线,若BC=18 cm, AB=10 cm,则△ABD的周长为【】A.16 cm B.18 cm C.26 cm D.28 cm【答案】D【解析】试题分析:∵DE为AC的垂直平分线∴AD=CD ∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC=10+18=28cm. 考点:线段中垂线的性质.6.老王以每千克0.8元的价格从批发市场购进若干千克西瓜到市场销售,在销售了部分西瓜后,余下的每千克降价0.2元,全部售完,销售金额与卖瓜的千克数之间的关系如图所示,那么老王赚了【】A.32元 B.36元 C. 38元 D. 44元【答案】C【解析】试题分析:首先求出原价,然后根据后面的总价和单价求出数量,然后进行计算.原售价:64÷40=1.6(元)(78-64)÷(1.6-0.2)=14÷1.4=10(千克),总质量:40+10=50(千克),78-50×0.8=38(元)考点:一次函数图象的应用.二、填空题7.若式子x-2在实数范围内有意义,则x的取值范围是.【答案】x≥2.【解析】试题分析:要保证二次根式有意义,则需要保证被开方数为非负数,即x-2≥0,解得:x≥2.考点:二次根式的性质.的算术平方根等于 .【解析】,本题实际上就是计算3的算术平方根.考点:算术平方根的计算.km.9.地球七大洲的总面积约为149 480 000Km²,如对这个数据精确到百万位可表示为210【答案】1.49×8考点:科学计算法10.点M(4,-3)关于原点对称的点N的坐标是.【答案】(-4,3)【解析】关于原点对称的两个点的横纵坐标分别互为相反数.试题分析:考点:关于原点对称点的特征.11.如图,在数轴上表示1A、B,点B关于点A的对称点为C,则C点所表示的数是.【答案】2【解析】试题分析:首先设C 点表示的数为x ,根据题意可得AB=AC -1=1-x ,解得:x=2. 考点:数轴上两点之间的距离计算.12.如图,直线y 1=x +b 与y 2=kx ﹣1相交于点P ,点P 的横坐标为﹣1,则关于x 的不等式x +b >kx ﹣1的解集 .【答案】x >-1【解析】试题分析:根据题意可得即1y >2y ,也就是函数1y 在函数2y 的上方,根据图象可得当x >-1时,函数1y 在函数2y 的上方.考点:一次函数与一元一次不等式的关系.13.如图是一个围棋棋盘的局部,若把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的 坐标是(-2,-2),白棋③的坐标是(-1,-4),则黑棋②的坐标是 .【答案】(1,-3)【解析】试题分析:根据给出的图示中点的坐标,找出坐标原点,然后求出黑棋②的坐标.考点:坐标系中点的坐标表示14.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是.(添加一个条件即可)【答案】∠B=∠C【解析】试题分析:根据AB=AC,∠A为公共角,添加∠B=∠C,我们可以根据ASA来判定△ABE和△ACD全等.考点:全等三角形的判定15.在平面直角坐标系xOy中,已知点A(2,3),在坐标轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有个.【答案】6【解析】试题分析:在x轴的正半轴和y轴的正半轴上各有2个,在x轴的负半轴和y轴的负半轴上各有1个,总计有6个.考点:等腰三角形的判定16.如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线且AD=12,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为.【答案】120 13【解析】试题分析:根据题意可得:CD=5,AD=12,△ABC 的面积为60,过点C 作CH ⊥AB ,与AD 的交点就是点F ,根据三角形全等可得EF=FH ,即CH=CF+FH=CF+EF ,根据面积相等的法则可得:CH=12013,即CF+EF 的最小值为12013. 考点:三角形全等的性质.三、解答题 (本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.计算(本题满分8分)⑴(﹣1)2015﹣3-+12 +(3﹣π)0; ⑵)(53)13(2+--)(53-【答案】(1);(2)、-【解析】试题分析:(1)、根据(-1)的奇数次幂为-1,任何非零实数的0次幂为1;(2)、根据完全平方公式和平方差公式将式子展开,然后进行实数的计算.试题解析:(1)、原式= ,-1﹣3+23 +1=3;(2)、原式=4-23-4=32-考点:实数的计算.18.(本题满分6分)已知一次函数y=kx +b 的图象经过点(-1,-5),且与正比例函数12y x =的图象相交于点(2,a ).⑴求a 的值.⑵求一次函数y=kx +b 的表达式.⑶在同一坐标系中,画出这两个函数的图象.【答案】(1)、a=1;(2)、y=2x-3;(3)、图象见解析【解析】试题分析:(1)、将点(2,a)代入正比例函数解析式求出a的值;(2)、将(-1,-5)和(2,1)代入一次函数解析式求出k和b的值,从而得出函数解析式;(3)、根据描点法画出函数图象.试题解析:(1)∵正比例函数12y x=的图象过点(2,a)∴a=1(2)∵一次函数y=kx+b的图象经过两点(-1,-5)、(2,1)∴52,213k b kk b b-+=-=⎧⎧⎨⎨+==-⎩⎩解得∴y=2x-3(3)函数图像如右图考点:(1)、待定系数法求函数解析式;(2)、描点法画函数图象.19.(本题满分8分)⑴已知x=2-1,求x2+3x-1的值;⑵已知22a b =--=,求22()()(2)3a b a b a b a ++-+-值.【答案】(1)-1;(2)、1.【解析】试题分析:(1)、将x 的值代入代数式进行计算;(2)、首先将多项式进行化简计算,然后将a 、b 的值代入化简后的式子进行计算.试题解析:(1)、当x =2-1时,x 2+3x -1=(2-1)2+3(2-1)-1=2-22+1+32-3-1=2-1.⑵原式=2a +2ab+2b +22a -ab -2b -32a =ab当a=-2-2 ∴原式=ab=(-2-2)=4-3=1.考点:代数式的化简求值.20.(本题满分6分)已知,如图,AB =AC ,BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,求证:DE =DF .【答案】证明过程见解析【解析】试题分析:首先连接AD ,根据AC=AB ,CD=BD ,AD=AD 可得△ACD ≌△ABD ,从而得出AD 为∠CAB 的平分线,然后根据角平分线的性质可得DE=DF.试题解析:连接AD ,在△ACD 和△ABD 中,, ∴△ACD ≌△ABD (SSS ),∴∠EAD=∠FAD ,即AD 平分∠EAF , ∵DE ⊥AE ,DF ⊥AF , ∴DE=DF .考点:(1)、三角形全等的证明;(2)、角平分线的性质.21.(本题满分7分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1) 在图中画出与△ABC 关于直线l 成轴对称的△A //C B ;(2) 线段/CC 被直线l ;(3) 在直线l 上找一点P ,使PB+PC 的长最短,并算出这个最短长度.【答案】(1)、图象见解析;(2)、垂直平分;(3)、5.【解析】试题分析:(1)、根据轴对称图形的性质画出对称轴;(2)、根据轴对称图形的性质得出答案;(3)、根据直角三角形的勾股定理可以求出线段的长度.试题解析:(1)(2)垂直平分 (3)连接BC ’交l 于点P ,如图,在∆BC ’D 中222''BC D C BD =+ 22243'+=BC ∴5'=BC ∴最短长度为5.考点:(1)、轴对称图形的性质;(2)、直角三角形的勾股定理.22.