ADC测试方案
- 格式:pptx
- 大小:134.62 KB
- 文档页数:10
ADC的测试标准主要包括以下几个方面:转换速率:ADC从开始转换到转换完成所需要的时间,采样信号频率越高,所需的ADC采样速率也应越高。
静态指标:最小误差(Quantizing Error):由于ADC分辨率有限而导致的误差,通常为1个或半个最小数字量表示的模拟变化量。
偏移增益误差(Offset/Gain Error):实际ADC线性方程与理想ADC线性方程的偏差(斜率、截距不一致)。
满刻度误差(Full Scale Error):满刻度输入时,对应的实际输入信号与理想输入信号的差值。
微分非线性(Differential nonlinearity,DNL):ADC相邻两刻度的最大偏差。
积分非线性(Integral nonlinearity,INL):
ADC数值点对应的模拟量和真实值之间最大误差值,即ADC输出数值偏理想线性最大的距离。
ADC动态指标:总谐波失真THD、信噪比和失真SINAD、有效位数ENOB、信噪比SNR、无杂散动态范围SFDR。
ADC测试参数定义、分析及策略之线性测试线性测试动态测试关注的是器件的传输和性能特征,即采样和重现时序变化信号的能力,相比之下,线性测试关注的则是器件内部电路的误差。
对ADC来说,这些内部误差包括器件的增益、偏移、积分非线性(INL)和微分非线性(DNL)误差,这些参数说明了静止的模拟信号转换成数字信号的情况,主要关注具体电平与相应数字代码之间的关系。
测试ADC静态性能时,要考虑两个重要因素:第一,对于给定的模拟电压,一个具体数字代码并不能告诉多少有关器件的信息,它仅仅说明这个器件功能正常,要知道器件功能到底如何还必须考虑模拟电压的范围(它会产生一个输出代码)以及代码间的转换点;第二,动态测试一般关注器件在特定输入信号情况下的输出特性,然而静态测试是一个交互性过程,要在不同输入信号下测试实际输出。
总的来说,ADC的误差可以分为与直流(DC)和交流(AC)有关的误差。
DC误差又细分为四类:量化误差、微分非线性误差、积分非线性误差、偏移与增益误差。
AC误差一般与信噪及总谐波失真问题有关。
◆量化误差(Quantization Error)量化误差是基本误差,用图3所示的简单3bit ADC来说明。
输入电压被数字化,以8个离散电平来划分,分别由代码000b到111b去代表它们,每一代码跨越Vref/8的电压范围。
代码大小一般被定义为一个最低有效位(Least Significant Bit,LSB)。
若假定Vref=8V时,每个代码之间的电压变换就代表1V。
换言之,产生指定代码的实际电压与代表该码的电压两者之间存在误差。
一般来说,0.5LSB偏移加入到输入端便导致在理想过渡点上有正负0.5LSB的量化误差。
图3 理想ADC转换特性图6 INL和DNL与增益和偏移一样,计算非线性微分与积分误差也有很多种方法,代码平均和电压抖动两种方法都可以使用,但是由于存在重复搜索,当器件位数较多时这两种方法执行起来很费时。
ADC采集电路测试经验总结首先,ADC采集电路的测试应从最基础的电气特性开始,包括输入电压范围、电流范围、输入阻抗、输入电压波动等的测量。
这些特性的测试可以通过外部信号源提供标准信号进行,通过量测仪器测量输入和输出的数据,并与标准值进行对比,检查是否符合规定的要求。
其次,测试ADC采集电路的准确性和精度是极为重要的。
准确性测试主要是通过提供标准信号输入,并与采集电路输出的数值进行比较。
这可以通过使用模拟信号发生器提供标准信号,然后用数字示波器测量采集电路的输出数值。
精度测试则是通过提供不同的信号强度和频率来检查ADC采集电路在不同条件下的性能表现。
这可以通过调整模拟信号发生器的输出或者改变测试电路的输入信号来实现。
第三,测试ADC采集电路的抗干扰能力也是十分重要的。
在实际应用中,ADC采集电路往往会受到来自外部环境的噪声和干扰。
为了确保采集电路的正常工作,需要对其抗干扰能力进行测试。
这可以通过模拟信号发生器提供各种频率和幅度的干扰信号,然后观察采集电路的输出是否与干扰信号同步或者被干扰。
此外,还需要测试ADC采集电路的动态响应能力。
