八年级数学下册 20.1 数据的集中趋势 20.1.1 平均数(1)教案 (新版)新人教版
- 格式:doc
- 大小:246.36 KB
- 文档页数:6
平均数(1)【教学目标】(1)理解数据的权和加权平均数的概念;(2)掌握加权平均数的计算方法。
初步经历数据的收集与处理过程,发展学生初步的统计意识和数据处理能力。
通过解决身边的实际问题,让学生初步认识数学与人类生活的密切联系及对人类历史发展的作用。
【教学重点】会求一组数据的算术平均数和加权平均数。
【教学难点】理解加权平均数的概念。
【教学方法】自学与小组合作学习相结合的方法。
【课前准备】教学课件。
【课时安排】1课时【教学过程】一、情景导入【过渡】在小学的时候,我们就接触过平均数这个概念。
而我们日常生活中,也经常能遇到这类问题,比如我们在每次考试结束后要进行横向对比,看本班级在年级中的所排名次如何,自己在本班中排名第几,这就需要知道各科分数这些数据,并要对数据进行处理之后才能得出结论,现在,我们就来回忆一下平均数。
1、如何求一组数据的平均数?2、七位裁判给某体操运动员打的分数分别为:7.8,8.1,9.5,7.4,8.4,6.4,8.3.如果去掉一个最高分,去掉一个最低分,那么,这位运动员平均得分是多少?(学生回答)【过渡】刚刚的问题呢,都是比较简单的问题,今天我们就来学习一下更进一步的关于平均数的问题。
二、新课教学1.平均数【过渡】通过之前的学习,我们知道了平均数可以反映一组数据的平均水平,那么,在实际问题中,我们有该如何理解平均数的统计意义呢?课本问题1.【过渡】对于问题(1),我们之前学习过,平均数表示一组数据的“平均水平”。
因此我们对这两个应聘者的成绩求取平均值,即能得到两者的综合成绩。
(学生计算回答)【过渡】通过比较,我们发现,显然甲的成绩比乙高,所以从成绩看,应该录取甲。
但是在生活中,我们会发现,有些时候会侧重其中一点考虑,这个时候又该如何选择呢?我们看一个第二个小问题。
【过渡】对(2)理解发现,(2)中更侧重于读写,因此,在求平均数时,我们不能像上一个那样,而应该将不同项目的比例考虑进去。
陕西省安康市石泉县池河镇八年级数学下册第20章数据的分析20.1 数据的集中趋势20.1.1 平均数(1)教案(新版)新人教版
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(陕西省安康市石泉县池河镇八年级数学下册第20章数据的分析20.1 数据的集中趋势20.1.1 平均数(1)教案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为陕西省安康市石泉县池河镇八年级数学下册第20章数据的分析20.1 数据的集中趋势20.1.1 平均数(1)教案(新版)新人教版的全部内容。
平均数。
《§20.1.1平均数(1)--人教2011版八年级数学(下)》教学设计课题:§20.1.1平均数(第一课时)----用频数统计表计算平均数 教学目标:知识目标:1.理解平均数的含义,通过引导学生自主学习归纳到平均数的计算方式;2.类比算术平均数和加权平均数,体会到二者之间的联系和区别;能选用合理的计算方式计算一组数据的平均数。
能力目标:根据数据的平均数解释实际问题.情感目标:通过运用数学工具解决实际问题的亲身经历,感悟数学知识的生活性和趣味性,激发学生学习数学的自觉性.教学重点:平均数的求法。
教学难点与关键:理解平均数的定义. 教学过程:一、明确目标、心中有数1.理解平均数的含义,通过合作学习归纳出平均数的计算公式;2.类比算术平均数和加权平均数,体会到二者之间的联系和区别;能灵活选用合理的计算方式计算一组数据的平均数.(教师通过课件展示学习目标。
学生通过阅读,明确本课学习目标.) 二、创设情境、导入新课(一)小学中,同学们已经学习过平均数,请你解决以下问题: 求下列数据的平均数。
⑴3,0,-1,4,-2; ⑵x 1, x 2, x 3,…, x n 。
学生自主操作,教师从旁指导.(二)你能归纳到一组数据平均数的求法吗? 三、合作探究、形成新知(一)教师结合学生回答情况,归纳平均数的定义:所有数据的和与数据个数的商。
并由此得到算术法求平均数的理念:()n x x x n x +∙∙∙++=211(二)介绍相关概念:1.平均数的符号表示及读法;2.算术平均数的含义。