(本题满分7分)探索与研究:方法1:如图(a),对任意的符合条件的直角三角形绕其锐角顶点旋转90°所得,所以∠BAE =90°,且四边形ACFD 是一个正方形,它的面积和四边形ABFE 面积相等,而四边形ABFE 面积等于Rt △BAE 和Rt △BFE 的面积之和,根据图示写出证明勾股定理的过程;方法2:如图(b),是任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的,你能根据图示再写一种证明勾股定理的方法吗?【答案】证明过程见解析【解析】 试题分析:分别根据两个图形利用面积相等的法则进行计算.试题解析:方法1:∵由图(a)可知S 正方形ACFD =S 四边形ABFE , ∴S 正方形ACFD =S ⊿BAE +S ⊿BFE又∵正方形ACFD 的边长为b, S Rt △BAE =221c ,S Rt △BFE =()()a b a b -+21 ∴b 2 =221c +()()a b a b -+21 即2b2 =c 2 +(b+a)(b-a) 整理得: a 2 +b 2=c 2 方法2:如图(b)中,Rt △BEA 和Rt △ACD 全等, 设CD=a,AC=b,AD=c(b>a),则AE=a,BE=b,AB=c,EC=b-a 由图(b),S 四边形ABCD = S Rt △BAE + S Rt △ACD +S Rt △BEC =S Rt △BAD +S △BCD又∵ S Rt △BAE =ab 21, S Rt △ACD = ab 21 ,S Rt △BEC =()a b b -21, S Rt △BAD =221c ,S △BCD =()a b a -21, ∴ab 21+ab 21+()a b b -21=221c + ()a b a -21 即2ab+b(b-a) = c 2 +a(b-a) 整理得: a 2+b 2=c 2 考点:利用面积法证明勾股定理.23.(本题满分8分)如图,A (0,1),M (3,2),N (4,4) , 动点P 从点A 出发,沿y轴以每秒1个单位长的速度向上移动,且过点P 的直线l :y =-x +b 也随之移动,设移动时间为 t 秒.(直线y = kx+b 平移时k 不变)⑴当t =3时,求 l 的解析式;⑵若点M ,N 位于l 的异侧,确定 t 的取值范围.【答案】(1)、y=-x+4;(2)、4<t <7.(a)【解析】试题分析:(1)、将A点的坐标代入可得b=1,根据平移可得b=1+t,将t=3代入求出b的值;(2)、将点M和N分别代入解析式分别求出t的值,从而得出取值范围.试题解析:(1)、直线y=-x+b交y轴于点P(0,b),由题意,得b>0,t≥0,b=1+t当t=3时,b=4 ∴y=-x+4(2)、当直线y=-x+b过M(3,2)时,2=-3+b解得b=5, ∴5=1+t∴t=4当直线y=-x+b过N(4,4)时,4=-4+b解得 b=8 ∴8=1+t∴t=7 ∴4<t<7 考点:一次函数的性质24.(本题满分9分)如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.⑴求证:BF=2AE;⑵若CD,求AD的长.【答案】(1)、证明过程见解析;(2)、【解析】试题分析:(1)、根据AD⊥BC,∠BAD=45°,得出AD=BD,∠ADC=∠FDB=90°,根据AD⊥BC,BE⊥AC得出∠CAD=∠CBE,从而得出△ADC和△BDF全等,得出AC=BF,根据AB=BC,BE⊥AC,得出AE=EC,可得BF=2AE;(2)、根据△ADC和△BDF全等得出,根据Rt△CDF的勾股定理得出CF=2,得出AF=FC=2,根据AD=AF+DF求出长度.试题解析:(1)、∵ AD⊥BC,∠BAD=45°,∴∠ABD=∠BAD=45°.∴ AD=BD.∵ AD⊥BC,BE⊥AC, ∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90o ∴∠CAD=∠CBE. 又∵∠CDA=∠FDB=90°,∴△ADC≌△BDF. ∴ AC=BF.∵ AB=BC,BE⊥AC, ∴ AE=EC,即AC=2AE.∴ BF=2AE.(2)、∵△ADC≌△BDF,∴. ∴在Rt△CDF中,CF=2.∵ BE⊥AC,AE=EC,∴ AF=FC=2. ∴.考点:三角形全等的证明与性质.25.(本题满分9分)钓鱼岛是我国渤海海峡上的一颗明珠,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向钓鱼岛驶来,渔船向渔政部门报告,并立即返航.渔政船接到报告后,立即从该港口出发赶往钓鱼岛.下图是渔船及渔政船与港口的距离s 和渔船离开港口的时间t 之间的函数图象.(假设渔船与渔政船沿同一航线航行)⑴直接写出渔船离港口的距离s 和它离开港口的时间t 的函数关系式.⑵求渔船和渔政船相遇时,两船与钓鱼岛的距离.⑶在渔政船驶往钓鱼岛的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里?【答案】(1)、当0≤t ≤5时,s =30 ;当5<t ≤8时,s =150;当8<t ≤13时,s =-30t +390;(2)、60;(3)、9.6 小时或10.4小时【解析】试题分析:(1)、分三种情况写出函数解析式,(2)、首先利用待定系数法求出渔政船离港口的距离与渔船离开港口的时间的函数关系式,然后进行计算;(3)、分相遇前和相遇之后两种情况分别求出t 的值. 试题解析:(1)、当0≤t ≤5时,s =30;当5<t ≤8时,s =150;当8<t ≤13时,s =-30t +390;(2)、渔政船离港口的距离与渔船离开港口的时间的函数关系式设为s =kt +b⎪⎩⎪⎨⎧+=+=b k b k 33415080解得: k =45 b =-360 ∴s =45t -360 ⎩⎨⎧+-=-=3903036045t s t s解得 t =10 s =90 渔船离钓鱼岛距离为 150-90=60 (海里)(3) S 渔=-30t +390 S 渔政=45t -360.分两种情况:①相遇之前,S 渔-S 渔政=30 -30t +390-(45t -360)=30 解得t =485(或9.6)② 相遇之后,S 渔政-S 渔=30 45t -360-(-30t +390)=30 解得 t =525(或10.4) ∴当渔船离开港口9.6小时或10.4小时时,两船相距30海里. 考点:(1)、一次函数的应用;(2)、分类讨论思想的应用.高考一轮复习:。
2015—2016学年度第一学期期末考试八 年 级 数 学 试 卷试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分,考试时间100分钟。
答题前,学生务必将自己的姓名和学校、班级、学号等填写在答题卷上;答案必须写在答题卷各题目指定区域内的相应位置上;考试结束后,只需将答题卷交回。
第Ⅰ卷(选择题)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项正确) 1、9的平方根是( ).A .3B .-3C .±3D .±32、将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( ).A .1、2、3B . 2、3、4C . 3、4、5D .4、5、63、下列说法:①实数与数轴上的点一一对应;②2a 没有平方根;③任何实数的立方根有且只有一个;④平方根与立方根相同的数是0和1.其中正确的有( ) A .1个 B .2个 C .3个 D .4个4、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( ).A B C D5、若一个多边形的内角和等于720°,则这个多边形的边数是( ). A .5 B .6 C .7 D .86、为筹备本班元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是( ) A .中位数 B .平均数 C .加权平均数 D .众数7、如图,已知棋子“车”的坐标为(-2,3),棋子“马” 的坐标为 (1,3),则棋子“炮”的坐标为( ).A .(3,1)B .