2012年浙江省高考考试说明数学理
- 格式:doc
- 大小:1.90 MB
- 文档页数:10
2012年普通高等学校招生全国同一考试(浙江卷)数 学(理科)本试题卷分选择题和非选择题两部分.全卷共5页,选择题部分1至3页,非选择题部分4至5页.满分150分,考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上.2.每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上.参考公式:如果事件A,B互斥,那么柱体的体积公式如果事件A,B相互独立,那么其中S表示柱体的底面积,h表示柱体的高锥体的体积公式如果事件A在一次试验中发生的概率是p,那么n次独立重复试验中事件恰好发生k次的概率其中S表示锥体的底面积,h表示锥体的高球的表面积公式台体的体积公式球的体积公式其中分别表示台体的上底、下底面积,h表示台体的高其中R表示球的半径一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|1<x<4},B={x|x 2-2x-3≤0},则A∩(R B)=A.(1,4) B.(3,4) C.(1,3) D.(1,2)【解析】A=(1,4),B=(-3,1),则A∩(R B)=(1,4).【答案】A2.已知i是虚数单位,则=A.1-2i B.2-i C.2+i D.1+2i【解析】===1+2i.【答案】D3.设a R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【解析】当a=1时,直线l1:x+2y-1=0与直线l2:x+2y+4=0显然平行;若直线l1与直线l2平行,则有:,解之得:a=1 or a=﹣2.所以为充分不必要条件.【答案】A4.把函数y=cos2x+1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是【解析】把函数y=cos2x+1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:y1=cos x+1,向左平移1个单位长度得:y2=cos(x —1)+1,再向下平移1个单位长度得:y3=cos(x—1).令x=0,得:y3>0;x=,得:y3=0;观察即得答案.【答案】B5.设a,b是两个非零向量.A.若|a+b|=|a|-|b|,则a⊥bB.若a⊥b,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得a=λbD.若存在实数λ,使得a=λb,则|a+b|=|a|-|b|【解析】利用排除法可得选项C是正确的,∵|a+b|=|a|-|b|,则a,b共线,即存在实数λ,使得a=λb.如选项A:|a+b|=|a|-|b|时,a,b可为异向的共线向量;选项B:若a⊥b,由正方形得|a+b|=|a|-|b|不成立;选项D:若存在实数λ,使得a=λb,a,b可为同向的共线向量,此时显然|a +b|=|a|-|b|不成立.【答案】C6.若从1,2,2,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有A.60种 B.63种 C.65种 D.66种【解析】1,2,2,…,9这9个整数中有5个奇数,4个偶数.要想同时取4个不同的数其和为偶数,则取法有:4个都是偶数:1种;2个偶数,2个奇数:种;4个都是奇数:种.∴不同的取法共有66种.【答案】D7.设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是A.若d<0,则数列{S n}有最大项B.若数列{S n}有最大项,则d<0C.若数列{S n}是递增数列,则对任意的n N*,均有S n>0D.若对任意的n N*,均有S n>0,则数列{S n}是递增数列【解析】选项C显然是错的,举出反例:—1,0,1,2,3,….满足数列{S n}是递增数列,但是S n>0不成立.【答案】C8.如图,F1,F2分别是双曲线C:(a,b>0)的左右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ的垂直平分线与x轴交于点M.若|MF2|=|F1F2|,则C的离心率是A. B.C. D.【解析】如图:|OB|=b,|O F1|=c.∴k PQ=,k MN=﹣.直线PQ为:y=(x+c),两条渐近线为:y=x.由,得:Q(,);由,得:P(,).∴直线MN为:y-=﹣(x-),令y=0得:x M=.又∵|MF2|=|F1F2|=2c,∴3c=x M=,解之得:,即e=.【答案】B9.设a>0,b>0.A.若,则a>bB.若,则a<bC.若,则a>bD.若,则a<b【解析】若,必有.构造函数:,则恒成立,故有函数在x>0上单调递增,即a>b成立.其余选项用同样方法排除.【答案】A10.已知矩形ABCD,AB=1,BC=.将ABD沿矩形的对角线BD所在的直线进行翻着,在翻着过程中,A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直【解析】最简单的方法是取一长方形动手按照其要求进行翻着,观察在翻着过程,即可知选项C是正确的.【答案】C2012年普通高等学校招生全国同一考试(浙江卷)数 学(理科)非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上.2.在答题纸上作图,可先使用2B铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.二、填空题:本大题共7小题,每小题4分,共28分.11.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于___________cm3.【解析】观察三视图知该三棱锥的底面为一直角三角形,右侧面也是一直角三角形.故体积等于.【答案】112.若程序框图如图所示,则该程序运行后输出的值是______________.【解析】T,i关系如下图:T1i23456【答案】13.设公比为q(q>0)的等比数列{a n}的前n项和为{S n}.若,,则q=______________.【解析】将,两个式子全部转化成用,q表示的式子.即,两式作差得:,即:,解之得:(舍去).【答案】14.若将函数表示为其中,,,…,为实数,则=______________.【解析】法一:由等式两边对应项系数相等.即:.法二:对等式:两边连续对x求导三次得:,再运用赋值法,令得:,即.【答案】1015.在ABC中,M是BC的中点,AM=3,BC=10,则=______________.【解析】此题最适合的方法是特例法.假设ABC是以AB=AC的等腰三角形,如图,AM=3,BC=10,AB=AC=.cos∠BAC=.=【答案】2916.定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离.已知曲线C1:y=x 2+a到直线l:y=x的距离等于C2:x 2+(y+4) 2 =2到直线l:y=x的距离,则实数a=______________.【解析】C2:x2+(y+4)2 =2,圆心(0,—4),圆心到直线l:y=x 的距离为:,故曲线C2到直线l:y=x的距离为.另一方面:曲线C1:y=x2+a,令,得:,曲线C1:y=x2+a到直线l:y=x的距离的点为(,),.【答案】17.设a R,若x>0时均有[(a-1)x-1](x2-ax-1)≥0,则a=______________.【解析】本题按照一般思路,则可分为一下两种情况:(A),无解;(B),无解.因为受到经验的影响,会认为本题可能是错题或者解不出本题.其实在x>0的整个区间上,我们可以将其分成两个区间(为什么是两个?),在各自的区间内恒正或恒负.(如下答图)我们知道:函数y1=(a-1)x-1,y2=x 2-ax-1都过定点P(0,1).考查函数y1=(a-1)x-1:令y=0,得M(,0),还可分析得:a>1;考查函数y2=x2-ax-1:显然过点M(,0),代入得:,解之得:,舍去,得答案:.【答案】三、解答题:本大题共5小题,共72分,解答应写出文字说明、证明过程或演算步骤.18.(本小题满分14分)在ABC中,内角A,B,C的对边分别为a,b,c.已知cos A=,sin B=cos C.(Ⅰ)求tan C的值;(Ⅱ)若a=,求ABC的面积.【解析】本题主要考察三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点。