(三)教师组织练习:若4,6,8,x 的平均数是8,且4,6,8,x ,y 的平均数是9,求x ,y 的值。
并作讲解。
(四)教师指导学生完成“引例”:(1) 说说表中数据的意义. (2) 计算该运动员的平均成绩.并归纳到:一组数据中,数据x 1出现了f 1次、数据x 2出现了f 2次、…、数据x k 出现了f k 次。
人教版义务教育课程标准实验教科书八年级下册20.1.1平均数(1) 教学设计一、内容和内容解析1.内容人教版八年级下册“20.1.1平均数”第一课时.2.内容解析统计活动的几个环节中,数据的分析是在对数据的收集、整理基础之上进行的,是统计活动中最重要的环节.平均数是最常用、最基本的数据分析方法,反映一组数据的“平均水平”,并与中位数、众数相结合,通过对数据集中趋势的描述,体现数据向其中心值靠拢或聚集的程度,因此平均数(尤其是加权平均数)是统计中的一个重要概念.本节着重研究加权平均数,“权”的重要性在于它反映的是数据的相对“重要程度”.尽管学生在以前的学习中已初步了解了平均数的意义,并会计算权数相等情况下的算术平均数,但对加权平均数的意义以及“权”的作用理解仍将非常困难,教学中应尽量列举典型的、贴近学生生活和具有现实意义的生活例子,在对实际问题的分析和解决中加深对“权”的理解和体会,渗透平均数和“权”的统计思想,为更好地进行数据的描述与分析,为实现后继统计知识的学习目标──建立统计观念、突出统计思想奠定基础.基于上述分析,确定本节教学重点是:以具体问题为载体,在实际问题情景中理解加权平均数的意义和作用,学会运用加权平均数解决实际问题.二、目标和目标解析1.通过本节教与学的活动,使学生了解平均数(加权平均数)的统计意义,理解“权”的意义和作用,学会计算加权平均数.教学中,以具体实例研究为载体,了解平均数可以描述一组数据的“平均水平”,理解“权”反映数据的相对“重要程度”,体会“权”的作用,使学生更全面的理解加权平均数,正确运用加权平均数解决实际问题.2.通过对加权平均数的学习,经历运用数据描述信息,作出推断的过程,体验统计与生活的联系,形成和发展统计观念,体会权的统计思想,养成用数据说话的习惯和实事求是的科学态度.3.通过具体问题的解决,培养学生严谨的统计精神,思维的深刻性.通过设计“我来决策”等教学活动,让学生学会从不同的侧面有侧重地对评价对象进行全面的客观的考察和评价,培养科学严谨的数学精神和思维的深刻性.三、教学问题诊断分析1.教师教学可能存在的问题:(1)就本论本,不能很恰当地列举典型的、贴近学生生活的现实例子,以具体的实际问题为载体,创设问题情景,揭示概念;(2)不能设计有效的数学问题,使学生通过有思维含量的数学活动,引导学生对“权”的意义和作用有深刻的理解;(3)过分强调知识的获得,忽略了统计思想的揭示和统计观念的建立;(4)对前两个学段中学生已经具有的相关平均数的知识经验了解不足,致使引入的问题太过简单或难度要求过高,导致学生的学习积极性不高.2.学生学习中可能出现的问题:(1)由于生活经验不足,同时受认知水平的影响,对抽象的“权”的意义和作用的理解会有所困难;(2)尽管在第一、第二学段已经学习了统计的简单知识,但对统计的意义和统计思想的理解尚处在最粗浅的认识层面,加之对“权”理解的困难,所以可能会感到这部分知识的学习比较抽象,缺少学习的激情.鉴于上述分析,确定本节的教学难点是:列举典型的、贴近学生生活的、和具有现实意义的生活例子,通过设计有效的、有思维含量的数学问题,激活学生的数学思维,深入理解数据的权的意义和作用.三、学准备:多媒体课件、导学案四、学过程。
20.1 数据的集中趋势----《平均数》教学设计一、内容和内容解析(一)内容加权平均数(二)内容解析学生在以前已学过平均数,初步了解了平均数的实际意义,这个课时将在此基础上,在研究数据集中趋势的大背景下,学习加权平均数,体会权的意义、作用,并进一步体会平均数是刻画一组数据集中趋势的重要的统计量,是一组数据的重要标准.教科书设计了以招聘英文翻译为背景的实际问题,根据不同的招聘要求,各项成绩的重要程度不同,从而平均成绩不同,由此引入加权平均数的概念.权的重要性在于它能够反映数据的相对重要程度.使学生更好地理解加权平均数,体会权的意义和作用.基于以上分析,本节课的教学重点是:对权及加权平均数统计意义的理解.