(2,2)C .(3,2)D .(-2,2)8.下列一次函数中,y 的值随着x 值的增大而减小的是( ). A .y =x B .y =-x C .y =x +1 D .y = x -19、如图所示,两张等宽的纸条交叉重叠在一起,则重叠部分ABCD 一定是( ). A .菱形 B .矩形 C .正方形 D .梯形10、一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩下的水的立方数Q (m 3)与放水时间t (时)的函数关系用图表示为( )A B C D(第9题图)(第7题图)第Ⅱ卷(非选择题)二、填空题(本大题共5小题,每小题3分,共15分,将答案填写在题中横线上) 11、比较大小:3(填“>”、“<”、或“=”).12、写出一个你所学过的既是轴对称又是中心对称图形的四边形: .13、如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指锐角)是 度.14、 如图,若直线l 1:32-=x y 与l 2:3+-=x y 相交于点P ,则根据图象可得,二元一次方程组⎩⎨⎧=+=-332y x y x 的解是 . 15、 如图,在直角坐标平面内的△ABC 中,点A 的坐标为(0,2),点C 的坐标为(5,5),要使以A 、B 、 C 、D 为顶点的四边形是平行四边形,且点D 坐标在第一象限,那么点D 的坐标是 .三、解答题(本大题共10小题,共75分。
2015—2016学年度上学期期末考试八年级数学试题注意事项:1.本卷满分120分,考试时间120分钟。
2.本卷是试题卷,不能答题。
答题必须写在答题卡上。
解题中的辅助线和需标注的角、字母、符号等务必添在答题卡的图形上。
3.在答题卡上答题,选择题必须用2B铅笔填涂,非选择题必须用0.5毫米黑色签字笔或黑色墨水钢笔作答。
★祝考试顺利★一、选择题(每小题3分,共30分)1.下列图形中轴对称图形是()ABCD2,.已知三角形的三边长分别是3,8,x,若x的值为偶数,则x的值有( )A.6个B.5个C.4个D.3个3.一个多边形截去一个角后,形成的多边形的内角和是2520°,则原多边形的边数是( )A.15或16B.16或17C.15或17D.15.16或174.如图,△ACB≌△A'CB',∠BCB'=30°,则∠ACA'的度数为( )A.20°B.30°C.35°D.40°5, 等腰三角形的两边长分别为5cm 和10cm,则此三角形的周长是()A.15cmB. 20cmC. 25cmD.20cm或25cm6.如图,已知∠CAB=∠DAB,则添加下列一个条件不能使△ABC≌△ABD的是( )A.AC=ADB.BC=BDC.∠C=∠DD.∠ABC=∠ABD7.如图,已知在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE =2,则△BCE的面积等于( )A.10B.7C.5D.4第9题图 8.若()22316m x x+-+是完全平方式,则m 的值等于( )A. 3B. -5C.7D. 7或-19.如图,在△ABC 中,AB =AC ,BE=CD ,BD =CF ,则∠EDF 的度数为 ( ) A .1452A ︒-∠ B .1902A ︒-∠ C .90A ︒-∠ D .180A ︒-∠第10题 10.如上图,等腰Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:① DF =DN ;② △DMN 为等腰三角形;③ DM 平分∠BMN ;④ AE =32EC ;⑤ AE =NC ,其中正确结论的个数是( )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共24分)11.计算:()()312360.1250.2522⨯-⨯⨯- = 12,在实数范围内分解因式:3234a ab - = 13.若2,3,mn xx ==则2m nx+=14.若A (x ,3)关于y 轴的对称点是B (﹣2,y ),则x=__________,y=__________,点A 关于x 轴的对称点的坐标是__________.15,如图,△ABC 中,DE 是AC 的垂直平分线,AE =3 cm ,△ABD 的周长是13 cm ,则△ABC 的周长为 _________第15题图 第17题图16,已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,求此等腰三角形的顶角为17.如图,∠AOB =30°,点P 为∠AOB 内一点,OP =8.点M 、N 分别在OA 、OB 上,则△PMN 周长的最小值为__________2第18题图18. 如图所示,在△ABC 中,∠A =80°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于A 1点,∠A 1BC 与∠A 1CD 的平分线相交于A 2点,依此类推,∠A 4BC 与∠A 4CD 的平分线相交于A 5点,则∠A 5的度数是 。
) )) 2015~2016学年度第一学期期末考试九年级数学(试题卷) 2016.1一、选择题(本大题共10小题,每题3分,共30分.)1.如果一个一元二次方程的根是x 1=x 2=1,那么这个方程是……………………………………(▲) A .(x +1)2=0 B .(x -1) 2=0 C .x 2=1D .x 2+1=02.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是(▲)A .平均数是80B .极差是15C .中位数是75D .方差是25 3.已知⊙O 的半径是5,直线l 是⊙O 的切线,P 是l 上的任一点,那么下列结论正确的是……(▲) A . 0<OP <5 B . OP =5 C . OP >5D . OP ≥54.二次函数y =x 2-2x +3的图像的顶点坐标是………………………………………………………(▲)A .(1,2)B .(1,6)C .(-1,6)D .(-1,2)5.已知圆锥的底面半径为3cm ,母线为5cm ,则圆锥的侧面积是…………………………………(▲) A .30πcm 2B .15πcm 2C .15π2 cm 2D .10πcm 26.若关于x 的一元二次方程x 2-2x -k =0没有实数根,则k 的取值范围是………………………(▲) A .k >-1B .k ≥-1C .k <-1D .k ≤-17.如图,在Rt △ABC 中,∠ACB =90°,BC =1,AB =2,下列结论正确的是……………………(▲) A .sin A =32B .tan A =12C .cos B =32D .tan B = 38.如图,⊙O 的直径CD =5cm ,弦AB ⊥CD ,垂足为M ,OM ︰OD =3︰5.则AB 的长是……(▲) A .23cm B .3cm C .4cm D .25cm9.如图,正方形ABCD 的边长为4cm ,动点P 、Q 同时从点A 出发,以1cm/s 的速度分别沿A →B →C 和A →D →C 的路径向点C 运动,设运动时间为x (单位:s),四边形PBDQ 的面积为y (单位:cm 2),则y 与x (0≤x ≤8)之间的函数关系可用图象表示为……………………………………………………(▲)A .B .C .D . 10.如图,在△ABC 中,AB =AC =10,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F 在AC的延长线上,且∠CBF =12∠A ,tan ∠CBF =13,则CF 的长为……………………………………(▲)A .52B .12 3C .125D . 5AB CA (第7题) (第8题)(第9题) (第10题)条形统计图 扇形统计图 二、填空题(本大题共8小题,每题2分,共16分.) 11.方程x 2=2x 的根为 ▲ .12.一元二次方程x 2-3x -1=0的两根是x 1,x 2,则x 1+x 2= ▲ . 