直线斜率与直线方程
- 格式:ppt
- 大小:478.00 KB
- 文档页数:14
直线的斜率与方程的关系在数学中,直线是一种具有特殊性质的几何图形。
直线的斜率是描述直线倾斜程度的一个重要概念,它与直线的方程之间存在着密切的关系。
本文将探讨直线的斜率与方程之间的关系。
要理解直线的斜率与方程的关系,首先需要了解直线的斜率的定义和计算方法。
直线的斜率可以简单理解为直线上任意两点之间的纵向变化量与横向变化量之比。
设直线上两点的坐标分别为(x₁, y₁)和(x₂,y₂),则直线的斜率(k)可以表示为:k = (y₂ - y₁) / (x₂ - x₁)其中,(x₁, y₁)为直线上的第一个点,(x₂, y₂)为直线上的第二个点。
根据直线的斜率定义和计算方法,我们可以推导出直线方程与斜率之间的关系。
一般情况下,直线的方程可以写作 y = mx + b,其中m为直线的斜率,b为直线在y轴上的截距。
这个方程被称为点斜式方程。
通过观察点斜式方程,我们可以发现直线的斜率m就是方程中x的系数。
因此,我们可以根据给定的直线方程,直接读取出直线的斜率。
举例来说,如果我们有一个直线的方程为 y = 2x + 1,那么这条直线的斜率就是2。
通过斜率的计算方法我们可以得到:k = (y₂ - y₁) / (x₂ - x₁)由于点斜式方程中斜率m为2,所以我们可以选择任意两个点,例如(0, 1)和(1, 3),来计算斜率:k = (3 - 1) / (1 - 0) = 2可以看到,通过直线的方程可以直接得到直线的斜率。
相反地,如果已知直线的斜率和一个点,我们也可以通过斜率和点的信息来写出直线的方程。
其中一种表示方式是点斜式方程,如上所述。
另外一种表示方式是截距式方程,也称为斜截式方程。
斜截式方程可以写作 y = mx + b,其中m为直线的斜率,b为直线在y轴上的截距。
假设我们已知一条直线的斜率为3,且通过点(0, 2),我们可以通过直线的斜截式方程来表示这条直线。
代入已知信息我们可以得到:2 =3 * 0 + b解方程得到 b = 2,因此直线的方程为 y = 3x + 2。
直线的斜率与方程直线是解析几何中的基本图形之一,而直线的斜率与方程是描述直线性质的重要元素。
本文将介绍直线的斜率的概念及计算方法,并详细阐述直线的方程的几种常见形式。
一、直线的斜率直线的斜率是指直线与水平方向的夹角的正切值,也可以理解为直线在x轴上的增量与在y轴上的增量之比。
斜率的计算公式如下:斜率 m = (y2 - y1) / (x2 - x1)其中,(x1, y1)和(x2, y2)是直线上的两个点。
斜率的性质是:1. 平行于x轴的直线的斜率为0;2. 平行于y轴的直线斜率不存在(无穷大);3. 两条直线互相垂直时,它们的斜率之积为-1。
二、直线的方程直线的方程是用来表示直线的数学表达式。
直线的方程有多种不同的形式,下面将一一介绍。
1. 斜截式方程斜截式方程是直线方程中最常见的形式,它用直线的斜率和截距来表示。
方程的形式如下:y = mx + b其中,m是直线的斜率,b是直线与y轴的交点的纵坐标。
2. 一般式方程一般式方程是直线方程中的另一种常见形式,它的一般形式如下:Ax + By + C = 0其中,A、B、C是常数,A和B不同时为0。
3. 点斜式方程点斜式方程是直线方程的一种特殊形式,它利用直线上的一个点和直线的斜率来表示。
方程的形式如下:(y - y1) = m(x - x1)其中,(x1, y1)为直线上的一个点,m为直线的斜率。
4. 两点式方程两点式方程是通过直线上两个已知点来表示直线的方程,方程的形式如下:(y - y1) / (x - x1) = (y2 - y1) / (x2 - x1)其中,(x1, y1)和(x2, y2)是直线上的两个已知点。
以上是直线方程的几种常见形式,根据不同的题目要求,我们可以选择合适的方程形式来进行求解和应用。
总结:本文介绍了直线的斜率与方程的相关概念和计算方法,并详细介绍了直线方程的几种常见形式。
了解直线的斜率和方程对于解析几何的学习和问题的求解具有重要意义。