绝密*启用前2012年普通高等学校招生全国统一考试理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第一卷选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【解】选D(2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动, 每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种【解】选A(3)下面是关于复数21z i =-+的四个命题:其中的真命题为( )1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解】选C(4)设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32a x =上一点, ∆21F PF 是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34 ()D 45【解】选C (5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5()C -5 ()D -7【解】选D(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B+为12,,...,n a a a 的算术平均数()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的 是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解】选B(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =;则C 的实轴长为( )()A ()B()C 4 ()D 8【解】选C(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
2012年浙江省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|1<x<4},集合B={x|x2﹣2x﹣3≤0},则A∩(∁R B)=()A.(1,4) B.(3,4) C.(1,3) D.(1,2)∪(3,4)2.(5分)已知i是虚数单位,则=()A.1﹣2i B.2﹣i C.2+i D.1+2i3.(5分)设a∈R,则“a=1”是“直线l1:ax+2y﹣1=0与直线l2:x+(a+1)y+4=0平行”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是()A.B.C.D.5.(5分)设,是两个非零向量.则下列命题为真命题的是()A.若|+|=||﹣||,则⊥B.若⊥,则|+|=||﹣||C.若|+|=||﹣||,则存在实数λ,使得=λD.若存在实数λ,使得=λ,则|+|=||﹣||6.(5分)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种7.(5分)设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是()A.若d<0,则数列{S n}有最大项B.若数列{S n}有最大项,则d<0C.若对任意n∈N*,均有S n>0,则数列{S n}是递增数列D.若数列{S n}是递增数列,则对任意n∈N*,均有S n>08.(5分)如图,F1,F2分别是双曲线C:(a,b>0)的在左、右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ 的垂直平分线与x轴交于点M.若|MF2|=|F1F2|,则C的离心率是()A.B.C.D.9.(5分)设a>0,b>0,下列命题中正确的是()A.若2a+2a=2b+3b,则a>b B.若2a+2a=2b+3b,则a<bC.若2a﹣2a=2b﹣3b,则a>b D.若2a﹣2a=2b﹣3b,则a<b10.(5分)已知矩形ABCD,AB=1,BC=.将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中()A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于cm3.12.(4分)若某程序框图如图所示,则该程序运行后输出的值是.13.(4分)设公比为q(q>0)的等比数列{a n}的前n项和为S n.若S2=3a2+2,S4=3a4+2,则q=.14.(4分)若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…a5为实数,则a3=.15.(4分)在△ABC中,M是BC的中点,AM=3,BC=10,则•=.16.(4分)定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离,已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=.17.(4分)设a∈R,若x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,则a=.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=C.(1)求tanC的值;(2)若a=,求△ABC的面积.19.(14分)已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和.(1)求X的分布列;(2)求X的数学期望E(X).20.(15分)如图,在四棱锥P﹣ABCD中,底面是边长为的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分别为PB,PD的中点.(1)证明:MN∥平面ABCD;(2)过点A作AQ⊥PC,垂足为点Q,求二面角A﹣MN﹣Q的平面角的余弦值.21.(15分)如图,椭圆C:=1(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为,不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.(Ⅰ)求椭圆C的方程;(Ⅱ)求△APB面积取最大值时直线l的方程.22.(14分)已知a>0,b∈R,函数f(x)=4ax3﹣2bx﹣a+b.(Ⅰ)证明:当0≤x≤1时,(i)函数f(x)的最大值为|2a﹣b|+a;(ii)f(x)+|2a﹣b|+a≥0;(Ⅱ)若﹣1≤f(x)≤1对x∈[0,1]恒成立,求a+b的取值范围.2012年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•浙江)设集合A={x|1<x<4},集合B={x|x2﹣2x﹣3≤0},则A∩(∁R B)=()A.(1,4) B.(3,4) C.(1,3) D.(1,2)∪(3,4)【分析】由题意,可先解一元二次不等式,化简集合B,再求出B的补集,再由交的运算规则解出A∩(∁R B)即可得出正确选项【解答】解:由题意B={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3},故∁R B={x|x<﹣1或x >3},又集合A={x|1<x<4},∴A∩(∁R B)=(3,4)故选B2.