二、目标和目标解析(一)目标1.理解加权平均数的意义;2.会用加权平均数分析一组数据的集中趋势,发展数据分析能力,逐步形成数据分析观念.3.会用加权平均数解决常见实际问题.(二)目标解析1.理解权表示数据的权重,体会权的差异对平均数的影响,会计算加权平均数.2.面对一组数据时,能根据具体情况赋予适当的权,并根据得到的加权平均数对实际问题作出简单的判断.三、教学问题诊断分析加权平均数不同于简单的算术平均数,简单的算术平均数只与数据的大小有关,而加权平均数则还与该组数据的权相关,学生对权的意义和作用的理解会有困难,往往造成数据与权混淆不清,只会利用公式,而不知加权平均数的统计意义.本节课的教学难点是:对权的意义的理解,用加权平均数分析一组数据的集中趋势.四、教学支持条件分析由于教学重点是对加权平均数意义的理解,可以用计算器来辅助计算加权平均数,同时加深对权意义的理解.五、教学过程设计(一)创设情境,提出问题1.复习旧知了解算术平均数2.某校八年级3班5名学生为支援希望工程,将平时积攒的零花钱捐献给贫困地区的失学儿童,每人捐款金额如下(单位:元):10 12 20 48 10问:这5名同学平均每人捐款多少元?复习算术平均数例1 一家公司打算招聘一名英文翻译,对甲、乙两名候选人进行了听、说、师生活动:学生提出评判依据,若学生提出以总分作为依据,教师要引导学生思考:已学过的哪个统计量可反映数据的集中趋势?学生计算平均数,解决问题.设计意图:回顾小学学过的平均数的意义,为引入加权平均数作铺垫.问题2 如果这家公司想招一名笔译能力较强的翻译,能否同等看待听、说、读、写的成绩?如果听、说、读、写成绩按照2︰1︰3︰4的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?追问1:用小学学过的平均数解决问题2合理吗?为什么?追问2:如何在计算平均数时体现听、说、读、写的差别?师生活动:教师适时地追问,学生自主设计计算平均数的方法,教师收集整理学生的计算方法,并统一计算形式,讲解权的意义及加权平均数.设计意图:追问1让学生理解问题2与问题1的有区别,问题2中的每个数据的“重要程度”不同,追问2让学生自主探究如何在计算平均数时体现的每个数据的“重要程度”不同,从而体会权的意义.(二)抽象概括,形成概念问题3 在问题2中,各个数据的重要程度不同(权不同),这种计算平均数的方法能否推广到一般?追问:若n个数据x1,x2,…,xn的权分别为w1,w2,…,wn,这n个数据的平均数该如何计算?师生活动:教师引导学生得到加权平均数公式:一般地,若n个数据x1,x2,…,xn的权分别为w1,w2,…,wn,则这n个数的加权平均数是设计意图:从特殊到一般,得到加权平均数的公式.(三)例题讲解,应用新知例2 一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均为百分制,然后按演讲内容占50%、演讲能力占40%、演讲效果占10%计算选手的综合成绩(百分制),进入决赛的前两名选手的单项的?它们的权各是多少?学生根据加权平均数的计算公式先分别计算出两名选手的总成绩,教师补全解答过程,规范解题格式.设计意图:以实际问题为背景,体会权的不同形式.追问:A 、B 两名选手的单项成绩都是两个95分,一个85分,为什么他们的最后得分不同呢?师生活动:学生反思回答.设计意图:进一步体会权的意义. 巩固练习某公司欲招聘一名公关人员,对甲、乙两位应试者进行了面试与笔试,他们的成绩(百分制)如下表所示.(1)如果公司认为面试和笔试成绩同等重要,从他们的成绩看,谁将被录取?分析:笔试和面试同等重要,就意味着笔试和面试成绩的权相等,因此只需比较两项成绩的算术平均数.(2)如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,面试和笔试的成绩按照6:4的比确定,计算两人各自的平均成绩,看看谁将被录取?分析:当面试和笔试的成绩按6:4比确定时,应计算两种成绩的加权平均数.组中值有关的练习例3为了了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,得到下表:这天5路公共汽车平均每班的载客量是多少?分析:表格中载客量是六个数据组,而不是一个具体的数,各组的实际数据应该选谁呢? 组中值 每个小组的两个端点的数的平均数 巩固练习:1.为了绿化环境,柳荫街引进一批法国梧桐,三年后这些树干的周长情况如下图所示,计算这批梧桐树干的平均周长(精确到0.1cm)2.种菜能手李大叔种植了一批新品种黄瓜。