这可以通过在输入信号上施加不同频率和幅度的变化来实现。
通过观察采集电路输出的波形变化和延迟情况,可以评估其动态响应能力,以确定是否满足实际应用的要求。
最后,为了确保采集电路的稳定性和可靠性,还需要进行长时间稳定性测试。
这可以通过连续提供信号,并观察输出数据长时间的变化来实现。
测试期间需要注意记录输出数据,以便分析和评估采集电路的稳定性。
总结起来,ADC采集电路测试需要从基本的电气特性开始,准确性、精度、抗干扰能力、动态响应能力以及长时间稳定性等方面进行全面测试。
这些测试的目的是评估采集电路的性能并确保其正常工作。
在实际测试中,需要精心准备测试设备和信号源,并记录和分析测试数据,以便对采集电路的性能进行全面评估和改进。
通过不断实践和总结经验,可以提高ADC采集电路测试的效率和准确性,确保采集电路的可靠性和稳定性。
高速ADC/DAC 测试原理及测试方法随着数字信号处理技术和数字电路工作速度的提高,随着数字信号处理技术和数字电路工作速度的提高,以及对于系统灵敏度等以及对于系统灵敏度等要求的不断提高,对于高速、高精度的ADC ADC、、DAC 的指标都提出了很高的要求。
比如在移动通信、图像采集等应用领域中,一方面要求ADC 有比较高的采样率以采集高带宽的输入信号,另一方面又要有比较高的位数以分辨细微的变化。
因此,保证ADC/DAC 在高速采样情况下的精度是一个很关键的问题。
ADC/DAC 芯片的性能测芯片的性能测试试是由芯片芯片生产厂家完成生产厂家完成生产厂家完成的,的,的,需需要借助昂贵借助昂贵的的半导体测试仪器试仪器,,但是对于是对于板级板级板级和系统和系统和系统级级的设计人员来说设计人员来说,,更重更重要的是如要的是如要的是如何验何验何验证芯片在证芯片在板级或板级或系统系统系统级级应用应用上上的真正真正性能指标。
性能指标。
一、ADC的主要参数ADC 的主要指标分要指标分为静态为静态为静态指标和动指标和动指标和动态态指标2大类大类。
静态静态指标指标指标主主要有要有::•Differential Non-Linearity (DNL)•Integral Non-Linearity (INL)•Offset Error•Full Scale Gain Error动态指标指标主主要有要有::•Total harmonic distortion (THD)•Signal-to-noise plus distortion (SINAD)•Effective Number of Bits (ENOB) •Signal-to-noise ratio (SNR) •Spurious free dynamic range (SFDR)二、ADC 的测试方案要进行ADC 这些众多这些众多指标的指标的指标的验验证,证,基本基本基本的方的方的方法法是给ADC 的输入的输入端端输入一个理想的信号,的信号,然后然后然后对对ADC 转换转换以以后的数的数据进行据进行据进行采集和分采集和分采集和分析析,因此,,因此,ADC ADC 的性能测的性能测试试需要多台仪器多台仪器的的配合并配合并用用软件软件对测对测对测试结果进行试结果进行试结果进行分分析。
adcc 实验方法全文共四篇示例,供读者参考第一篇示例:ADC实验方法是一种常用的药物研究领域的实验技术,其全称为Antibody-Drug Conjugates(抗体药物偶联物)。
ADC是一种结合了抗体和药物的复合物,能够靶向癌细胞并释放药物来杀死恶性细胞。
ADC实验方法主要用于评估ADC的药理学性质及对癌症治疗的疗效和毒性。
ADC实验方法通常包括以下步骤:抗体选择、药物连接、活性评估、药物释放和毒理学评价。
研究人员需要选择适合的抗体作为ADC 的载体,通常选择能够特异性结合肿瘤细胞表面抗原的单克隆抗体。
需要将药物与抗体结合起来,通常是通过化学方法将药物与抗体的特定位点连接起来。
连接的药物通常是一种细胞毒性药物,例如紫杉醇类药物、前铂类药物等。
在完成ADC的制备后,研究人员需要进行活性评估,即测试ADC 对靶向癌细胞的特异性及细胞毒性。
一般来说,可以通过细胞毒性实验、细胞增殖抑制实验等方法来评估ADC的活性。
ADC的药物释放性能也是一个重要的评估指标,研究人员需要检测ADC在靶向癌细胞后是否能够有效释放药物,从而杀死癌细胞。