13.如图,△ABC 中,DE ∥BC ,DE =2,AD =4,DB =6,则BC = ▲ .14.某水库堤坝的横断面如图所示,迎水坡AB 的坡度是1︰3,堤坝高BC =50m ,则AB = ▲ m . 15.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°,则∠BCD 的度数为 ▲ .16.若二次函数y =ax 2-3x +a 2-1的图象开口向下且经过原点,则a 的值是 ▲ .17.如图,四边形OABC 为菱形,点B 、C 在以点O 为圆心的 ⌒EF 上,若OA =1cm ,∠1=∠2,则 ⌒EF 的长为 ▲ cm .18.△ABC 中,∠ACB =120°,AC =BC =3,点D 为平面内一点,满足∠ADB =60°,若CD 的长度为整数,则所有满足题意的CD 的长度的可能值为 ▲ .三、解答题(本大题共10小题,共84分.) 19.(本题8分)解下列方程:(1) (x +3)2=5(x +3); (2) x 2+4x -2=0.20.(本题8分)为了解学生参加户外活动的情况,某校对初三学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题: (1)将条形统计图补画完整.(2)求每天参加户外活动时间达到2小时的学生所占调查学生的百分比.(3)这批参加调查的初三学生参加户外活动的平均时间是多少.21.(本题8分)小张、小王和另两名同学一起去看电影《寻龙诀》,小张买到4张座位相连的电影票,座位号顺次为8排3、4、5、6座.现在小张和小王从中随机各抽取一张电影票,求小张和小王抽取的电影票正好是相邻座位的概率(请通过画树状图或列表法写出分析过程).(第15题) (第17题)A(第13题) (第14题)A B22.(本题8分)如图,矩形ABCD 中,E 为BC 上一点,DF ⊥AE 于F . (1)△ABE 与△ADF 相似吗?请说明理由.(2)若AB =6,AD =12,BE =8,求DF 的长.23.(本题8分)如图,AB 是⊙O 的直径,AC 、DC 为弦,∠ACD =60°, P 为AB 延长线上的点,∠APD =30°. (1)求证:DP 是⊙O 的切线.(2)若⊙O 的半径为3cm ,求图中阴影部分的面积.24.( 本题8分)如图,小明从P 处出发,沿北偏东60°方向行驶200米 到达A 处,接着向正南方向行驶一段时间到达B 处.在B 处观测到 出发时所在的P 处在北偏西37°方向上,这时P 、B 两点相距多少米? (精确到1米,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,2≈1.41,3≈1.73)25.(本题8分)如图,Rt △ABC 中,∠C =90o ,O 为AB 上一点,以O 为 圆心,OB 长为半径的圆,交BC 边于点D ,与AC 边相切于点E . (1)求证:BE 平分∠ABC ;(2)若CD ︰BD =1︰2,AC =4,求CD 的长.26.(本题8分)某饰品店以20元/件的价格采购了一批今年新上市的饰品进行了为期30天的销售,销售结束后,得知日销售量P (件)与销售时间x (天)之间有如下关系:P =-2x +80(1≤x ≤30);又知前20天的销售价格Q 1(元/件)与销售时间x (天)之间有如下关系:Q 1=12x +30(1≤x ≤20),后10天的销售价格Q 2则稳定在45元/件.(1)试分别写出该商店前20天的日销售利润R 1(元)和后10天的日销售利润R 2(元)与销售时间x (天)之间的函数关系式;(2)请问在这30天的销售期中,哪一天的日销售利润最大?并求出这个最大利润值. (注:销售利润=销售收入-购进成本)27.(本题10分)如图,点A(-10,0),B(-6,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB,∠CDA=90°.点P从点Q(8,0)出发,沿x轴向左以每秒1个单位长的速度向点A匀速运动,运动时间为t秒.(1) 求点C的坐标.(2) 当∠BCP=15°时,求t的值.(3) 以PC为直径作圆,当该圆与四边形ABCD的边28.(本题10分)如图,一抛物线经过点A(−2,0),点B(0,4)和点C(4,0),该抛物线的顶点为D.(1)求该抛物线的函数关系式及顶点D坐标.(2) 如图,若P为线段CD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAB的面积的最大值和此时点(3)过抛物线顶点DE有公共点,求3 45 6 4 3 5 6 5 3 4 6 63 4 5小张抽取:小王抽取: 2015~2016学年第一学期九年级数学期末考试答案及评分标准2016.1一、选择题:(本大题共10小题,每小题3分,共30分.)1.B2.C3. D4. A5. B 6 .C 7. D 8.C 9. B 10. A 二、填空题:(本大题共8小题,每小题2分,共16分.) 11. x 1=0,x 2=212.313.514.100 15.32° 16.-1 17.2π318.3、4、5、6三、解答题:(本大题共10小题,共84分.) 19. (1)解:(x +3)(x +3-5)=0……2分(2)解:x =-4±16+82……………………2分x 1=-3,x 2=2………4分 x 1=-2+6,x 2=-2- 6 …………4分 20. (1)画图正确………………………………………………………………………………2分 (2)8÷50×100%=16%.……………………………………………………………… 4分(3)户外活动的平均时间=10×0.5+20×1+12×1.5+8×250=1.18(小时).……… 8分21. 用画树状图法表示:……………………4分结果为(3,4)(3,5)(3,6)(4,3)(4,5)(4,6)(5,3)(5,4)(5,6)(6,3)(6,4)(6,5)共有12种不同的情况,其中相邻的座位为(3,4)(4,3)(4,5)(5,4)(5,6)(6,5)共6种. ……6分∴P (相邻座位)=612=12…………………………………………………………………8分1分2分 3分 4分 5分7分8分………………………………… 1分 ∵∠APD =30° ∴∠ODP =90° 即PD ⊥OD …………………………………… 2分 ∴PD 是⊙O 的切线. ………………………………………………………………… 3分(2) ∵在Rt △POD 中,OD =3cm , ∠APD =30° ∴PD =3 3 ……………… 4分∴图中阴影部分的面积=12×3×33-16×π×32………………………………… 6分=932-32π. ……………………………………………… 8分24.解:过点P 作PH ⊥AB 于H ,……………………………………………………… 1分 在Rt △APH 中,AP =200,∠P AH =60°,∴PH =100 3 ……………………4分在Rt △PBH 中,PH =1003,∠B =37°,∴ sin37°=PHPB……………………5分∴PB =PHsin37°≈100×1.730.60≈288(米)………………………………………………7分答:P 、B 两点相距约288米. ……………………………………………………8分 1分 2分3分 4分 5分 6分7分8分R 1=P (Q 1-20)=(-2x +80)[(12x +30)-20]=-x 2+20x +800 …………………… 2分R 2=P (Q 2-20)=(-2x +80)(45-20)=-50x +2000…………………………………4分 (2)当1≤x ≤20时,R 1=-(x -10)2+900,∴当x =10时,R 1的最大值为900,…… 5分 当21≤x ≤30时,R 2=-50x +2000,………………………………………………… 6分 ∵R 2的值随x 值的增大而减小,∴当x =21时,R 2的最大值是950,…………… 7分 ∵950>900,∴在第21天时,日销售利润最大,最大利润为950元.