直线的倾斜角、斜率与直线的方程一、基础知识1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准, x 轴正向与直线l 向上方向之间所成的角叫做直线 l 的倾斜角.(2)规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0. (3)范围:直线l 倾斜角的取值范围是[0,π). 2.斜率公式(1)定义式:直线l 的倾斜角为α⎝ ⎛⎭⎪⎫α≠π2,则斜率k =tan α.(2)坐标式:P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率 k =y 2-y 1x 2-x 1.3.直线方程的五种形式二、常用结论特殊直线的方程(1)直线过点P 1(x 1,y 1),垂直于x 轴的方程为x =x 1; (2)直线过点P 1(x 1,y 1),垂直于y 轴的方程为y =y 1; (3)y 轴的方程为x =0; (4)x 轴的方程为y =0. 考点一 直线的倾斜角与斜率[典例] (1)直线2x cos α-y -3=0⎝ ⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的取值范围是( )A.⎣⎢⎡⎦⎥⎤π6,π3 B.⎣⎢⎡⎦⎥⎤π4,π3 C.⎣⎢⎡⎦⎥⎤π4,π2 D.⎣⎢⎡⎦⎥⎤π4,2π3 (2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.[解析] (1)直线2x cos α-y -3=0的斜率k =2cos α, 因为α∈⎣⎢⎡⎦⎥⎤π6,π3,所以12≤cos α≤32,因此k =2·cos α∈[1, 3 ].设直线的倾斜角为θ,则有tan θ∈[1, 3 ]. 又θ∈[0,π),所以θ∈⎣⎢⎡⎦⎥⎤π4,π3,即倾斜角的取值范围是⎣⎢⎡⎦⎥⎤π4,π3.(2) 设P A 与PB 的倾斜角分别为α,β,直线P A 的斜率是k AP =1,直线PB 的斜率是k BP =-3,当直线l 由P A 变化到与y 轴平行的位置PC 时,它的倾斜角由α增至90°,斜率的取值范围为[1,+∞).当直线l 由PC 变化到PB 的位置时,它的倾斜角由90°增至β,斜率的变化范围是(-∞,- 3 ].故直线l 斜率的取值范围是(-∞,- 3 ]∪[1,+∞). [答案] (1)B (2)(-∞,- 3 ]∪[1,+∞)[变透练清]1.(变条件)若将本例(1)中的条件变为:平面上有相异两点A (cos θ,sin 2 θ),B (0,1),则直线AB 的倾斜角α的取值范围是________.解析:由题意知cos θ≠0,则斜率k =tan α=sin 2θ-1cos θ-0=-cos θ∈[-1,0)∪(0,1],所以直线AB 的倾斜角的取值范围是⎝ ⎛⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.答案:⎝ ⎛⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π2.(变条件)若将本例(2)中P (1,0)改为P (-1,0),其他条件不变,则直线l 斜率的取值范围为________.解析:设直线l 的斜率为k ,则直线l 的方程为y =k (x +1),即kx -y +k =0. ∵A ,B 两点在直线l 的两侧或其中一点在直线l 上, ∴(2k -1+k )(-3+k )≤0,即(3k -1)(k -3)≤0,解得13≤k ≤ 3. 即直线l 的斜率的取值范围是⎣⎢⎡⎦⎥⎤13,3.答案:⎣⎢⎡⎦⎥⎤13,33.若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为________. 解析:因为k AC =5-36-4=1,k AB =a -35-4=a -3.由于A ,B ,C 三点共线,所以a -3=1,即a =4.答案:4考点二 直线的方程[典例] (1)若直线经过点A (-5,2),且在x 轴上的截距等于在y 轴上的截距的2倍,则该直线的方程为________________.(2)若直线经过点A (-3,3),且倾斜角为直线3x +y +1=0的倾斜角的一半,则该直线的方程为________________.(3)在△ABC 中,已知A (5,-2),B (7,3),且AC 的中点M 在y 轴上,BC 的中点N 在x 轴上,则直线MN 的方程为________________.