研究人员需要对ADC进行毒理学评价,以评估其对正常细胞的毒性和副作用。
这通常包括体内毒理学实验、动物体内分布研究、药代动力学、毒性病理学等实验方法。
ADC实验方法是一种重要的药物研究技术,可以用于评估ADC的药理学性质、疗效和毒性,为开发靶向肿瘤治疗药物提供重要的参考和依据。
随着科学技术的不断进步,ADC实验方法也在不断完善和改进,为研究人员提供更多的实验手段和工具,助力抗癌药物的研发和临床应用。
【本文共459字】第二篇示例:ADCC(Antibody-Dependent Cellular Cytotoxicity)是一种免疫细胞杀伤作用,是免疫系统中一种重要的抗体依赖性细胞毒性作用。
ADCC实验方法是研究免疫细胞如NK细胞、单核细胞、巨噬细胞等对靶细胞(如肿瘤细胞)的杀伤作用的关键方法之一。
高速ADC测试技术ADC(Analog-to-Digital Converter)即模拟/数字转换器。
现实世界中的信号,如温度、声音、无线电波、或者图像等,都是模拟信号,需要转换成容易储存、进行编码、压缩、或滤波等处理的数字形式。
模拟/数字转换器正是为此而诞生,发挥出不可替代的作用。
高速、高精度、低功耗、多通道是ADC未来的发展趋势目前,随着数字处理技术的飞速发展,在通讯、消费电器、工业与医疗仪器以及J 工产品中,对高速ADC的需求越来越多。
以通讯领域出现的新技术“软件无线电”为例,其与传统数字无线电的主要区别之一就是要求将A/D、D/A变换尽量靠近射频前端,将整个RF段或中频段进行A/D 采样。
如果将A/D移到中频,那么这种系统会要求数据转换器有几十到上百兆的采样率。
同时要求数据转换器对高频信号有很小的噪音和失真,以避免小信号被频率相近的大信号所掩盖。
高精度也是ADC未来的发展趋势之一。
为满足高精度的要求,数字系统的分辨率在不断提高。
在音频领域,为了在音频处理系统中获得更加逼真的高保真声音效果,需要高精度的ADC。
在测量领域,仪表的分辨率在不断提高,电流到达nA级,电压到mV级。
目前已经出现分辨率达到28bit的ADC,同时人们也在研究更高分辨率的ADC。
低功耗已经成为人们对电子产品共有的的要求。
当SOC(片上系统)的设计者们在为散热问题头疼的时候,便携式电子产品中的开发商们也在为怎样延长电池使用时间而动脑筋。
对于使用于此的ADC而言,低功耗的重要性是显而易见的。
在某些应用中(如医学图像处理),需要多路信号并行处理的,这驱使ADC的制造商们把多个ADC集成在一块IC上。
在这一类芯片中,如果使用传统的并行接口,将意味着数字管脚的激增,所以大都是使用了CDF(Clock-Data-Frame)的并行转串行技术。
高速AD测试中的难点高精度ADC的采样率不高,测试关键是要有高精度的信号源。
而高速ADC测试是一项更具挑战性的工作,其中采样时钟的Jitter和高速数字接口是两个必须面对的难题。
集成电路模拟数字、数字模拟转换器测试方法
集成电路模拟数字转换器(ADC)和数字模拟转换器(DAC)是常见的测试对象。
下面是一些常用的测试方法:
1. 误差测试方法:通过输入一定的模拟信号,并将ADC/DAC
的输出与理论值进行比较,计算出误差,并评估ADC/DAC的准确性和精度。
2. 非线性测试方法:通过输入一系列的不同幅度和频率的模拟信号,并测试ADC/DAC的输出,以评估其非线性特性,如非线性失真、波动等。
3. 动态指标测试方法:通过输入一定范围内的模拟信号,并测试ADC/DAC的响应时间、采样率、信噪比(SNR)、总谐波失真(THD)等动态指标。
4. 温度和电源噪声测试方法:通过在不同温度下,或在不同电源噪声环境下进行测试,评估ADC/DAC的稳定性和抗干扰能力。
5. 输出电流和功耗测试方法:通过测试ADC/DAC的输出电流和功耗,以评估其电源的负载能力和功耗特性。
6. 运行模式和控制信号测试方法:通过测试ADC/DAC在不同工作模式(如单端、差分)、控制信号输入(如转换开始、停止信号)下的性能,以验证其功能和工作稳定性。
这些测试方法可通过专业测试设备(如示波器、信号发生器、电源供应器等)和测试软件来实施。
在测试过程中,需要注意测试环境的稳定和准确性,以确保测试结果的可靠性。