………… 8分27.(1)∵∠BOC =90°,∠CBO =45°,∴∠BCO =∠CBO =45°,……………………… 1分∵B (-6,0),∴OC =OB =6,∴C (0,6);……………………………………… 2分 (2)①当点P 在点B 右侧时, ∵∠BCO =45°,∠BCP =15°,∴∠POC =30°,∴OP =2 3 ∴t 1=8+2 3 ………………………………………………………… 4分 ②当点P 在点B 左侧时, ∵∠BCO =45°,∠BCP =15°,∴∠POC =60°,∴OP =6 3 ∴t 2=8+6 3 6分综上所述:t 的值为8+23或8+(3)由题意知,若该圆与四边形ABCD ①当该圆与BC 相切于点C 时,有∠BCP =90°,从而∠OCP =45°,得到OP =6,此时PQ =2,∴t =2; ………………………… 7分 ②当该圆与CD 相切于点C 时,有PC ⊥CD ,即点P 与点O 重合,此时PQ =8,∴t =8; ………………………………………………………………… 8分③当该圆与AD 相切时,设P (8-t ,0),设圆心为M ,则M (8-t 2,3),半径r =(8-t 2)2+32作MH ⊥AD 于点H ,则MH =8-t 2-(-10)=14-t2,当MH 2=r 2时,得(14-t2)2=(8-t 2)2+32,解得t =17.1………………………………… 10分1分分分分分分7分(3)设该圆圆心为G (m 2,2),则r =m 4+4. ①当点F 在点E 左侧且该圆与DE 相切时,d =1-m 2,由d =r 得(1-m 2)2=m 24+4,解得m =-3. ……………………………… 8分②当点F 在点E 右侧且该圆经过点D 时,过点G 作GK ⊥y 轴,交DE 、y 轴于点H 、K ,由GK 2+KB 2=r 2=GH 2+GD 2得(m 2)2+22=(m 2-1)2+(52)2,解得m =134,…………9分综上,m 10分。
2015-2016学年第一学期初二数学期末考试试卷一、选择题:(本大题共10小题,每小题3分,共30分)1. 未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为…………………………………………………………………( )A .40.84510⨯亿元;B .38.4510⨯亿元;C .48.4510⨯亿元;D .284.510⨯亿元; 2. 在平面直角坐标系中,位于第四象限的点是………………………………………( )A .(﹣2,3)B .(4,﹣5)C .(1,0)D .(﹣8,﹣1)3.(2015•贵港)在平面直角坐标系中,若点P (m ,m-n )与点Q (-2,3)关于原点对称,则点M (m ,n )在………………………………………………………………………………( )A .第一象限 ;B .第二象限;C .第三象限;D .第四象限;4. 下列说法正确的是……………………………………………………………( )A .9的立方根是3;B .算术平方根等于它本身的数一定是1;C .﹣2是4的平方根; D的算术平方根是4;5. 如果()2213m y m x -=-+是一次函数,那么m 的值是………………………………( ) A .1;B .﹣1; C .±1; D.6.已知点M (1,a )和点N (2,b )是一次函数y=﹣2x+1图象上的两点,则a 与b 的大小关系是……( )A .a >b ;B .a=b ;C .a <b ;D .以上都不对;7. 如图,△ABC 中,D 为AB 中点,E 在AC 上,且BE ⊥AC .若DE=5,AE=8,则BE 的长度是……( )A .5;B .5.5;C .6;D .6.5;8.已知正比例函数y=kx (k ≠0)的函数值y 随x 的增大而减小,则一次函数y=kx+k 的图象经过的象限为……………………………………………………………………………( )A .二、三、四;B .一、二、四;C .一、三、四;D .一、二、三;9. 同一平面直角坐标系中,一次函数1y k x b =+的图象与一次函数2y k x =的图象如图所示,则关于x 的方程1k x b +=2k x 的解为…………………………………………………( )A .x=0B .x=﹣1C .x=﹣2D .x=110. 如图为正三角形ABC 与正方形DEFG 的重叠情形,其中D 、E 两点分别在AB 、BC 上,且BD=BE .若AC=18,GF=6,则F 点到AC 的距离为……………………………………………( )第7题图第9题图第10题图 第13题图A .2;B .3; C.12-D.6;二、填空题:(本大题共8小题,每小题3分,共24分)11. (2015•恩施州)4的平方根是 .12. 已知等腰三角形的一个内角等于20°,则它的一个底角是 .13.(2015•青海)如图,点B ,F ,C ,E 在同一直线上,BF=CE ,AB ∥DE ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是 (只需写一个,不添加辅助线).14. 已知:m 、n为两个连续的整数,且m n <<,则m n += .15. 如图,在△ABC 中,AB=AC ,BC=6,△DEF 的周长是7,AF ⊥BC 于F ,BE ⊥AC 于E ,且点D 是AB 的中点,则AF= .16.(2015•聊城)如图,在△ABC 中,∠C=90°,∠A=30°,BD 是∠ABC 的平分线.若AB=6,则点D 到AB 的距离是 .17. 如图,△ABC 中,AB=17,BC=10,CA=21,AM 平分∠BAC ,点D 、E 分别为AM 、AB 上的动点,则BD+DE 的最小值是 .18. 已知:如图在△ABC ,△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE .以下四个结论:①BD=CE ;②BD ⊥CE ;③∠ACE+∠DBC=45°;④BE=AC+AD.其中结论正确的个数是 .三、解答题:(本题满分76分)19. (本题满分10分)计算:(1)()()120160113π-⎛⎫-+-+ ⎪⎝⎭(221+;20. (本题满分6分)(2015•重庆)如图,在△ABD 和△FEC 中,点B ,C ,D ,E 在同一直线上,且AB=FE ,BC=DE ,∠B=∠E .求证:∠ADB=∠FCE .21. (本题满分6分)第18题图 第17题图 第16题图 第15题图在平面直角坐标系中,已知点A (-2,0)、B (0,3),O 为原点.(1)求三角形AOB 的面积;(2)若点C 在坐标轴上,且三角形ABC 的面积为6,求点C 的坐标.22. (本题满分6分) 如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.23. (本题满分6分)已知等腰三角形的周长为20cm ,试求出底边长y (cm )表示成腰长x (cm )的函数关系式,并求其自变量x 的取值范围.24. (本题满分6分)如图,四边形OABC 是矩形,点D 在OC 边上,以AD 为折痕,将△OAD 向上翻折,点O 恰好落在BC 边上的点E 处,若△ECD 的周长为4,△EBA 的周长为12.(1)矩形OABC 的周长为 .(2)若A 点坐标为(5,0),求线段AE 所在直线的解析式.25. (本题满分8分)(2015•益阳)如图,直线l 上有一点1P (2,1),将点1P 先向右平移1个单位,再向上平移2个单位得到像点2P ,点2P 恰好在直线l 上.(1)写出点2P 的坐标;(2)求直线l 所表示的一次函数的表达式;(3)若将点2P 先向右平移3个单位,再向上平移6个单位得到像点3P .请判断点3P 是否在直线l 上,并说明理由.26. (本题满分9分)(2015•潜江)随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A ,B 两种上网学习的月收费方式:设每月上网学习时间为x 小时,方案A ,B 的收费金额分别为A y ,B y .