[解析] (1)①当横截距、纵截距均为零时,设所求的直线方程为y =kx ,将(-5,2)代入y =kx 中,得k =-25,此时,直线方程为y =-25x ,即2x +5y =0.②当横截距、纵截距都不为零时, 设所求直线方程为x 2a +ya =1,将(-5,2)代入所设方程,解得a =-12,此时,直线方程为x +2y +1=0. 综上所述,所求直线方程为x +2y +1=0或2x +5y =0.(2)由3x +y +1=0得此直线的斜率为-3,所以倾斜角为120°,从而所求直线的倾斜角为60°,故所求直线的斜率为 3.又直线过点A (-3,3),所以所求直线方程为y -3=3(x +3),即3x -y +6=0.(3)设C (x 0,y 0),则M ⎝ ⎛⎭⎪⎫5+x 02,y 0-22,N ⎝ ⎛⎭⎪⎫7+x 02,y 0+32.因为点M 在y 轴上,所以5+x 02=0,所以x 0=-5. 因为点N 在x 轴上,所以y 0+32=0, 所以y 0=-3,即C (-5,-3), 所以M ⎝ ⎛⎭⎪⎫0,-52,N (1,0),所以直线MN 的方程为x 1+y-52=1,即5x -2y -5=0.[答案] (1)x +2y +1=0或2x +5y =0 (2)3x -y +6=0 (3)5x -2y -5=0[题组训练]1.过点(1,2),倾斜角的正弦值是22的直线方程是________________. 解析:由题知,倾斜角为π4或3π4,所以斜率为1或-1,直线方程为y -2=x -1或y -2=-(x -1),即x -y +1=0或x +y -3=0.答案:x -y +1=0或x +y -3=02.过点P (6,-2),且在x 轴上的截距比在y 轴上的截距大1的直线方程为________________.解析:设直线方程的截距式为xa +1+y a =1,则6a +1+-2a =1,解得a =2或a =1,则直线的方程是x2+1+y 2=1或x 1+1+y 1=1,即2x +3y -6=0或x +2y -2=0.答案:2x +3y -6=0或x +2y -2=0考点三 直线方程的综合应用[典例] 已知直线l 过点M (2,1),且与x 轴、y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点,求当|MA ―→|·|MB ―→|取得最小值时直线l 的方程.[解] 设A (a,0),B (0,b ),则a >0,b >0,直线l 的方程为x a +yb =1, 所以2a +1b =1.|MA ―→|·| MB ―→|=-MA ―→·MB ―→=-(a -2,-1)·(-2,b -1) =2(a -2)+b -1=2a +b -5 =(2a +b )⎝ ⎛⎭⎪⎫2a +1b -5=2b a +2ab ≥4,当且仅当a =b =3时取等号,此时直线l 的方程为x +y -3=0.[解题技法]与直线方程有关问题的常见类型及解题策略(1)求解与直线方程有关的最值问题.先设出直线方程,建立目标函数,再利用基本不等式求解最值.(2)求直线方程.弄清确定直线的两个条件,由直线方程的几种特殊形式直接写出方程.(3)求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的性质或基本不等式求解.[题组训练]1.若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴,y 轴上的截距之和的最小值为( )A .1B .2C .4D .8解析:选C ∵直线ax +by =ab (a >0,b >0)过点(1,1), ∴a +b =ab ,即1a +1b =1, ∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b=2+b a +ab ≥2+2b a ·a b =4,当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4.2.已知直线l :x -my +3m =0上存在点M 满足与A (-1,0),B (1,0)两点连线的斜率k MA 与k MB 之积为3,则实数m 的取值范围是( )A .[-6, 6 ]B.⎝ ⎛⎭⎪⎫-∞,-66∪⎝ ⎛⎭⎪⎫66,+∞C.⎝ ⎛⎦⎥⎤-∞,-66∪⎣⎢⎡⎭⎪⎫66,+∞D.