(5分)(2012•浙江)已知i是虚数单位,则=()A.1﹣2i B.2﹣i C.2+i D.1+2i【分析】由题意,可对复数代数式分子与分母都乘以1+i,再由进行计算即可得到答案.【解答】解:故选D3.(5分)(2012•浙江)设a∈R,则“a=1”是“直线l1:ax+2y﹣1=0与直线l2:x+(a+1)y+4=0平行”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】运用两直线平行的充要条件得出l1与l2平行时a的值,而后运用充分必要条件的知识来解决即可.【解答】解:∵当a=1时,直线l1:x+2y﹣1=0与直线l2:x+2y+4=0,两条直线的斜率都是﹣,截距不相等,得到两条直线平行,故前者是后者的充分条件,∵当两条直线平行时,得到,解得a=﹣2,a=1,∴后者不能推出前者,∴前者是后者的充分不必要条件.故选A.4.(5分)(2012•浙江)把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是()A.B.C.D.【分析】首先根据函数图象变换的公式,可得最终得到的图象对应的解析式为:y=cos(x+1),然后将曲线y=cos(x+1)的图象和余弦曲线y=cosx进行对照,可得正确答案.【解答】解:将函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象对应的解析式为:y=cosx+1,再将y=cosx+1图象向左平移1个单位长度,再向下平移1个单位长度,得到的图象对应的解析式为:y=cos(x+1),∵曲线y=cos(x+1)由余弦曲线y=cosx左移一个单位而得,∴曲线y=cos(x+1)经过点(,0)和(,0),且在区间(,)上函数值小于0由此可得,A选项符合题意.故选A5.(5分)(2012•浙江)设,是两个非零向量.则下列命题为真命题的是()A.若|+|=||﹣||,则⊥B.若⊥,则|+|=||﹣||C.若|+|=||﹣||,则存在实数λ,使得=λD.若存在实数λ,使得=λ,则|+|=||﹣||【分析】通过向量和向量的模相关性质进行判断即可.【解答】解:对于A,若|+|=||﹣||,则||2+||2+2•=||2+||2﹣2||||,得•=﹣||||≠0,与不垂直,所以A不正确;对于B,由A解析可知,|+|≠||﹣||,所以B不正确;对于C,若|+|=||﹣||,则||2+||2+2•=||2+||2﹣2||||,得•=﹣||||,则cosθ=﹣1,则与反向,因此存在实数λ,使得=λ,所以C正确.对于D,若存在实数λ,则•=λ||2,﹣||||=λ||2,由于λ不能等于0,因此•≠﹣||||,则|+|≠||﹣||,所以D不正确.故选C.6.(5分)(2012•浙江)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种【分析】本题是一个分类计数问题,要得到四个数字的和是偶数,需要分成三种不同的情况,当取得4个偶数时,当取得4个奇数时,当取得2奇2偶时,分别用组合数表示出各种情况的结果,再根据分类加法原理得到不同的取法.【解答】解:由题意知本题是一个分类计数问题,要得到四个数字的和是偶数,需要分成三种不同的情况,当取得4个偶数时,有=1种结果,当取得4个奇数时,有=5种结果,当取得2奇2偶时有=6×10=60∴共有1+5+60=66种结果,故选D7.(5分)(2012•浙江)设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是()A.若d<0,则数列{S n}有最大项B.若数列{S n}有最大项,则d<0C.若对任意n∈N*,均有S n>0,则数列{S n}是递增数列D.若数列{S n}是递增数列,则对任意n∈N*,均有S n>0【分析】由等差数列的求和公式可得S n=na1+d=n2+(a1+)n,可看作关于n的二次函数,由二次函数的性质逐个选项验证可得.【解答】解:由等差数列的求和公式可得S n=na1+d=n2+(a1﹣)n,选项A,若d<0,由二次函数的性质可得数列{S n}有最大项,故正确;选项B,若数列{S n}有最大项,则对应抛物线开口向下,则有d<0,故正确;选项C,若对任意n∈N*,均有S n>0,对应抛物线开口向上,d>0,可得数列{S n}是递增数列,故正确;选项D,若数列{S n}是递增数列,则对应抛物线开口向上,但不一定有任意n∈N*,均有S n>0,故错误.故选D8.(5分)(2012•浙江)如图,F1,F2分别是双曲线C:(a,b>0)的在左、右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q 两点,线段PQ的垂直平分线与x轴交于点M.若|MF2|=|F1F2|,则C的离心率是()A.B.C.D.【分析】确定PQ,MN的斜率,求出直线PQ与渐近线的交点的坐标,得到MN 的方程,从而可得M的横坐标,利用|MF2|=|F1F2|,即可求得C的离心率.【解答】解:线段PQ的垂直平分线MN,|OB|=b,|O F1|=c.∴k PQ=,k MN=﹣.直线PQ为:y=(x+c),两条渐近线为:y=x.由,得Q();由得P.∴直线MN为,令y=0得:x M=.又∵|MF2|=|F1F2|=2c,∴3c=x M=,∴3a2=2c2解之得:,即e=.故选B.9.(5分)(2012•浙江)设a>0,b>0,下列命题中正确的是()A.若2a+2a=2b+3b,则a>b B.若2a+2a=2b+3b,则a<bC.若2a﹣2a=2b﹣3b,则a>b D.若2a﹣2a=2b﹣3b,则a<b【分析】对于2a+2a=2b+3b,若a≤b成立,经分析可排除B;对于2a﹣2a=2b﹣3b,若a≥b成立,经分析可排除C,D,从而可得答案.【解答】解:∵a≤b时,2a+2a≤2b+2b<2b+3b,∴若2a+2a=2b+3b,则a>b,故A正确,B错误;对于2a﹣2a=2b﹣3b,若a≥b成立,则必有2a≥2b,故必有2a≥3b,即有a≥b,而不是a>b排除C,也不是a<b,排除D.故选A.10.(5分)(2012•浙江)已知矩形ABCD,AB=1,BC=.将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中()A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直【分析】先根据翻折前后的变量和不变量,计算几何体中的相关边长,再分别筛选四个选项,若A成立,则需BD⊥EC,这与已知矛盾;若C成立,则A在底面BCD上的射影应位于线段BC上,可证明位于BC中点位置,故B成立;若C成立,则A在底面BCD上的射影应位于线段CD上,这是不可能的;D显然错误【解答】解:如图,AE⊥BD,CF⊥BD,依题意,AB=1,BC=,AE=CF=,BE=EF=FD=,A,若存在某个位置,使得直线AC与直线BD垂直,则∵BD⊥AE,∴BD⊥平面AEC,从而BD⊥EC,这与已知矛盾,排除A;B,若存在某个位置,使得直线AB与直线CD垂直,则CD⊥平面ABC,平面ABC ⊥平面BCD取BC中点M,连接ME,则ME⊥BD,∴∠AEM就是二面角A﹣BD﹣C的平面角,此角显然存在,即当A在底面上的射影位于BC的中点时,直线AB与直线CD垂直,故B正确;C,若存在某个位置,使得直线AD与直线BC垂直,则BC⊥平面ACD,从而平面ACD⊥平面BCD,即A在底面BCD上的射影应位于线段CD上,这是不可能的,排除CD,由上所述,可排除D故选B二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)(2012•浙江)已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于1cm3.