20.1 数据的集中趋势20.1.1 平均数第1课时平均数和加权平均数1.知道算术平均数和加权平均数的意义,会求一组数据的算术平均数和加权平均数;(重点)2.理解“权”的差异对平均数的影响,算术平均数与加权平均数的联系与区别,并能利用它们解决实际问题.(难点)一、情境导入在日常生活中,我们经常会与平均数打交道,但有时发现以前计算平均数的方法并不适用.你知道为什么要这样计算吗?例如老师在计算学生每学期的总评成绩时,不是简单地将一个学生的平时成绩与考试成绩相加除以2,作为该学生的总评成绩,而是按照“平时成绩占40%,考试成绩占60%”的比例计算(如图).二、合作探究 探究点一:平均数【类型一】 已知一组数据的平均数,求某一个数据如果一组数据3,7,2,a ,4,6的平均数是5,则a 的值是( )A .8B .5C .4D .3解析:∵数据3,7,2,a ,4,6的平均数是5,∴(3+7+2+a +4+6)÷6=5,解得a =8.故选A.方法总结:关键是根据算术平均数的计算公式和已知条件列出方程求解.【类型二】 已知一组数据的平均数,求新数据的平均数已知一组数据x 1、x 2、x3、x4、x5的平均数是5,则另一组新数据x1+1、x2+2、x3+3、x4+4、x5+5的平均数是( )A.6 B.8 C.10 D.无法计算解析:∵x1、x2、x3、x4、x5的平均数为5,∴x1+x2+x3+x4+x5=5×5,∴x1+1、x2+2、x3+3、x4+4、x5+5的平均数为(x1+1+x2+2+x3+3+x4+4+x5+5)÷5=(5×5+15)÷5=8.故选B.方法总结:解决本题的关键是用一组数据的平均数表示另一组数据的平均数.探究点二:加权平均数【类型一】以频数分布表提供的信息计算加权平均数某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是( )A.6.2小时B.6.4小时C.6.5小时D.7小时解析:根据题意得(5×10+6×15+7×20+8×5)÷50=(50+90+140+40)÷50=320÷50=6.4(小时),故这50名学生这一周在校的平均体育锻炼时间是6.4小时.故选B.方法总结:计算加权平均数时,要首先明确各项的权,再将已知数据代入加权平均数公式进行计算.【类型二】以频数分布直方图提供的信息计算加权平均数小明统计本班同学的年龄后,绘制如右频数分布直方图,这个班学生的平均年龄是( ) A.14岁 B.14.3岁C.14.5岁 D.15岁解析:该班同学的年龄和为13×8+14×22+15×15+16×5=717岁.平均年龄是717÷(8+22+15+5)=14.34≈14.3(岁).故选B.方法总结:利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.【类型三】以百分数的形式给出各数据的“权”某招聘考试分笔试和面试两种,其中笔试按40%、面试按60%计算加权平均数作为总成绩,小华笔试成绩为90分,面试成绩为85分,那么小华的总成绩是( ) A.87分B.87.5分C.88分D.89分解析:∵笔试按40%、面试按60%,∴总成绩为90×40%+85×60%=87(分).故选A.方法总结:笔试和面试所占的百分比即为“权”,然后利用加权平均数的公式计算.【类型四】以比的形式给出各数据的“权”小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( )A.255分B.84分C.84.5分D.86分解析:根据题意得85×22+3+5+80×32+3+5+90×52+3+5=17+24+45=86(分).故选D.方法总结:“权”的表现形式,一种是比的形式,如5∶3∶2;另一种是百分比的形式,如创新占50%,综合知识占30%,语言占20%.“权”的大小直接影响结果.【类型五】加权平均数的实际应用学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如表:(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.