(1)如图是B y 与x 之间函数关系的图象,请根据图象填空:m= ;n= .(2)写出A y 与x 之间的函数关系式.(3)选择哪种方式上网学习合算,为什么?27.(本题满分10分)如图,已知直线y=-2x+8和x 轴、y 轴分别交于B 和A ,直线l 经过点C (2,-4)和D (0,-3),向下平移1个单位后与x轴、y轴分别交于点E、F,直线AB和EF相交于点P.(1)直线l的解析式为,线段BC的长为;(2)求证:△AOB≌△EOF;(3)判断△APE的形状,并说明理由;(4)求△APE的面积.28.(本题满分9分)(1)如图1,E、F是正方形ABCD的边AB及DC延长线上的点,且BE=CF,则BG与BC的数量关系是.(2)如图2,D、E是等腰△ABC的边AB及AC延长线上的点,且BD=CE,连接DE交BC于点F,DG⊥BC交BC于点G,试判断GF与BC的数量关系,并说明理由;(3)如图3,已知矩形ABCD的一条边AD=4,将矩形ABCD沿过A的直线折叠,使得顶点B 落在CD边上的P点处.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥PB于点E,且EF=结论求出矩形ABCD的面积.2015-2016学年第一学期初二数学期末考试试卷答案一、选择题:1.B ;2.B ;3.A ;4.C ;5.B ;6.A ;7.C ;8.A ;9.B ;10.D ;填空题:11.±2;12.20°或80°;13.AD=DE ;14.7;15.;16.;17.8;18.①②③;三、解答题:19.(1)1;(2;20.(略)21.(1)3;(2)C 点坐标为(0,-3),(0,9).22. 解:(1)三边分别为:3、4、5 (如图1);(2、2);(33).23. 解:∵2x+y=20,∴y=20-2x ,即x <10,∵两边之和大于第三边,∴x >5, 综上可得5<x <1024. 解:(1)16.(2)∵矩形OABC 的周长为16,∴2OA+2OC=16,∵A 点坐标为(5,0),∴OA=5,∴OC=3,∵在Rt △ABE 中,∠B=90°,AB=3,AE=OA=5,由勾股定理得:BE=4,∴CE=5-4=1,∴E 的坐标是(1,3).设直线AE 的解析式为y=kx+b (k ≠0),∵A (5,0),E (1,3),∴503x b k b +=⎧⎨+=⎩,解得34154k b ⎧=-⎪⎪⎨⎪=⎪⎩. ∴线段AE 所在直线的解析式为:3154y x =-+. 25.(1)2P (3,3);(2)23y x =-;(3)3P 在直线l 上;26. 解:(1)由图象知:m=10,n=50;(2)yA 与x 之间的函数关系式为:当x ≤25时,A y =7,当x >25时,A y =7+(x-25)×60×0.01,∴A y =0.6x-8,∴()()70250.6825A x y x x <≤⎧⎪=⎨->⎪⎩;(3)∵B y 与x 之间函数关系为:当x ≤50时,B y =10,当x >50时,B y =10+(x-50)×60×0.01=0.6x-20,当0<x ≤25时,A y =7,B y =50,∴A y <B y ,∴选择A 方式上网学习合算, 当25<x ≤50时.A y =B y ,即0.6x-8=10,解得;x=30,∴当25<x <30时,A y <B y ,选择A 方式上网学习合算,当x=30时,A y =B y ,选择哪种方式上网学习都行,当30<x ≤50,A y >B y ,选择B 方式上网学习合算,当x >50时,∵A y =0.6x-8,B y B=0.6x-20,A y >B y ,∴选择B 方式上网学习合算,综上所述:当0<x <30时,A y <B y ,选择A 方式上网学习合算, 当x=30时,A y =B y ,选择哪种方式上网学习都行,当x >30时,A y >B y ,选择B 方式上网学习合算.27. (1)132y x =--;(2) (2)证明:直线向下平移1个单位后解析式为142y x =--, ∴E (-8,0),F (0,-4),∴OE=OA=8,OF=OB=4,在△AOB 和△EOF 中,OA OE AOB EOF OB OF =⎧⎪∠=∠⎨⎪=⎩,∴△AOB ≌△EOF (SAS ); (3)解:△APE 是等腰三角形;理由如下:由(2)得:△AOB ≌△EOF ,∴∠OAB=∠OEF ,又OA=OE ,∴∠OAE=∠OEA , ∴∠OAB+∠OAE=∠OEF+∠OEA ,即∠PAE=∠PEA ,∴△APE 是等腰三角形;(4)解:由直线AB 和直线EF 的解析式组成方程组为28142y x y x =-+⎧⎪⎨=--⎪⎩,解得:88x y =⎧⎨=-⎩,∴点P 的坐标为(8,-8), ∵BE=OE+OB=8+4=12,∴△APE 的面积=△ABE 的面积+△PBE 的面积=12×12×8+12×12×8=96. 28. 解:(1)BG=12BC ,理由如下: ∵四边形ABCD 是正方形,∴∠EBG=∠FCG=90°,在△EBG 与△FCG 中,EB CF EBG FCG BGE CGF =⎧⎪∠=∠⎨⎪∠=∠⎩,∴△EBG ≌△FCG (AAS ), ∴BG=GC=12BC ; 故答案为:BG=12BC ; (2)GF=12BC ,理由如下:过点E 作EH ⊥BC ,如图1: ∵等腰△ABC,∴∠B=∠ACB ,∵∠ACB=∠ECH ,∴∠B=∠ECH ,在△DBG 与△ECH 中, 90DGB CHE B ECHDB CE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△DBG ≌△ECH (AAS ),∴DG=EH ,BG=CH ,∴BC=BG+GC=GH=GC+CH ,同理证明△DGF ≌△FHE ,∴GF=FH=12BC ; (3)由(1)(2)得出EF=12PB= 可得2==,因为将矩形ABCD 沿过A 的直线折叠,使得顶点B 落在CD 边上的P 点处,所以AP=AB ,在Rt △ADP 中,()2222AP AB AD AB PC ==+-,即()22242AB AB =+-,解得:AB=5.所以矩形的面积=20.。
2015-2016学年江苏省无锡市北塘区八年级(上)期末数学试卷一、选择题:(本大题共10小题,每题3分,共30分)1.(3分)下列实数:﹣、、、﹣3.14、0、,其中无理数的个数是()A.1个B.2个C.3个D.4个2.(3分)下列图形中,不一定是轴对称图形的是()A.等边三角形B.直角三角形C.角D.线段3.(3分)以下列数组作为三角形的三条边长,其中能构成直角三角形的是()A.1,,3B.,,5C.1.5,2,2.5D.,,4.(3分)在平面直角坐标系中,若点P(a﹣1,a)在第二象限,则a的取值范围是()A.a<0B.a>1C.0<a<1D.﹣1<a<0 5.(3分)下列各组条件中,能判断两个直角三角形全等的是()A.两组直角边对应相等B.一组边对应相等C.两组锐角对应相等D.一组锐角对应相等6.(3分)若等腰三角形的顶角为80°,则它的一个底角度数为()A.20°B.50°C.80°D.100°7.(3分)已知一次函数中,y=(m+2)x﹣1的值随着x的增大而增大,则m的取值范围是()A.m>0B.m<0C.m>﹣2D.m<﹣2 8.(3分)如图,已知BC=EC,∠BCE=∠ACD,如果只添加一个条件使△ABC≌△DEC,则添加的条件不能为()A.∠A=∠D B.∠B=∠E C.AC=DC D.AB=DE9.(3分)如图,A(0,﹣),点B为直线y=﹣x上一动点,当线段AB最短时,点B的坐标为()A.(0,0)B.(1,﹣1)C.(,﹣)D.(,﹣)10.(3分)无论a取什么实数,点P(a﹣1,2a﹣3)都在直线l上.若点Q(m,n)也是直线l上的点,则2m﹣n+3的值等于()A.4B.﹣4C.6D.﹣6二、填空题:(本大题共8小题,每空2分,共18分)11.(4分)4的平方根是;8的立方根是.12.(2分)用四舍五入法把数字3.4802精确到0.1是.13.(2分)点P(﹣2,4)关于x轴的对称点的坐标是.14.