【分析】由三视图知,几何体是一个三棱锥,底面是直角边长为1和3的直角三角形,三棱锥的一条侧棱与底面垂直,且长度是2,这是三棱锥的高,根据三棱锥的体积公式得到结果.【解答】解:由三视图知,几何体是一个三棱锥,底面是直角边长为1cm和3cm 的直角三角形,面积是cm2,三棱锥的一条侧棱与底面垂直,且长度是2cm,这是三棱锥的高,∴三棱锥的体积是cm3,故答案为:1.12.(4分)(2012•浙江)若某程序框图如图所示,则该程序运行后输出的值是.【分析】通过循环框图,计算循环变量的值,当i=6时结束循环,输出结果即可.【解答】解:循环前,T=1,i=2,不满足判断框的条件,第1次循环,T=,i=3,不满足判断框的条件,第2次循环,T=,i=4,不满足判断框的条件,第3次循环,T=,i=5,不满足判断框的条件,第4次循环,T=,i=6,满足判断框的条件,退出循环,输出结果.故答案为:.13.(4分)(2012•浙江)设公比为q(q>0)的等比数列{a n}的前n项和为S n.若S2=3a2+2,S4=3a4+2,则q=.【分析】经观察,S4﹣S2=a3+a4=3(a4﹣a2),从而得到q+q2=3(q2﹣1),而q>0,从而可得答案.【解答】解:∵等比数列{a n}中,S2=3a2+2,S4=3a4+2,∴S4﹣S2=a3+a4=3(a4﹣a2),∴a2(q+q2)=3a2(q2﹣1),又a2≠0,∴2q2﹣q﹣3=0,又q>0,∴q=.故答案为:.14.(4分)(2012•浙江)若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…a5为实数,则a3=10.【分析】将x5转化[(x+1)﹣1]5,然后利用二项式定理进行展开,使之与f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5进行比较,可得所求.【解答】解:f(x)=x5=[(x+1)﹣1]5=(x+1)5+(x+1)4(﹣1)+(x+1)3(﹣1)2+(x+1)2(﹣1)3+(x+1)1(﹣1)4+(﹣1)5而f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,∴a3=(﹣1)2=10故答案为:1015.(4分)(2012•浙江)在△ABC中,M是BC的中点,AM=3,BC=10,则•=﹣16.【分析】设∠AMB=θ,则∠AMC=π﹣θ,再由=(﹣)•(﹣)以及两个向量的数量积的定义求出结果.【解答】解:设∠AMB=θ,则∠AMC=π﹣θ.又=﹣,=﹣,∴=(﹣)•(﹣)=•﹣•﹣•+,=﹣25﹣5×3cosθ﹣3×5cos(π﹣θ)+9=﹣16,故答案为﹣16.16.(4分)(2012•浙江)定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离,已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=.【分析】先根据定义求出曲线C2:x2+(y+4)2=2到直线l:y=x的距离,然后根据曲线C1:y=x2+a的切线与直线y=x平行时,该切点到直线的距离最近建立等式关系,解之即可.【解答】解:圆x2+(y+4)2=2的圆心为(0,﹣4),半径为,圆心到直线y=x的距离为=2,∴曲线C2:x2+(y+4)2=2到直线l:y=x的距离为2﹣=.则曲线C1:y=x2+a到直线l:y=x的距离等于,令y′=2x=1解得x=,故切点为(,+a),切线方程为y﹣(+a)=x﹣即x﹣y﹣+a=0,由题意可知x﹣y﹣+a=0与直线y=x的距离为,即解得a=或﹣.当a=﹣时直线y=x与曲线C1:y=x2+a相交,故不符合题意,舍去.故答案为:.17.(4分)(2012•浙江)设a∈R,若x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,则a=.【分析】分类讨论,(1)a=1;(2)a≠1,在x>0的整个区间上,我们可以将其分成两个区间,在各自的区间内恒正或恒负,即可得到结论.【解答】解:(1)a=1时,代入题中不等式明显不成立.(2)a≠1,构造函数y1=(a﹣1)x﹣1,y2=x 2﹣ax﹣1,它们都过定点P(0,﹣1).考查函数y1=(a﹣1)x﹣1:令y=0,得M(,0),∴a>1;考查函数y2=x2﹣ax﹣1,∵x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,∴y2=x2﹣ax﹣1过点M(,0),代入得:,解之得:a=,或a=0(舍去).故答案为:.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)(2012•浙江)在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=C.(1)求tanC的值;(2)若a=,求△ABC的面积.【分析】(1)由A为三角形的内角,及cosA的值,利用同角三角函数间的基本关系求出sinA的值,再将已知等式的左边sinB中的角B利用三角形的内角和定理变形为π﹣(A+C),利用诱导公式得到sinB=sin(A+C),再利用两角和与差的正弦函数公式化简,整理后利用同角三角函数间的基本关系即可求出tanC的值;(2)由tanC的值,利用同角三角函数间的基本关系求出cosC的值,再利用同角三角函数间的基本关系求出sinC的值,将sinC的值代入sinB=cosC中,即可求出sinB的值,由a,sinA及sinC的值,利用正弦定理求出c的值,最后由a,c及sinB的值,利用三角形的面积公式即可求出三角形ABC的面积.【解答】解:(1)∵A为三角形的内角,cosA=,∴sinA==,又cosC=sinB=sin(A+C)=sinAcosC+cosAsinC=cosC+sinC,整理得:cosC=sinC,则tanC=;(2)由tanC=得:cosC====,∴sinC==,∴sinB=cosC=,∵a=,∴由正弦定理=得:c===,=acsinB=×××=.则S△ABC19.(14分)(2012•浙江)已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和.(1)求X的分布列;(2)求X的数学期望E(X).【分析】(1)X的可能取值有:3,4,5,6,求出相应的概率可得所求X的分布列;(2)利用X的数学期望公式,即可得到结论.【解答】解:(1)X的可能取值有:3,4,5,6.P(X=3)=;P(X=4)=;P(X=5)=;P(X=6)=.故所求X的分布列为X3456P(2)所求X的数学期望E(X)=3×+4×+5×+6×=20.(15分)(2012•浙江)如图,在四棱锥P﹣ABCD中,底面是边长为的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分别为PB,PD的中点.(1)证明:MN∥平面ABCD;(2)过点A作AQ⊥PC,垂足为点Q,求二面角A﹣MN﹣Q的平面角的余弦值.【分析】(1)连接BD,利用三角形的中位线的性质,证明MN∥BD,再利用线面平行的判定定理,可知MN∥平面ABCD;(2)方法一:连接AC交BD于O,以O为原点,OC,OD所在直线为x,y轴,建立空间直角坐标系,求出平面AMN的法向量,利用向量的夹角公式,即可求得二面角A﹣MN﹣Q的平面角的余弦值;方法二:证明∠AEQ为二面角A﹣MN﹣Q的平面角,在△AED中,求得AE=,QE=,AQ=2,再利用余弦定理,即可求得二面角A﹣MN﹣Q的平面角的余弦值.【解答】(1)证明:连接BD.∵M,N分别为PB,PD的中点,∴在△PBD中,MN∥BD.又MN⊄平面ABCD,BD⊂平面ABCD∴MN∥平面ABCD;(2)方法一:连接AC交BD于O,以O为原点,OC,OD所在直线为x,y轴,建立空间直角坐标系,在菱形ABCD中,∠BAD=120°,得AC=AB=,BD=∵PA⊥平面ABCD,∴PA⊥AC在直角△PAC中,,AQ⊥PC得QC=2,PQ=4,由此知各点坐标如下A(﹣,0,0),B(0,﹣3,0),C(,0,0),D(0,3,0),P(),M(),N()Q()设=(x,y,z)为平面AMN的法向量,则.