解析:(1)先用算术平均数公式,计算乙的平均数,然后根据计算结果与甲的平均成绩比较,结果大的胜出;(2)先用加权平均数公式,计算甲、乙的平均数,然后比较计算结果,结果大的胜出.解:(1)x乙=(73+80+82+83)÷4=79.5,∵80.25>79.5.∴应选派甲;(2)x甲=(85×2+78×1+85×3+73×4)÷(2+1+3+4)=79.5,x乙=(73×2+80×1+82×3+83×4)÷(2+1+3+4)=80.4,∵79.5<80.4.∴应选派乙.方法总结:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,“权”的差异对结果会产生直接的影响.三、板书设计1.平均数与算术平均数2.加权平均数“权”的表现形式这节课,大多数学生在课堂上表现积极,并且会有自己的思考,有的同学还能把不同意见发表出来,师生在课堂上的交流活跃,学生的学习兴趣较高.在这种前提下,简便算法的推出就水到渠成了.教学设计也努力体现新课改的新理念,如培养学生数学的思维能力,教会学生从生活中学习数学,课内外结合等等.。
人教版数学八年级下册20.1.1《平均数和加权平均数》(第1课时)教案一. 教材分析平均数和加权平均数是初中数学八年级下册的教学内容,主要让学生了解平均数的定义和性质,掌握加权平均数的计算方法。
本节课通过引入实际问题,引导学生探讨平均数的求法,进而引出加权平均数的概念,并通过例题讲解和练习,使学生熟练掌握加权平均数的计算方法。
二. 学情分析学生在七年级已经学习了算术平均数的概念,对本节课的内容有一定的认知基础。
但部分学生对概念的理解不够深入,对实际问题的分析能力有待提高。
此外,学生在运算能力方面也存在差异,部分学生对复杂运算的计算过程不够熟练。
三. 教学目标1.理解平均数的定义和性质,掌握加权平均数的计算方法。
2.能运用加权平均数解决实际问题,提高分析问题和解决问题的能力。
3.培养学生的运算能力和合作精神,提高学生的数学素养。
四. 教学重难点1.重点:加权平均数的计算方法。
2.难点:对实际问题中权重的理解和运用。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究平均数的定义和性质。
2.通过实例分析,让学生了解加权平均数的应用,培养学生的实际问题解决能力。
3.利用小组合作学习,让学生在讨论中巩固知识,提高合作意识。
4.采用讲练结合的方法,对学生进行有针对性的辅导,提高学生的运算能力。
六. 教学准备1.准备相关的实际问题,用于引导学生探讨平均数的概念。
2.准备PPT课件,展示平均数和加权平均数的定义和性质。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT课件展示一些实际问题,如成绩统计、商品销售等,引导学生思考如何求解这些问题的平均值。
通过讨论,让学生回顾算术平均数的概念,为新课的学习做好铺垫。
2.呈现(15分钟)讲解平均数的定义和性质,引导学生理解平均数的概念。
通过PPT课件展示加权平均数的定义,让学生了解加权平均数与算术平均数的关系。
同时,讲解加权平均数的计算方法,让学生掌握计算加权平均数的基本步骤。
20.1.1 平均数(1)
【教学目标】
1.知识与技能
(1)理解数据的权和加权平均数的概念;
(2)掌握加权平均数的计算方法。
2.过程与方法
初步经历数据的收集与处理过程,发展学生初步的统计意识和数据处理能力。
3.情感态度和价值观
通过解决身边的实际问题,让学生初步认识数学与人类生活的密切联系及对人类历史发展的作用。
【教学重点】
会求一组数据的算术平均数和加权平均数。
【教学难点】
理解加权平均数的概念。
【教学方法】
自学与小组合作学习相结合的方法。
【课前准备】
教学课件。
【课时安排】
1课时
【教学过程】
一、情景导入
【过渡】在小学的时候,我们就接触过平均数这个概念。
而我们日常生活中,也经常能遇到这类问题,比如我们在每次考试结束后要进行横向对比,看本班级在年级中的所排名次如何,自己在本班中排名第几,这就需要知道各科分数这些数据,并要对数据进行处理之后才能得出结论,现在,我们就来回忆一下平均数。
1、如何求一组数据的平均数?