⎣⎢⎡⎦⎥⎤-22,22解析:选C 设M (x ,y ),由k MA ·k MB =3,得yx +1·yx -1=3,即y 2=3x 2-3. 联立⎩⎪⎨⎪⎧x -my +3m =0,y 2=3x 2-3,得⎝ ⎛⎭⎪⎫1m 2-3x 2+23m x +6=0(m ≠0),则Δ=⎝⎛⎭⎪⎫23m 2-24⎝ ⎛⎭⎪⎫1m 2-3≥0,即m 2≥16,解得m ≤-66或m ≥66.∴实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-66∪⎣⎢⎡⎭⎪⎫66,+∞.[课时跟踪检测]1.(优质试题·合肥模拟)直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A.33 B. 3 C .- 3D .-33解析:选A 设直线l 的斜率为k ,则k =-sin 30°cos 150°=33. 2.倾斜角为120°,在x 轴上的截距为-1的直线方程是( ) A.3x -y +1=0 B.3x -y -3=0 C.3x +y -3=0D.3x +y +3=0解析:选D 由于倾斜角为120°,故斜率k =- 3.又直线过点(-1,0),所以直线方程为y =-3(x +1),即3x +y +3=0.3.已知△ABC 的三个顶点坐标为A (1,2),B (3,6),C (5,2),M 为AB 的中点,N 为AC 的中点,则中位线MN 所在直线的方程为( )A .2x +y -12=0B .2x -y -12=0C .2x +y -8=0D .2x -y +8=0解析:选C 由题知M (2,4),N (3,2),则中位线MN 所在直线的方程为y -42-4=x -23-2,整理得2x +y -8=0.4.方程y =ax -1a 表示的直线可能是( )。
直线的斜率与直线的方程一、温故⒈倾斜角:当直线和x 轴相交时,如果把x 轴绕着按方向旋转到和直线时所转的叫这条直线的倾斜角记为.倾斜角的范围是.⒉斜率:倾斜角为,90时,斜率k=,90时,斜率k 。
⒊斜率公式:若),(11y x A ),(22y x B 为直线上两点,则AB k =)(21x x ⒋直线方程的三种形式;①点斜式;,表示经过点且斜率为的直线,特例;y=kx+b 表示经过点且斜率为的直线,其中b 表示直线在y 轴上的,该方程叫直线方程的。
②两点式;.表示经过两点,的直线。
特例:)0(1ab b y ax该方程叫直线方程的,a ,b 叫。
③一般式;;,(其中A 、B 不同时为0)提醒:⒈在设直线方程形式前应进行斜率存在与不存在的讨论,⒉要注意截距不是长度。
二、基础训练⒈直线l 的倾斜角为120°,则直线l 的斜率是,若直线l 的方向向量是)1,3(a ,则直线l 的倾斜角是,经过两点)2,3(、)3,2(的直线l 的斜率是,倾斜角是. ⒉直线025tany x 的倾斜角是. ⑵直线023cos y x 的倾斜角范围是. ⑶直线l 的倾斜角α范围是0013545,则斜率k 的范围是.⑷将直线l 向右平移2个单位,再向下平移3个单位后与l 重合,则l 的斜率为.3.直线l ;02y ax ,与连接)1,3(A ,)4,1(B 两点的线段相交,则a 的取值范围是.4.若三点(2,2)A ,(,0)B a ,(0,)(0)C b ab共线,则11a b 的值等于___________. 5.如图所示,点集{(,)||||1|||2}x y x y 构成的图形是一条封闭的折线,这条封闭折线所围成的区域的面积是______________ 三、典型例题xy O 1 1 3 2例⒈根据下列条件求直线方程:⑴经过P(3,2),且在两坐标轴上的截距相等⑵经过A(-1,-3),倾斜角为直线y=3x 的倾斜角的2倍⑶直线03y x 绕着点)3,0(D 逆时针方向旋转15⑷如果原点在直线l 上的射影为点),(b a )0(22b a 例⒉经过点)0,3(P 作直线l ,使它被两直线l 1:2x-y-2=0和l 2:x+y+3=0所截得线段AB 以P 为中点,求此直线l 的方程.例3.已知ABC 的顶点)1,3(A ,AB 边上的中线所在的直线的方程为059106y x ,B 的平分线所在直线的方程为:0104y x ,求BC 边所在直线的方程。