∴,取z=﹣1,,同理平面QMN的法向量为∴=∴所求二面角A﹣MN﹣Q的平面角的余弦值为.方法二:在菱形ABCD中,∠BAD=120°,得AC=AB=BC=CD=DA=,BD=∵PA⊥平面ABCD,∴PA⊥AB,PA⊥AC,PA⊥AD,∴PB=PC=PD,∴△PBC≌△PDC 而M,N分别是PB,PD的中点,∴MQ=NQ,且AM=PB==AN取MN的中点E,连接AE,EQ,则AE⊥MN,QE⊥MN,所以∠AEQ为二面角A ﹣MN﹣Q的平面角由,AM=AN=3,MN=3可得AE=在直角△PAC中,AQ⊥PC得QC=2,PQ=4,AQ=2在△PBC中,cos∠BPC=,∴MQ=在等腰△MQN中,MQ=NQ=.MN=3,∴QE=在△AED中,AE=,QE=,AQ=2,∴cos∠AEQ=∴所求二面角A﹣MN﹣Q的平面角的余弦值为.21.(15分)(2012•浙江)如图,椭圆C:=1(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为,不过原点O的直线l与C相交于A,B 两点,且线段AB被直线OP平分.(Ⅰ)求椭圆C的方程;(Ⅱ)求△APB面积取最大值时直线l的方程.【分析】(Ⅰ)由题意,根据离心率为,其左焦点到点P(2,1)的距离为,建立方程,即可求得椭圆C的方程;(Ⅱ)设A(x1,y1),B(x2,y2),线段AB的中点为M,当AB⊥x轴时,直线AB的方程为x=0,与不过原点的条件不符,故设AB的方程为y=kx+m(m≠0)由,消元再利用韦达定理求得线段AB的中点M,根据M在直线OP 上,可求|AB|,P到直线AB的距离,即可求得△APB面积,从而问题得解.【解答】解:(Ⅰ)由题意,解得:.∴所求椭圆C的方程为:.(Ⅱ)设A(x1,y1),B(x2,y2),线段AB的中点为M当AB⊥x轴时,直线AB的方程为x=0,与不过原点的条件不符,故设AB的方程为y=kx+m(m≠0)由,消元可得(3+4k2)x2+8kmx+4m2﹣12=0①∴,∴线段AB的中点M∵M在直线OP上,∴∴k=﹣故①变为3x2﹣3mx+m2﹣3=0,又直线与椭圆相交,∴△>0,x1+x2=m,∴|AB|=P到直线AB的距离d=∴△APB面积S=(m∈(﹣2,0)令u(m)=(12﹣m2)(m﹣4)2,则∴m=1﹣,u(m)取到最大值∴m=1﹣时,S取到最大值综上,所求直线的方程为:22.(14分)(2012•浙江)已知a>0,b∈R,函数f(x)=4ax3﹣2bx﹣a+b.(Ⅰ)证明:当0≤x≤1时,(i)函数f(x)的最大值为|2a﹣b|+a;(ii)f(x)+|2a﹣b|+a≥0;(Ⅱ)若﹣1≤f(x)≤1对x∈[0,1]恒成立,求a+b的取值范围.【分析】(Ⅰ)(ⅰ)求导函数,再分类讨论:当b≤0时,f′(x)>0在0≤x≤1上恒成立,此时最大值为:f(1)=|2a﹣b|﹢a;当b>0时,在0≤x≤1上的正负性不能判断,此时最大值为:f(x)max=max{f(0),f(1)}=|2a﹣b|﹢a,由此可得结论;(ⅱ)利用分析法,要证f(x)+|2a﹣b|+a≥0,即证g(x)=﹣f (x)≤|2a﹣b|﹢a.亦即证g(x)在0≤x≤1上的最大值小于(或等于)|2a ﹣b|﹢a.(Ⅱ)由(Ⅰ)知:函数在0≤x≤1上的最大值为|2a﹣b|﹢a,且函数在0≤x ≤1上的最小值比﹣(|2a﹣b|﹢a)要大.根据﹣1≤f(x)≤1对x∈[0,1]恒成立,可得|2a﹣b|﹢a≤1,从而利用线性规划知识,可求a+b的取值范围.【解答】(Ⅰ)证明:(ⅰ)f′(x)=12a(x2﹣)当b≤0时,f′(x)>0,在0≤x≤1上恒成立,此时最大值为:f(1)=|2a﹣b|﹢a;当b>0时,在0≤x≤1上的正负性不能判断,f'(x)在区间[0,1]先负后可能正,f(x)图象在[0,1]区间内是凹下去的,所以最大值正好取在区间的端点,此时最大值为:f(x)max=max{f(0),f(1)}=|2a﹣b|﹢a;综上所述:函数在0≤x≤1上的最大值为|2a﹣b|﹢a;(ⅱ)要证f(x)+|2a﹣b|+a≥0,即证g(x)=﹣f(x)≤|2a﹣b|﹢a.亦即证g(x)在0≤x≤1上的最大值小于(或等于)|2a﹣b|﹢a,∵g(x)=﹣4ax3+2bx+a﹣b,∴令g′(x)=﹣12ax2+2b=0,当b≤0时,;g′(x)<0在0≤x≤1上恒成立,此时g(x)的最大值为:g(0)=a﹣b<3a﹣b=|2a﹣b|﹢a;当b>0时,g′(x)在0≤x≤1上的正负性不能判断,∴g(x)max=max{g(),g (1)}={}=∴g(x)max≤|2a﹣b|﹢a;综上所述:函数g(x)在0≤x≤1上的最大值小于(或等于)|2a﹣b|﹢a.即f(x)+|2a﹣b|+a≥0在0≤x≤1上恒成立.(Ⅱ)由(Ⅰ)知:函数在0≤x≤1上的最大值为|2a﹣b|﹢a,且函数在0≤x ≤1上的最小值比﹣(|2a﹣b|﹢a)要大.∵﹣1≤f(x)≤1对x∈[0,1]恒成立,∴|2a﹣b|﹢a≤1.取b为纵轴,a为横轴,则可行域为:或,目标函数为z=a+b.作图如右:由图易得:a+b的取值范围为(﹣1,3]。
2012浙江文数真题解析一 、选择题: 本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1 设全集U={1,2,3,4,5,6} ,设集合P={1,2,3,4}, Q={3,4,5},则P∩(C U Q )=A.{1,2,3,4,6}B.{ 1,2,3,4,5}C.{1,2,5}D.{1,2} 【答案】D【解析】{}{}1,2,6()1,2.U U C Q P C Q =∴⋂= ,D 正确. 【点评】此题主要考察集合运算. 2. 已知i 是虚数单位,则31ii+-= A .1-2i B.2-i C.2+i D.1+2i 【答案】D 【解析】3+3+(1+)2+4=1 2..1(1)(1+)2i i i ii D i i i ==+--()故选 【点评】此题主要考察复数的代数运算以及复数的概念,是复数内容的主要考点.3.已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是A.1cm 3B.2cm 3C.3cm 3D.6cm 3【解析】观察三视图知该三棱锥的底面为一直角三角形,右侧面也是一直角三角形.故体积等于11312123⨯⨯⨯⨯=.【答案】A【点评】该题主要考察空间几何体的三视图以及多面体体积 的计算,抓住其直观图的形状特点是关键.4设a ∈R ,则“a =1”是“直线l 1:ax+2y-1=0与直线l 2 :x+2y+4=0平行”的 A .充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 【答案】A【解析】1a 时,两直线平行,当两直线平行时,a= 1,因而C 正确.【点评】本题主要考察逻辑用语中的充分必要条件,同时联系到两直线的位置关系. 5.设l 是直线,a ,β是两个不同的平面.A.若l ∥a,l ∥β,则a ∥βB.若l ∥a ,l ⊥β,则a ⊥βC.若a ⊥β,l ⊥a,则l ⊥βD.若a ⊥β, l ∥a,则l ⊥β 【答案】B【解析】因为平行于同一直线的两个平面不一定平行,所以A 错误;两个平面垂直,一条直线与其中的一个平面垂直,则这条直线有可能与另一个平面平行,故C 错误;两个平面垂直,一条直线与其中的一个平面平行,则这条直线有可能与另一个平面垂直,也可能在另一个平面内,故C 错误;因此B 正确.【点评】此题主要考察空间平行与垂直关系的定理,从每一个平行与垂直关系出发,理解和把握是否合乎定理的内容是关键.6. 