2、七位裁判给某体操运动员打的分数分别为:7.8,8.1,9.5,7.4,8.4,6.4,8.3.如果去掉一个最高分,去掉一个最低分,那么,这位运动员平均得分是多少?
(学生回答)
【过渡】刚刚的问题呢,都是比较简单的问题,今天我们就来学习一下更进一步的关于平均数
的问题。
二、新课教学
1.平均数
【过渡】通过之前的学习,我们知道了平均数可以反映一组数据的平均水平,那么,在实际问题中,我们有该如何理解平均数的统计意义呢?
课本问题1.
【过渡】对于问题(1),我们之前学习过,平均数表示一组数据的“平均水平”。
因此我们对这两个应聘者的成绩求取平均值,即能得到两者的综合成绩。
(学生计算回答)
【过渡】通过比较,我们发现,显然甲的成绩比乙高,所以从成绩看,应该录取甲。
但是在生活中,我们会发现,有些时候会侧重其中一点考虑,这个时候又该如何选择呢?我们看一个第二个小问题。
【过渡】对(2)理解发现,(2)中更侧重于读写,因此,在求平均数时,我们不能像上一个那样,而应该将不同项目的比例考虑进去。
对两者的成绩进行比较,我们发现,乙的成绩更好,因此,(2)的情况下应该选择乙。
【过渡】刚刚的(2)中,根据实际需要对不同类型的数据赋予与其重要程度相应的比重,这其中,2、1、3、4分别称为听、说、读、写四项成绩的权,而相应的平均数则称为加权平均数。
一般地,若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则
叫做这n个数的加权平均数。
【过渡】想一想,如果这家公司想招一名口语能力较强的翻译,听、说、读、写的成绩按照3∶3∶2∶2的比确定,那么甲、乙谁被录取?
(学生计算回答)
【过渡】通过刚刚的计算,大家能总结出算术平均数与加权平均数的区别与联系吗?
【过渡】通过比较,我们发现算术平均数是加权平均数的一种特殊情况,特殊的地方就在于算术平均数的各项权都是相等的,那么我们如何选择求取这两种平均数呢?
(学生讨论回答)
【过渡】在实际问题中,当各项权相等时,计算平均数就要采用算术平均数;当各项权不相等时,计算平均数就要采用加权平均数。
【过渡】通过刚刚的计算,和之前的两个问题相比较,我们能够发现权的作用,权不同,就会得到不同的结果,现在,我们来看一下例1吧。
课本例1讲解。
【过渡】两名选手的单项成绩都是两个95分与一个85分,为什么他们的最后得分不同? 选手A 的95分是演讲能力,B 的95分是演讲内容,而根据题意可知,演讲内容所占的权重比演讲能力所占的权重大,所以A 的95分就不如B 的95分在综合成绩中占的分值大.在此更能显示出“权”的重要性。
【过渡】通过刚刚的计算,我们理解了权的重要性,那么权的意义由多大呢? 权代表了数据的重要程度;权衡轻重或分量大小。
【过渡】既然学习了这么多,现在我们来练习一下吧。
【练习】一组6个数1,2,3,x ,y ,z 的平均数是4,求x ,y ,z 这三个数的平均数。
【过渡】解决这个问题,我们要能够灵活运用平均数的计算公式,首先,我们判断这个问题是用算术平均数的计算公式就可以解决的。
现在,大家能够解答这个问题吗?