张喜林制2.2.1 直线方程的概念与直线的斜率教材知识检索考点知识清单1.直线方程的概念一般地,如果以一个方程的解为坐标的点都在 且这条直线上点的坐标都是 ,那么这个方程叫做这条直线叫做 .由于方程b kx y +=的图象是 因此我们常说直线 2.直线的倾斜角当直线与x 轴相交时,x 轴正向与直线 所成的角叫做这条直线的 ,与x 轴平行或重合的直线的倾斜角为 ,因此,直线倾斜角的取值范围是 3.直线的斜率直线b kx y +=中的系数k 叫做 ,垂直于x 轴的直线 直线上的两点),,(),(2211y x B y x A 、那么直线的斜率=k ).(21x x =/当0=k 时,直线 或当0>k 时,直线的倾斜角为 .k 值增大,直线的倾斜角也随着当0<k 时,直线的倾斜角为____,k 值增大,直线的倾斜角也随着____;垂直于x 轴的直线要点核心解读1.对直线方程概念的理解把—次函数b kx y +=的每一对x 与y 的值,看成直角坐标系中的点(x ,y ),则(x ,y )的集合便是一条直线.b kx y +=另一表达形式0=--b kx y 是二元一次方程的形式,这样,这个方程的实数解就和这条直线上的点的坐标建立了一一对应的关系,于是得到以下两个方面的含义:以一个二元一次方程的解为坐标的点都是某条直线上的点;反之,这条直线上点的坐标都是这个二元一次方程的解,这时,这个方程叫做这条直线的方程,这条直线叫做这个方程的直线. 2.直线的斜率(1)斜率公式的推导.直线b kx y +=被其上的任意两个不同的点所唯一确定(如图2 -2 -1-1所示),由这条直线上任意两点、),(11y x A ),(22y x B 的坐标可以计算出k 的值.由于11,y x 和22,y x 是直线方程b kx y +=的两组解,所以,,2211b kx y b kx y +=+=两式相减,得),(1212x x k y y -=-故=k ),(121212x x x x y y =/--那么)(121212x x x x y y k =/--=称为直线的斜率公式. 由斜率公式可知,斜率k 可以由直线上两个不同点的坐标求得,但它的大小与这两个点在直线上的顺序无关.(2)斜率的定义通常,我们把直线b kx y +=中的系数k 叫做这条直线的斜率.垂直于x 轴的直线,斜率不存在. 除了垂直于x 轴的直线,只要知道直线上两个不同点的坐标,由斜率公式就可以算出这条直线的斜率.方程b kx y +=的图象是过点(O ,b)且斜率为k 的直线.(3)求斜率的步骤,我们可以写出求一条直线斜率的计算步骤,以便应用计算机进行计算: ①给直线上两点的坐标赋值:?,,?,?,2121=⋅===y y x x ②计算;,1212y y y x x x -=∆-=∆ ③如果,0=∆x 则判定“斜率k 不存在”; ④如果,0=/∆x 计算;xyk ∆∆=⑤输出斜率k , 3.直线的倾斜角(1)定义.x 轴正向与直线向上的方向所成的角叫做这条直线的倾斜角.我们规定,与x 轴平行或重合的直线的倾斜角为零度角.(2)斜率与倾斜角的关系.由斜率k 的定义可知:0=k 时,直线平行于x 轴或与x 轴重合;0>k 时,直线的倾斜角为锐角,k 值增大,直线的倾斜角也随着增大; 0<k 时,直线的倾斜角为钝角,k 值增大,直线的倾斜角也随着增大; 垂直于x 轴的直线的倾斜角等于.90典例分类剖析考点1 直线与二元一次方程的对应关系 命题规律(1)已知两点求斜率和倾斜角. (2)已知斜率或直线方程求倾斜角.[例1] 如图2 -2 -1-2所示直线321l l l 、、都经过点P(3,2),又321l l l 、、分别经过点、)1,2(1--Q、)2,4(2-Q ),2,3(3-Q 试计算直线321l l l 、、的斜率.[解析] 已知两点求直线的斜率时,首先应检验其横坐标是否相等,若相等,则其斜率不存在;若不相等,可用公式求之.[答案] 设321k k k 、、分别表示直线321l l l 、、的斜率,由于321Q Q Q P 、、、⋅的横坐标均不相等.,43422,53322121-=---==----=∴k k .033223=---=k母题迁移 1.已知,1)7,()5,3()1,1(-(、、、D a C B A )b 四点共线,求直线方程.b ax y +=[例2] 求经过下列两点的直线的斜率,并判断倾斜角是锐角还是钝角:);7,2(),3,1)(1().5,3(),1,4)(2(- [解析] 利用直线的斜率公式1212x x yy k --=求之,根据k 的正负判定倾斜角是锐角还是钝角.