把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是【解析】把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:y 1=cos x +1,向左平移1个单位长度得:y 2=cos(x —1)+1,再向下平移1个单位长度得:y 3=cos(x —1).令x =0,得:y 3>0;x =12π+,得:y 3=0;观察即得答案.【答案】B【点评】本题主要考察三角函数的图象变化,三角变换是三角函数图象内容的一个重要的考点.7.设a ,b 是两个非零向量. A.若|a+b|=|a|-|b|,则a ⊥b B.若a ⊥b ,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λaD.若存在实数λ,使得b=λa ,则|a+b|=|a|-|b|【解析】利用排除法可得选项C 是正确的,∵|a +b |=|a |-|b |,则a ,b 共线,即存在实 数λ,使得a =λb .如选项A :|a +b |=|a |-|b |时,a ,b 可为异向的共线向量;选项B :若a ⊥b ,由正方形得|a +b |=|a |-|b |不成立;选项D :若存在实数λ,使得a =λb ,a ,b 可为同向的共线向量,此时显然|a +b |=|a |-|b |不成立. 【答案】C【点评】本题主要考察向量的概念和线性运算,理解向量的概念把握平行四边变形法则,三角形法则是根本.8.如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是A.3B.2C.D. 【答案】B 【解析】,,1,2,,=2..2a a c c a a e e e e B '''''==∴=由题意知椭圆长半轴设为双曲线的实半轴为半焦距即正确 【点评】此题主要考查椭圆和双曲线的标准方程和性质,弄清楚它们的关系是解答此类问题的关键.9.若正数x ,y 满足x+3y=5xy ,则3x+4y 的最小值是 A.245 B. 285C.5D.6 【答案】C 【解析】1335,5155131331234(34)5555513 5.5x y xy xy y xx yx y x y y x y x C +=+=∴+=+⋅+=++≥+= 两边同除以得:,故正确.【点评】该题主要考察限定条件下的基本不等式求最值,构造1,然后“1乘不变”得到均值不等式的形式,用之求最值是一种不错的办法. 10.设a >0,b >0,e 是自然对数的底数 A.若e a +2a=e b +3b ,则a >b B.若e a +2a=e b +3b ,则a <b C.若e a -2a=e b -3b ,则a >b D. 若e a -2a=e b -3b ,则a <b 【解析】若223a b e a b +=+,必有22a b e a e b +>+.构造函数:()2x f x e x =+,则()20x f x e '=+>恒成立,故有函数()2x f x e x =+在x >0上单调递增,即a >b 成立.其余选项用同样方法排除. 【答案】A【点评】此题主要考察函数的性质和比较大小,利用单调性比大小是常用的一种方法,而单调性除了根据基本初等函数来判断之外更重要的是导数法. 二、填空题:本大题共7小题,每小题4分,共28分.11.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为____________. 【答案】160【解析】按比例计算男生人数为560280=160.560+420⨯【点评】该题主要考察抽样方法中的分层抽样,按比例是分层抽样的本质所在.12.从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点则该两点间的距离为22的概率是___________. 【答案】25【解析】从这5个点中任取2个点共有10种取法;而该两点间的距离为22的点只有四个顶点分别和中心的距离符合条件,即事件A 有4种,于是两点间的距离为22的概率为42=.105P =【点评】本题主要考察随机事件的概率,分两步做即可. 13.若某程序框图如图所示,则该程序运行后___________ 【解析】T ,i 关系如下图:【答案】1120【点评】该题主要考察算法的功能,结构、基本思想,要明确其算理掌握运算功能就要把握好以上这些基本点.14.设z=x+2y ,其中实数x ,y 满足102000x y x y x y -+≥⎧⎪+-≤⎪⎨≥⎪⎪≥⎩ 则z 的取值范围是_______【答案】702⎡⎤⎢⎥⎣⎦,【解析】画出可行域知最优解分别是130,022(),(,)分别代入目标函数可得其最小值为0,最大值为72,因此z 的取值范围是702⎡⎤⎢⎥⎣⎦,. 【点评】该题是考查基本的线性规划问题,此解法具有普遍意义.15.在△ABC 中,M 是BC 的中点,AM=3,BC=10,则AB AC ⋅=________.【解析】假设∆ABC 是以AB =AC 的等腰三角形,如图,AM =3,BC =10,AB =AC cos ∠BAC =3434102923434+-=⨯.AB AC ⋅=cos 29AB AC BAC ⋅∠=【答案】29【点评】本题主要考察三角形和平面向量的数量积,对于常见的一般现象用特例法是比较常见的解法.16.设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则3f 2()=_______________ 【答案】32【解析】因为函数f (x )是定义在R 上的周期为2的偶函数,所以331113()(2)()()1.222222f f f f =-=-==+= 【点评】此题主要考察函数的概念奇偶性、周期性等,正确利用已知把所求的自变量的取值转化到一直区间上去是解答这一问题的核心.17. 定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离,已知曲线C 1:y=x 2+a 到直线l:y=x 的距离等于曲线C 2:x 2+(y+4)2=2到直线l:y=x 的距离,则实数a=_______【解析】C 2:x 2+(y +4) 2 =2,圆心(0,—4),圆心到直线l :y =x 的距离为:d ==,故曲线C 2到直线l :y =x 的距离为d d r d '=-== 另一方面:曲线C 1:y =x 2+a ,令20y x '==,得:12x =,曲线C 1:y =x 2+a 到直线l :y =x 的距离的点为(12,14a +),74d a '==⇒=. 【答案】74【点评】本题主要通过新定义考查直线与圆的位置关系,创新性强,解答这类问题主要是先理解新定义,结合直线和圆的知识求解即可.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤. 18.(本题满分14分)在△ABC 中,内角A,B ,C 的对边分别为a ,b ,c ,且(1)求角B 的大小;(2)若b=3,sinC=2sinA ,求a ,c 的值【答案】a c ==【解析】(1)由正弦定理得sin sin cos ,tan 60.A B A B B B =∴=︒2222sin 2sin ,2,3,3=(2)2(2)cos60,C A c a b a a a a a c =∴==∴+-⋅⋅︒∴== ()由余弦定理得:【点评】本题主要考察三角形中的三角函数,由正余弦定理化简求值是真理.19. (本题满分14分)已知数列{a n }的前n 项和为S n ,且S n =2n 2+n ,n ∈N *,数列{b n }满足a n =4log 2b n +3,n ∈N. (1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n. 