(2分)若等腰三角形的两条边长分别为1和2,则这个等腰三角形的周长是.15.(2分)若一次函数y=kx+2的图象经过点(3,5),则k的值为.16.(2分)如图,△ABC中,AB=AC,BD⊥AC,BD=6,E为AB边的中点,ED=5,则DC=.17.(2分)如图,△ABC中,∠ABC=90°,AB=CB=4,BE=1,P是AC上一动点.则PB+PE的最小值是.18.(2分)如图,△ABO为等腰直角三角形,A(﹣4,0),直角顶点B在第二象限.点C在y轴上移动,以BC为斜边作等腰直角△BCD,我们发现直角顶点D点随着C点的移动也在一条直线上移动,这条直线的函数表达式是.三、解答题:(本大题共有7小题,共62分)19.(8分)(1)已知(x﹣1)2=9,求式中x的值;(2)计算:()2+﹣.20.(6分)已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求a+2b的值.21.(6分)在正方形的网格中,每个小正方形的边长都为1,格点A、B的位置如图所示:(1)画出适当的平面直角坐标系,使点A、B的坐标分别为(1,2)、(4,3).(2)在(1)中画出的坐标系中标出点C(3,6),并连接AB、AC、BC.则△ABC 的面积=.(3)画出△ABC关于y轴的对称图形△A′B′C′.22.(8分)如图,∠ACB=∠ECD=90°,AC=BC,EC=DC,点D在AB边上.(1)求证:△ACE≌△BCD.(2)若AE=3,AD=2.求ED的长.23.(12分)如图,一次函数y=(m﹣1)x+4的图象与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB面积为4.(1)求m的值及点A的坐标.(2)过点B作直线BC与x轴的正半轴相交于点C,且OC=3OA,求直线BC的函数表达式.24.(10分)某工厂安排20名技工组装A、B、C三个型号的玩具,按规定每天共组装420件玩具,每名技工只组装同一型号的玩具,且至少有2名技工组装同一个型号的玩具.(1)设工厂安排x名技工组装A型玩具,y名技工组装B型玩具,根据上表提供的信息,求x与y之间的函数关系式,并求出x的取值范围.(2)工厂如何安排生产任务,可以使得每天在这批玩具上获得的利润最大?请写出相应的生产分配方案并求出每天获得的最大利润值.25.(12分)建立模型:如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.操作:过点A作AD⊥l于点D,过点B作BE⊥l于点E.求证:△CAD≌△BCE.模型应用:(1)如图2,在直角坐标系中,直线l1:y=x+4与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.(2)如图3,在直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.2015-2016学年江苏省无锡市北塘区八年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共10小题,每题3分,共30分)1.(3分)下列实数:﹣、、、﹣3.14、0、,其中无理数的个数是()A.1个B.2个C.3个D.4个【解答】解:、是无理数.故选:B.2.(3分)下列图形中,不一定是轴对称图形的是()A.等边三角形B.直角三角形C.角D.线段【解答】解:A、是轴对称图形,此选项错误;B、不是轴对称图形,此选项正确;C、是轴对称图形,此选项错误;D、既是轴对称图形,也是中心对称图形;故选项错误.故选:B.3.(3分)以下列数组作为三角形的三条边长,其中能构成直角三角形的是()A.1,,3B.,,5C.1.5,2,2.5D.,,【解答】解:A、12+()2≠32,不能构成直角三角形,故选项错误;B、()2+()2≠52,不能构成直角三角形,故选项错误;C、1.52+22=2.52,能构成直角三角形,故选项正确;D、()2+()2≠()2,不能构成直角三角形,故选项错误.故选:C.4.(3分)在平面直角坐标系中,若点P(a﹣1,a)在第二象限,则a的取值范围是()A.a<0B.a>1C.0<a<1D.﹣1<a<0【解答】解:由点P(a﹣1,a)在第二象限,得,解得0<a<1.故选:C.5.(3分)下列各组条件中,能判断两个直角三角形全等的是()A.两组直角边对应相等B.一组边对应相等C.两组锐角对应相等D.一组锐角对应相等【解答】解:A、可以利用边角边判定两三角形全等,故本选项正确;B、两直角三角形隐含一个条件是两直角相等,要判定两直角三角形全等,起码还要两个条件,则选项错误;C、两个锐角分别相等,只有角没有边,不能判定全等,此选项错误;D、一组锐角对应相等,隐含一个条件是两直角相等,根据角对应相等,不能判定三角形全等,故选项错误.故选:A.6.(3分)若等腰三角形的顶角为80°,则它的一个底角度数为()A.20°B.50°C.80°D.100°【解答】解:∵等腰三角形的顶角为80°,∴它的一个底角为(180°﹣80°)÷2=50°.故选:B.7.(3分)已知一次函数中,y=(m+2)x﹣1的值随着x的增大而增大,则m的取值范围是()A.m>0B.m<0C.m>﹣2D.m<﹣2【解答】解:∵一次函数y=(m+2)x﹣1的值随着x的增大而增大,∴m+2>0,即m>﹣2.故选:C.8.(3分)如图,已知BC=EC,∠BCE=∠ACD,如果只添加一个条件使△ABC≌△DEC,则添加的条件不能为()A.∠A=∠D B.∠B=∠E C.AC=DC D.AB=DE【解答】解:∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,∴∠ACB=∠DCE,A、∠A=∠D,∠ACB=∠DCE,BC=EC,符合全等三角形的判定定理AAS,能推出△ABC≌△DEC,故本选项错误;B、∠B=∠E,BC=EC,∠ACB=∠DCE,符合全等三角形的判定定理ASA,能推出△ABC≌△DEC,故本选项错误;C、AC=DC,∠ACB=∠DCE,BC=EC,符合全等三角形的判定定理SAS,能推出△ABC≌△DEC,故本选项错误;D、AB=DE,BC=EC,∠ACB=∠DCE,不符合全等三角形的判定定理,不能推出△ABC≌△DEC,故本选项正确;故选:D.9.(3分)如图,A(0,﹣),点B为直线y=﹣x上一动点,当线段AB最短时,点B的坐标为()A.(0,0)B.(1,﹣1)C.(,﹣)D.(,﹣)【解答】解:∵A(0,﹣),点B为直线y=﹣x上一动点,∴当AB⊥OB时,线段AB最短,此时点B在第四象限,作BC⊥OA于点C,∠AOB=45°,如下图所示:∴OC=CB=OA,∴点B的坐标为()故选:D.10.(3分)无论a取什么实数,点P(a﹣1,2a﹣3)都在直线l上.若点Q(m,n)也是直线l上的点,则2m﹣n+3的值等于()A.4B.﹣4C.6D.﹣6【解答】解:设直线l的解析式为y=kx+b(k≠0),∵无论a取什么实数,点P(a﹣1,2a﹣3)都在直线l上,∴当a=1时,P(0,﹣1),当a=2时,P(1,1),∴,解得,∴直线l的解析式为y=2x﹣1.∵点Q(m,n)也是直线l上的点,∴2m﹣1=n,∴2m﹣n+3=2m﹣(2m﹣1)+3=4.故选:A.二、填空题:(本大题共8小题,每空2分,共18分)11.(4分)4的平方根是±2;8的立方根是2.【解答】解:∵(±2)2=4,∴4的平方根是±2.∵23=8,∴8的立方根是2.故答案为:±2,2.12.(2分)用四舍五入法把数字3.4802精确到0.1是 3.5.【解答】解:数字3.4802≈3.5(精确到0.1).故答案为3.5.13.(2分)点P(﹣2,4)关于x轴的对称点的坐标是(﹣2,﹣4).【解答】解:P(﹣2,4)关于x轴的对称点的坐标是(﹣2,﹣4),故答案为:(﹣2,﹣4).14.(2分)若等腰三角形的两条边长分别为1和2,则这个等腰三角形的周长是5.【解答】解:当腰为2时,周长=2+2+1=5;当腰长为1时,1+1=2不能组成三角形.故答案为:5.15.