[答案] ,041237)1(>=--=k 所以倾斜角是锐角; ,064315)2(<-=-+=k 所以倾斜角是钝角. [点拨] 若直线的斜率大于0,则其倾斜角为锐角;若直线的斜率小于O ,则其倾斜角为钝角;若直线的斜率等于O ,则其倾斜角为,0若直线的斜率不存在,则其倾斜角为.90o[例3] 已知直线321l l l 、、的斜率分别为,321k k k 、、如图2-2 -1-3所示,则( ).321.k k k A << 213.k k k B << 123.k k k C << 231.k k k D <<[试解] .(做后再看答案,发挥母题功能)[解析] 由图可知直线1l 的倾斜角为钝角,所以;01<k 直线2l 与直线3l 的倾斜角均为锐角,且直线2l 的倾斜角较大,所以,032>>k k 所以⋅>>132k k k[答案] D母题迁移 2.求经过点,0)(,().,(=/ab b a B mb ma A )1=/m 两点的直线的斜率并判断倾斜角为锐角还是钝角,考点2 求斜率或倾斜角的取值范围 命题规律已知直线与线段有公共点,求斜率k 的取值范围.[例4] 已知、)3,3(--A ),1,2()2,2(--P B 、如图2 -2 -1 -4所示,若直线L 过P 点且与线段AB 有公共点,试求直线L 的斜率k 的取值范围.[答案] ,4)3(2)3(1=⋅-----=PA k,4322)2(1-=----=PB k∴ 要使直线L 与线段AB 有公共点,k 的取值范围应该是43-≤k 或.4≥k母题迁移 3.已知实数x 、y 满足,82=+y x 当32≤≤x 时,求xy的最大值和最小值, 考点3 利用斜率证明三点共线 命题规律已知平面上三点,证明三点共线.[例5] 已知三点),5,4()3,3()1,1(C B A 、、-求证:三点在同一直线上. [答案] 证法一:用距离公式证明.,53||,5||,52||===AC BC AB |,|53552||||AC BC AB ==+=+∴即A 、B 、C 三点共线.证法二:用斜率公式证明,,23435,21313=--==-+=BC AB k k ⋅=∴BC AB k k 又 ∵直线AB 、BC 有公共点B .∴ A 、B 、C 三点共线.[点拨] 本题有很多种证明方法,这里选用了距离公式和斜率公式两种方法,继续学习后,还会有其他证明方法.母题迁移 4.一束光线从点A (-2,3)射入,经x 轴上的点P 反射后,通过点B(5,7),求点P 的坐标.优化分层测讯学业水平测试1.给出下列四个命题,其中正确命题的个数是( ).①直线L 一定是一个一次函数的图象;②一次函数,y = kx +b 的图象一定是一条不过原点的直线;③如果一条直线上所有点的坐标都是某个方程的解,那么这个方程就叫做这条直线的方程;④如果以一个二元一次方程的解为坐标的点都在某一条直线上,那么这条直线叫做这个方程的直线. A.O 个 B.l 个 C.2个 D.3个. 2.集合A={直线方程=+=B b kx y },{一次函数的解析式},则集合A 与B 的关系为( ).B A A =. B A B ⊇. A BC ⊇.D .以上说法都不对3.直线L 过点),2(m p -⋅和)4,(m Q 两点,且L 的斜率为1,则m 的值为( ).1.A 4.B 31.或C 41.或D4.过点)3,2()2,3(--N M 与的直线的斜率=k ,倾斜角为 . 5.已知点A(3,4),在坐标轴上有一点B ,若,2=AB k 则B 点的坐标为 6.已知方程.0632=++y x(1)把这个方程改写成一个一次函数的形式; (2)画出这个方程所对应的直线L ; (3)点)1,23(是否在直线L 上.高考能力测试(测试时间:45分钟测试满分:IOO 分) 一、选择题(5分x8 =40分)1.点)4,3()1,0(B A 、在直线1l 上,若直线,12l l ⊥则直线2l 的倾斜角为( ).30.-A 30.B o C 120. 150.D2.直线L 的倾斜角为ααsin ,是方程033442=+-x x 的根,则a 的值是( ).60.A 120.B 150O 30.或o C 12060.或D3.设直线L 的倾斜角为θ,则L 关于直线3=y 对称的直线的倾斜角是( ).θ.A θ- 90.B θ-o C 180. θ- 90.D4.