【答案】141,2n n n a n b -=-= 【解析】11221122113,222(1)(1)4 1.4log 3,414log 3,2.n n n n n n n n n a S n a S S n n n n n a b n b b --===≥=-=+----=-=+∴-=+∴= ()当时,当时,101211212112(41)2,3272112(41)2.23272(41)234(222)(41)22(12)34(41)2125(45)2,5(45)2.n n n n n nn n nn n nn n n a b n T n T n T n n n T n ----=-⋅∴=⨯+⨯+⨯++-⋅=⨯+⨯++-⋅-=+⨯+++--⋅⨯-=+⨯--⋅-=---=+- ()两式相减得:【点评】本题主要考察数列求和,求通项以及公式的运用和计算能力的考查,有关数列问题有一些基本的类型,注意整理把握和运用.20. (本题满分15分)如图,在侧棱垂直底面的四棱柱ABCD-A 1B 1C 1D 1中,AD ∥BC ,AD ⊥AB ,,BC=4,AA 1=2,E 是DD 1的中点,F 是平面B 1C 1E 与直线AA 1的交点.(1)证明:(i )EF ∥A 1D 1; (ii )BA 1⊥平面B 1C 1EF ;(2)求BC 1与平面B 1C 1EF 所成的角的正弦值. 【答案】(3【解析】(1)证明:(i )11111111111111////,//.A DBC AD B C EF B C EF D A EF EF A D ∴⋂=∴ ,平面,又平面平面AD(ii )由(i )知F 为111111111//,.AA BA B F EF AD AD ABB A EF B F BA B C EF ∴⊥⊥∴⊥∴⊥ 的中点,,平面,,(2)由(ii )的证明可知1111111,sin BC F ABB A BA B F O BO BO BC F BC ∠⋂===∴∠===为所求角,在矩形中记则【点评】该题主要考查平行关系,垂直关系的证明与空间线面角的计算,是常考考点,解法不失常用性.21.(本题满分15分)已知a ∈R ,函数a ax x x +-=24)(f 3. (1)求f(x)的单调区间;(2)证明:当0≤x≤1时,f(x)+ 2a ->0. 【答案】【解析】(1)由题意得:2()122,0()0()0()12(,,f x x a a f x f x a f x x x ''=-≤≥∞∞⎛⎫'>=-∞+∞ ⎪ ⎪⎝⎭当时,恒成立,此时的递增区间是(-,+).当时,此时增区间是减区间是(.333332201,2()+242244 2.2()+24+2)244(1)2()221,01()626x a f x a x ax x x a f x a x a x x x g x x x x g x ax x x ≤≤≤-=-+≥-+>-=-≥+-+'=-+≤≤∴=-=-+()由于故当时,当时,(1-设,(于是有[]32()10.0,1210,()24420.g x g x x x f x a x x ∴==>∴∈-+>+-≥-+>当时,2即 【点评】本题考查利用导数研究函数单调性等性质、导数应用等性质,考查抽象概括能力、推理论证能力.22. (本题满分14分)如图,在直角坐标系xOy 中,点P (1,12)到抛物线C :y 2=2px (P >0)的准线的距离为54.点M (t ,1)是C 上的定点,A ,B 是C 上的两动点,且线段AB 被直线OM 平分.(1)求p,t 的值;(2)求△ABP 面积的最大值. 【答案】【解析】2111,251124pt p p t =⎧⎧=⎪⎪∴⎨⎨+=⎪⎪=⎩⎩ ()112221112121222222222212122(,),(,),(,)(0),1()(),,21(),220,2220,440,2,2.A x yB x y AB Qm m AB k k y x y yy y x x kAB m y x ym x m x my m m y xmy my mm m m y y m yy m m AB ≠⎧=⎪-⋅+=-∴=∴⎨=⎪⎩-=--+-==-+-=∆=-+>+=⋅=-= ()设点中点由题意设斜率为则由得直线方程为:即和联立得:12222max 12(1001,12(,,(0,(12).216((0,,2y yd S m m m S m m t t S t t S t t t S S ∆∆∆∆∆∆-==∴==--⎡⎤∆><<∴=--∈=-⎣⎦'=-+-∴=∴= ),即)),则)()=【点评】本题主要考察抛物线的几何性质,直线与抛物线的位置关系、解析几何的基本思想方法和运算能力.。
2012年浙江省高考数学(理科)试卷-附详解2012年浙江省高考数学(理科)试卷本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至3页,非选择题部分4至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所在试题的答案涂、写在答题纸上。
选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个项是符合题目要求的。
1. 设集合{|14}A x x =<<,集合2{|230}B x xx =--≤,则()RA CB =A .(1,4)B .(3,4)C .(1,3)D .(1,2)(3,4)【答案】B 【解析】2{|230}{|13}B x xx x x =--≤=-≤≤,则()(3,4)R A C B =,故选B 。
2. 已知i 是虚数单位,则31ii+=-度,得到的图像是【答案】A【解析】=+⇒=+⇒=++⇒=+,故选y x y x y x y xcos21cos1cos(1)1cos(1) A。
5.设a,b是两个非零向量A.若||||||a b a b,则⊥a b+=-B.若⊥a b,则||||||+=-a b a bC.若||||||a b a b,则存在实数λ,使得λ=b a+=-D.若存在实数λ,使得λ=b a,则||||||a b a b+=-【答案】C【解析】2222+=-⇒++=-+a b a b a ab b a a b b,||||||||2||||2||||||则||||0ab a b,所以,a b不垂直,A不正确,同=-≠理B也不正确;||||<a b,所>=-ab a b,则cos,1=-以,a b 共线,故存在实数λ,使得λ=b a ,C 正确;若=b a ,则1λ=,此时||2|0||||+=≠=-a b a |a b ,所以D 不正确。
6. 若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有A .60种B .63种C .65种D .66种【答案】D【解析】和为偶数,则4个数都是偶数,都是奇数或者两个奇数两个偶数,则有44224545156066C C C C ++⋅=++=种取法。
2012年浙江高考各科考试说明总汇今年是浙江省实施第二轮课程改革以来的第一次高考。
从宁波市高校招生办获悉,由浙江省教育考试院组织专家编写的《浙江省普通高考考试说明》(简称《考试说明》)新鲜出炉。
《考试说明》是浙江省高考命题的主要依据,从试卷结构、考试内容及要求等方面具体的规范了今年高考试题的要求。
为了让考生更好地理解《考试说明》,我们特邀宁波中学的名师、骨干教师,对《考试说明》进行解读,并提出复习建议。
语文:内容表述微变分值题型不变分值、题型和总量与2011年《考试说明》保持一致,内容表述只有一处词句出现微变,而“古代诗文阅读”中的总述部分,延续了2011年增加的“理解经典文化论著”的内容,在分说部分的第10点仍强调,明确规定考查“传统文化经典(《论语选读》)的正确解读和批判继承”。
1B考查的能力要求、内容与题型基本不变,在考试内容及相应的能力层级(二)鉴赏评价第1点的表述中,将“重要语句丰富含意的体会”变为“重要语句丰富含义的体会”,变化不大。
复习建议:1.语言文字运用:重视字音、字形的常规性识记与整理,多音字与形近字仍是复习重点。
2.现代文阅读:重视课本《外国小说鉴赏》中的八个话题的理解运用。
3.古代诗文阅读:文言文阅读复习重视依本拓展、抓点带面。
4.作文:重视记叙类与论说类文章写作的训练。
关注热点社会现象的正确认知与价值取向,重视新材料的积累与角度开掘,审题立意的多元、材料内涵的拓展等。