(2分)若一次函数y=kx+2的图象经过点(3,5),则k的值为1.【解答】解:∵一次函数y=kx+2的图象经过点(3,5),∴5=3k+2,解得k=1.故答案为:1.16.(2分)如图,△ABC中,AB=AC,BD⊥AC,BD=6,E为AB边的中点,ED=5,则DC=2.【解答】解:∵BD⊥AC,∴∠ADB=90°,∵E为AB边的中点,ED=5,∴AC=AB=2DE=10,由勾股定理得:AD===8,∴DC=AC﹣AD=10﹣8=2;故答案为:2.17.(2分)如图,△ABC中,∠ABC=90°,AB=CB=4,BE=1,P是AC上一动点.则PB+PE的最小值是5.【解答】解::如图:作等腰直角三角形ABC关于AC的对称直角三角形ADC,连接DE,与AC交于点P,根据两点之间,线段最短得到ED就是PB+PE的最小值,∵等腰直角三角形ABC中,∠BAC=45°,∴∠DAC=45°,∴∠DAE=90°,∵B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵AB=CB=4,BE=1,∴AE=3,AD=CB=4,由勾股定理得,DE=5.故答案为:5.18.(2分)如图,△ABO为等腰直角三角形,A(﹣4,0),直角顶点B在第二象限.点C在y轴上移动,以BC为斜边作等腰直角△BCD,我们发现直角顶点D点随着C点的移动也在一条直线上移动,这条直线的函数表达式是y=x+2或y=﹣x+2.【解答】解:当BC与x轴平行时,过B作BE⊥x轴,过D作DF⊥x轴,交BC 于点G,如图1所示,∵等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=OA=2,OF=DG=BG=CG=BC=1,DF=DG+GF=3,∴D坐标为(﹣1,3);当C与原点O重合时,D在y轴上,此时OD=BE=2,即D(0,2),设所求直线解析式为y=kx+b(k≠0),将两点坐标代入得:,解得:.则这条直线解析式为y=﹣x+2,当D(﹣1,1)和D(﹣2,0)于是得到y=x+2,综上所述:这条直线的函数表达式是y=x+2或y=﹣x+2.故答案为:y=x+2或y=﹣x+2.三、解答题:(本大题共有7小题,共62分)19.(8分)(1)已知(x﹣1)2=9,求式中x的值;(2)计算:()2+﹣.【解答】解:(1)由题意可得:x﹣1=±3解得:x=4或x=﹣2;(2)原式=2﹣3﹣2=﹣3.20.(6分)已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求a+2b的值.【解答】解:∵2a﹣1的平方根是±3,∴2a﹣1=9,∴a=5,∵3a+b﹣1的算术平方根是4,∴3a+b﹣1=16,∴3×5+b﹣1=16,∴b=2,∴a+2b=5+2×2=9.21.(6分)在正方形的网格中,每个小正方形的边长都为1,格点A、B的位置如图所示:(1)画出适当的平面直角坐标系,使点A、B的坐标分别为(1,2)、(4,3).(2)在(1)中画出的坐标系中标出点C(3,6),并连接AB、AC、BC.则△ABC 的面积=5.(3)画出△ABC关于y轴的对称图形△A′B′C′.【解答】解:(1)如图所示;=3×4﹣×3×1﹣×3×1﹣×2×(2)S△ABC4=12﹣﹣﹣4=5.故答案为:5;(3)如图所示,△A′B′C′即为所求.22.(8分)如图,∠ACB=∠ECD=90°,AC=BC,EC=DC,点D在AB边上.(1)求证:△ACE≌△BCD.(2)若AE=3,AD=2.求ED的长.【解答】(1)证明:∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠ECD﹣∠ACD,∴∠DCB=∠ECA,在△ACE和△BCD中∴△ACE≌△BCD(SAS);(2)解:∵∠ACB=90°,AC=BC,∴∠BAC=∠B=45°,∵△ACE≌△BCD,∴∠EAC=∠B=45°,∴∠EAD=90°,∴在Rt△AED中,∠EAD=90°,AE=3,AD=2,由勾股定理得:ED==.23.(12分)如图,一次函数y=(m﹣1)x+4的图象与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB面积为4.(1)求m的值及点A的坐标.(2)过点B作直线BC与x轴的正半轴相交于点C,且OC=3OA,求直线BC的函数表达式.【解答】解:(1)由一次函数y=(m﹣1)x+4可知点B(0,4),∴OB=4,=4,∵S△OAB∴×OA×OB=4,∴OA=2,∴A(﹣2,0),把点A(﹣2,0)代入y=(m﹣1)x+4,得﹣2(m﹣1)+4=0,解得m=3;(2)∵OC=3OA,∴OC=6,∴点C的坐标为(6,0),设直线BC的函数表达式为y=kx+b,代入C(6,0)、B(0,4),得,解得k=﹣,b=4,∴直线BC的函数表达式为y=﹣x+4.24.(10分)某工厂安排20名技工组装A、B、C三个型号的玩具,按规定每天共组装420件玩具,每名技工只组装同一型号的玩具,且至少有2名技工组装同一个型号的玩具.(1)设工厂安排x名技工组装A型玩具,y名技工组装B型玩具,根据上表提供的信息,求x与y之间的函数关系式,并求出x的取值范围.(2)工厂如何安排生产任务,可以使得每天在这批玩具上获得的利润最大?请写出相应的生产分配方案并求出每天获得的最大利润值.【解答】解:(1)设组装A型、B型、C型玩具的技工分别为x、y、(20﹣x﹣y)名.根据题意得22x+21y+20(20﹣x﹣y)=420.整理得y=﹣2x+20,∵20﹣x﹣y=20﹣x﹣(﹣2x+20)=x,∴组装A型、B型、C型玩具的技工分别为x、(﹣2x+20)、x名由题意可知,解得2≤x≤9,且x是整数,(2)由题意可知:W=8×22x+10×21(﹣2x+20)+6×20x.即W=﹣124x+4200(W是x的一次函数)∵k=﹣124<0,∴W随x的增大而减小∵2≤x≤9,且x是整数∴当x=2时,W的值最大.此时W=3952(元),即最大利润为3952元.生产分配方案如下:组装A型玩具2人,B型玩具16人,C型玩具2人.25.(12分)建立模型:如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.操作:过点A作AD⊥l于点D,过点B作BE⊥l于点E.求证:△CAD≌△BCE.模型应用:(1)如图2,在直角坐标系中,直线l1:y=x+4与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.(2)如图3,在直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.【解答】解:操作:如图1:,∵∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ACD和△CBE中,∴△CAD≌△BCE(AAS);(1)∵直线y=x+4与y轴交于点A,与x轴交于点B,∴A(0,4)、B(﹣3,0).如图2:,过点B做BC⊥AB交直线l2于点C,过点C作CD⊥x轴在△BDC和△AOB中,,△BDC≌△AOB(AAS),∴CD=BO=3,BD=AO=4.OD=OB+BD=3+4=7,∴C点坐标为(﹣7,3).设l2的解析式为y=kx+b,将A,C点坐标代入,得,解得l2的函数表达式为y=x+4;(2)由题意可知,点Q是直线y=2x﹣6上一点.如图3:,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F.在△AQE和△QPF中,,∴△AQE≌△QPF(AAS),AE=QF,即6﹣(2a﹣6)=8﹣a,解得a=4如图4:,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F,AE=2a﹣12,FQ=8﹣a.在△AQE和△QPF中,,△AQE≌△QPF(AAS),AE=QF,即2a﹣12=8﹣a,解得a=;综上所述:A、P、Q可以构成以点Q为直角顶点的等腰直角三角形,a的值为或4.第21页(共21页)。