若)0,()4,9()2,3(x C B A 、、--三点共线,则x 的值为( ).1.A 1.-B 0.C 7.D5.若直线L 经过点)1,2(--a 和),1,2(--a 且与经过点、)1,2(-斜率为32-的直线垂直,则实数a 的值是( ).32.-A 23.-B 32.C 23.D 6.设点),2,3()3,2(---B A 、直线L 过点P(l ,1)且与线段AB 相交,则L 的斜率k 的取值范围是( ).443.-≤≥k k A 或 4143.-≤≥k k B 或 434.≤≤-k C 443.≤≤-k D 7.直线L 过点A(l ,2),且L 不过第四象限,那么L 的斜率k 的取值范围是( ).]2,0.[A ]1,0.[B ]21,0.[C )21,0[⋅D8.已知),1,3()2,(+b B a A 、且直线AB 的倾斜角为,90则a 、b 的值为( ).1,3.==b a A 2,2.==b a B 3,2.==b a C 1,3.=/∈=b R b a D 且二、填空题(5分x4 =20分)9.给出以下命题:①任何一条直线都有唯一确定的倾斜角; ②一条直线的倾斜角可以是;30- ③倾斜角为00的直线只有一条,即x 轴;④按照直线倾斜角的概念,直线倾斜角的集合<≤αα0|{}180与直线的集合建立了一一对应的关系.其中正确命题的序号是10.三点(2,-3)、(4,3)及)2,5(k 在同一条直线上,则k 的值等于11.已知过)2,3()1,1(a Q a a P 和+-的直线的倾斜角为钝角,则实数a 的取值范围是 12.直线)(013cos R y x ∈=++⋅θθ的倾斜角的取值范围是 三、解答题(10分x4 =40分)13.斜率为2的直线经过),1()7,()5,3(b C a B A -、、三点,求a 、b 的值.14.(1)已知矩形ABCD 中,、、)1,2()2,1(B A 中心),3,3(E 点),(y x P 在矩形的边界及内部运动,求xy的取值范围;(2)若实数x 、y 满足:,3,212-≥≤+=y x x y 且求xy的取值范围.15.求经过两点))(3,()2,1(R m m N M ∈-、的直线的斜率,并讨论m 为何值时倾斜角是锐角、钝角和直角?16.求函数2sin 1sin 3++=x x y 的值域.。
斜率与直线方程一、斜率的概念在数学中,斜率是指直线与横轴的夹角的正切值,也可以理解为直线上两个不同点的纵坐标差与横坐标差的比值。
斜率的计算公式为:m = (y2 - y1) / (x2 - x1),其中(x1, y1)和(x2, y2)是直线上的两个点。
二、斜率的意义斜率可以用于描述直线的特征和性质,通过斜率可以得到直线的方向、陡峭程度以及与其他直线的关系。
1. 正斜率和负斜率:当斜率为正数时,直线上的点随着自变量的增大而增大,这表示直线向上倾斜;当斜率为负数时,直线上的点随着自变量的增大而减小,这表示直线向下倾斜。
2. 零斜率和无定义斜率:当斜率为零时,直线平行于横轴;当斜率不存在(除数为零)时,直线垂直于横轴。
3. 相等斜率和平行斜率:如果两条直线的斜率相等,它们的斜率是平行的。
反之,如果两条直线平行,它们的斜率相等。
三、直线方程的表示形式直线的一般方程可以表示为 Ax + By + C = 0,其中A、B和C是常数。
直线的斜率可以通过方程中的系数来获得。
1. 斜截式方程:当已知直线的斜率m和截距b时,可以使用斜截式方程 y = mx + b 来表示直线方程。
2. 点斜式方程:当已知直线上的一个点P(x1, y1)和直线的斜率m时,可以使用点斜式方程 y - y1 = m(x - x1) 来表示直线方程。
3. 两点式方程:当已知直线上两个点P1(x1, y1)和P2(x2, y2)时,可以使用两点式方程 (y - y1) / (y2 - y1) = (x - x1) / (x2 - x1) 来表示直线方程。
四、直线方程的应用直线方程在几何、物理、经济等领域有着广泛的应用。
1. 几何学:直线方程可以描述平面上的直线位置和方向,用于计算和判断直线之间的关系,如相交、平行等。
2. 物理学:直线方程可用于描述物体的运动轨迹,在研究物理问题时可以通过直线方程求解物体的位置、速度、加速度等。
3. 经济学:直线方程可用于描述市场供需的关系,通过斜率可以分析价格变化的速度以及市场的供给和需求弹性。