数学:要求稳中略变内容有减无增从考查内容来看,主要知识点的考查稳定,五道解答题所考查的知识点与2011年的保持一致,没有发生变化。
可见2012年高考数学科考试将继续保持“稳”字方针。
然而,由于新一轮课程改革中教学内容有调整,因此,相应的考试内容有减无增,文理科数学都删除的内容为:(1)在常用逻辑用语部分,删除了全称量词与存在量词这一节的内容;(2)在数学(1B)部分,删除了《数学史与不等式选讲》及《矩阵与变换》这两个模块。
2012年浙江省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•浙江)设集合A={x|1<x<4},集合B={x|x2﹣2x﹣3≤0},则A∩(∁R B)=()A.(1,4)B.(3,4)C.(1,3)D.(1,2)∪(3,4)2.(5分)(2012•浙江)已知i是虚数单位,则=()A.1﹣2i B.2﹣i C.2+i D.1+2i3.(5分)(2012•浙江)设a∈R,则“a=1”是“直线l1:ax+2y﹣1=0与直线l2:x+(a+1)y+4=0平行”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)(2012•浙江)把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是()A .B.C.D.5.(5分)(2012•浙江)设,是两个非零向量.则下列命题为真命题的是()A.若|+|=||﹣||,则⊥B.若⊥,则|+|=||﹣||C.若|+|=||﹣||,则存在实数λ,使得=λD.若存在实数λ,使得=λ,则|+|=||﹣||6.(5分)(2012•浙江)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种7.(5分)(2012•浙江)设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是()A.若d<0,则数列{S n}有最大项B.若数列{S n}有最大项,则d<0C.若数列{S n}是递增数列,则对任意n∈N*,均有S n>0D.若对任意n∈N*,均有S n>0,则数列{S n}是递增数列8.(5分)(2012•浙江)如图,F1,F2分别是双曲线C:(a,b>0)的在左、右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ的垂直平分线与x轴交于点M.若|MF2|=|F1F2|,则C的离心()A.B.C.D.9.(5分)(2012•浙江)设a>0,b>0,下列命题中正确的是()A.若2a+2a=2b+3b,则a>b B.若2a+2a=2b+3b,则a<bC.若2a﹣2a=2b﹣3b,则a>b D.若2a﹣2a=2b﹣3b,则a<b10.(5分)(2012•浙江)已知矩形ABCD,AB=1,BC=.将△ABD沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中()A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)(2012•浙江)已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于cm3.12.(4分)(2012•浙江)若某程序框图如图所示,则该程序运行后输出的值是.13.(4分)(2012•浙江)设公比为q(q>0)的等比数列{a n}的前n项和为S n.若S2=3a2+2,S4=3a4+2,则q=.14.(4分)(2012•浙江)若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…a5为实数,则a3=.15.(4分)(2012•浙江)在△ABC中,M是BC的中点,AM=3,BC=10,则•=.16.(4分)(2012•浙江)定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离,已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=.17.(4分)(2012•浙江)设a∈R,若x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,则a=.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)(2012•浙江)在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=C.(1)求tanC的值;(2)若a=,求△ABC的面积.19.(14分)(2012•浙江)已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和.(1)求X的分布列;(2)求X的数学期望E(X).20.(15分)(2012•浙江)如图,在四棱锥P﹣ABCD中,底面是边长为的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分别为PB,PD的中点.(1)证明:MN∥平面ABCD;(2)过点A作AQ⊥PC,垂足为点Q,求二面角A﹣MN﹣Q的平面角的余弦值.21.(15分)(2012•浙江)如图,椭圆C:=1(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为,不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.(Ⅰ)求椭圆C的方程;(Ⅱ)求△APB面积取最大值时直线l的方程.22.(14分)(2012•浙江)已知a>0,b∈R,函数f(x)=4ax3﹣2bx﹣a+b.(Ⅰ)证明:当0≤x≤1时,(i)函数f(x)的最大值为|2a﹣b|+a;(ii)f(x)+|2a﹣b|+a≥0;(Ⅱ)若﹣1≤f(x)≤1对x∈[0,1]恒成立,求a+b的取值范围.。
2012年普通高等学校招生全国统一考试数学(理科)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至3页,非选择题部分4至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
参考公式如果事件A,B 互斥 ,那么 P(A+B)=P(A)+P(B)如果事件A,B 相互独立,那么 P(A ·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率P n (k)= (1)(0,1,2,...,)kkn kn C p p k n --=台体的体积公式V=121()3h S S其中S 1,S 2分别表示台体的上、下底面积,h 表示台体的高 柱体体积公式 V=Sh其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式 V=13Sh 其中S 表示锥体的底面积,h 表示锥体的高球体的面积公式S=4πR2球的体积公式V=43πR3其中R表示球的半径一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A={x|1<x<4},集合B ={x|2x-2x-3≤0}, 则A∩(C R B)=A .(1,4)B .(3,4) C.(1,3) D .(1,2)∪(3,4)2. 已知i是虚数单位,则31ii +-=A .1-2i B.2-i C.2+i D .1+2i3. 设a∈R ,则“a=1”是“直线l1:ax+2y-1=0与直线l2 :x+(a+1)y+4=0平行”的A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件4.把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是5.设a,b是两个非零向量。