(学生计算回答)
【知识巩固】1、在一次捐款活动中,某单位共有13人参加捐款,其中小王捐款数比13人捐款的平均数多2元,据此可知,错误的是( D )
A .小王的捐款数不可能最少
B .小王的捐款数可能最多
C .将捐款数按从少到多排列,小王的捐款数可能排在第十二位
D .将捐款数按从少到多排列,小王的捐款数一定比第七名多
2、某学校要招聘一名教师,分笔试和面试两次考试,笔试、面试和最后得分的满分均为100分,竞聘教师的最后得分按笔试成绩:面试成绩=3:2的比例计算.在这次招聘考试中,某竞聘教师的笔试成绩为90分,面试成绩为80分,则该竞聘教师的最后成绩是( C )
A .43分
B .85分
C .86分
D .170分
3、若m 个数的平均数为x ,n 个数的平均数为y ,则这(m+n )个数的平均数是( D )
A .
B .
C .
D .
4、某校团支部为了增强学 生的集体荣誉感,举行了一次体操比赛,总分10分,纪律占25%,队形、服装占25%,体操的准确、整齐占50%,七年级(2)班这三项所取得的成绩分别为(单位:分):9.8,9.5,9.6.求七年级(2)班的最后得分。
解:∵纪律占25%,队形、服装占25%,体操的准确、整齐占50%,
∴七年级(2)班的最后得分为9.8×25%+9.5×25%+9.6×50%=9.625分。
5、某学校八年级三名学生数学的平时成绩、期中成绩和期末成绩如下表:
(1)分别计算三人的平均成绩,谁的平均成绩好?
(2)老师根据三个成绩的“重要程度”,将平时、期中、期末成绩依次按30%、30%、40%的比例分别计算3位同学的平均成绩,按这种方法计算,谁的平均成绩好?
解:(1)∵学生甲的平均成绩=90
学生乙的平均成绩=90
学生丙的平均成绩=89
∴学生甲和学生乙的平均成绩好
(2)∵学生甲的平均成绩=90×30%+95×30%+85×40%=89.5
学生乙的平均成绩=90×30%+85×30%+95×40%=90.5
学生丙的平均成绩=80×30%+90×30%+97×40%=89.8
∴学生乙的平均成绩好.
【拓展提升】1、某次歌唱比赛,最后三名选手的成绩统计如表:
(1)若按算术平均分排出冠军、亚军、季军,则冠军、亚军、季军各是谁?
(2)若按6:3:1的加权平均分排出冠军、亚军、季军,则冠军、亚军、季军各是谁?
(3)若最后排名冠军是王晓丽,亚军是李真,季军是林飞扬,则权重可能是多少?
解:(1)王晓丽的平均分:(98+80+80)=86,
李真的平均分:(95+90+90)= ,
林飞扬的平均分:(80+100+100)= ,
冠军是林飞扬、亚军是李真、季军王晓丽.
(2)王晓丽:=90.8,
李真:=93,
林飞扬:=88,
冠军是李真、亚军王晓丽、季军林飞扬.
(3)如果按8:1:1的加权平均分,
则王晓丽:=94.4,
李真:=94,
林飞扬:=84,
则冠军是王晓丽,亚军是李真,季军是林飞扬,
所以按8:1:1的权重.
【板书设计】
1、加权平均数:
权:表示数据重要程度
加权平均数:
【教学反思】
教材中在让学生体会了上述加权平均数后,给出了加权平均数的计算公式,但这里的“权数”往往是用连比的形式或是所占百分比的形式体现了一组数据的重要程度,并且用一道例题改变其中的权数,讨论哪个人会被录用的问题,通过此例反映了权数的差异对结果(平均数)的影响,显然权重不同,最终导致了结果的不同。
由此发现,对“权数”的理解是否到位,制约了计算公式的运用。
课堂上学生能仿照例题的模式去解决类似问题,但并不能从本质上理解这样做的道理,而且,只要稍
加变化学生就会出错。
因此应该加强对权的理解的认识。