OFDM系统采样钟补偿算法及其FPGA实现
- 格式:pdf
- 大小:244.64 KB
- 文档页数:5
OFDM系统符号同步的FPGA设计与实现OFDM(Orthogonal Frequency Division Multiplexing)系统是一种常用的多载波调制技术,适用于高速数据传输和抗多径衰落的无线通信系统。
在OFDM系统中,符号同步是一项必要的关键技术,它能够将接收到的信号进行精确的时间对齐,以便进行正确定时、解调和解调的后续处理。
FPGA(Field Programmable Gate Array)是一种可编程逻辑器件,广泛应用于数字信号处理、通信、图像处理等领域。
利用FPGA对OFDM系统符号同步进行设计和实现能够提高系统性能,加快实时处理速度,降低功耗。
在OFDM系统中,符号同步的主要任务是估计接收到的OFDM符号开始的时间点,以便对其进行精确的采样和解调。
常用的符号同步方法有基于导频序列的方法和基于自相关函数的方法。
下面将介绍一种基于自相关函数的OFDM符号同步FPGA设计与实现。
首先,需要在FPGA中实现自相关函数的计算。
自相关函数计算的是接收到的信号与自身的延时版本之间的相似度。
可以通过乘法和加法操作来实现自相关函数的计算。
在FPGA中,可以使用乘法器和累加器来完成这些操作,以提高运算速度和效率。
其次,需要设计并实现一个符号同步算法,该算法可以通过计算自相关函数的峰值位置来估计OFDM符号开始的时间点。
常用的算法有互相关法、峰值检测法等。
选择合适的算法需要根据实际应用场景和系统需求进行优化。
接下来,需要设计和实现FPGA中的时钟同步电路。
由于OFDM系统对时钟精度要求较高,时钟同步电路可以通过PLL(Phase-Locked Loop)等方式实现,提供稳定的时钟信号给FPGA系统。
最后,需要进行仿真和验证。
通过在FPGA中对设计的符号同步模块进行仿真和验证,可以检查和调优设计的正确性和性能。
可以使用FPGA 开发套件提供的工具来完成仿真和验证工作。
在进行OFDM系统符号同步的FPGA设计与实现时1.时间与资源约束:考虑到OFDM系统的高速性和实时性要求,需要优化设计以满足时间和资源约束。
OFDM基带处理器芯片设计与FPGA实现OFDM(正交频分复用)技术是一种高效的多载波调制技术,常用于无线通信系统中,如Wi-Fi、4GLTE等。
OFDM技术通过将信号分割成多个不重叠的子载波,并在每个子载波上进行独立调制和解调,提高了传输效率和频谱利用率。
OFDM基带处理器芯片的设计与FPGA实现是实现OFDM系统的关键环节。
1.子载波生成和调制:OFDM系统中的信号由多个子载波组成,每个子载波上进行调制。
基带处理器芯片需要能够生成这些子载波,并进行调制。
通常使用快速傅里叶变换(FFT)来生成子载波,并在频域上进行调制,将数据映射到子载波上。
2.信道编码和解码:OFDM系统对信号进行差错控制,通常使用纠错编码技术,如卷积编码和RS编码。
基带处理器芯片需要实现这些编码和解码算法,以提高系统的可靠性和抗干扰性。
3.调制和解调算法:OFDM系统中使用的调制和解调算法有许多种,如QAM、PSK等。
基带处理器芯片需要实现这些算法,通过调制将数字信号转换为模拟信号,并通过解调将模拟信号转换为数字信号。
4.功率控制和均衡:OFDM系统中需进行功率控制,使各个子载波的功率尽可能平均。
此外,OFDM系统还需进行均衡处理,以消除信道带来的各种失真。
基带处理器芯片需要实现这些功能,保证系统的性能。
FPGA(现场可编程逻辑门阵列)是一种可编程数字逻辑电路的芯片,广泛应用于嵌入式系统领域。
FPGA可以通过编程来实现不同的数字逻辑电路,因此可用来实现OFDM基带处理器芯片。
使用FPGA实现OFDM基带处理器芯片有以下几个优势:1.灵活性:FPGA可以根据需要进行编程,可以实现不同的OFDM调制和解调算法。
与固定的硬件实现相比,FPGA具有更好的灵活性。
2.功耗低:FPGA芯片通常具有较低的功耗,可以满足OFDM系统对功耗的要求。
此外,FPGA也可以通过电源管理技术降低功耗。
3.高性能:FPGA具有较高的计算性能和数据处理能力,可以满足OFDM系统对实时性和吞吐量的要求。
OFDM系统频偏估计补偿方案的FPGA设计与实现OFDM(Orthogonal Frequency Division Multiplexing)系统是一种常用的多载波调制技术,广泛应用于无线通信领域。
在OFDM系统中,由于各个子载波的频率相互正交,可以同时传输多个子载波信号,提高了频谱利用效率,提高了抗多径传播和频率选择性衰落的能力。
然而,在OFDM系统中,由于发送和接收端的本振源存在不一致导致频偏,这会导致接收端无法正确解调出信息,因此需要进行频偏估计和补偿。
基于导频的频偏估计补偿方案是OFDM系统中最常用的一种方案。
其原理是通过发送端在每个OFDM符号中插入导频信号,接收端通过获取导频信号并计算其相位差来估计频偏值。
然后通过将频偏值传回发送端,通过相位补偿使得接收端的导频相位和发送端一致,从而实现频偏补偿。
该方案设计实现上较为简单,但是需要占用部分载波资源来发送导频信号,降低了整体的频谱利用率。
基于BEP的频偏估计补偿方案是一种更为高效的方案。
其原理是通过接收端在每个OFDM符号中对接收到的数据进行解码,然后计算块奇偶校验码,通过比较实际解码后的块奇偶校验码和理想解码的块奇偶校验码来估计频偏值。
然后通过将频偏值传回发送端,通过改变时钟频率来实现频偏补偿。
该方案不需要发送导频信号,提高了频谱利用率,在实际应用中更为常用。
FPGA(Field Programmable Gate Array)作为一种硬件可编程器件,具有并行处理能力和灵活性,适合用于OFDM系统频偏估计补偿方案的设计与实现。
设计中,需要考虑如下几个关键步骤:1.子载波解调和导频提取:接收端需要进行OFDM符号的同步,然后对接收到的OFDM符号进行FFT变换得到频域符号,再提取导频信号进行相位计算。
这一部分可以通过FPGA实现。
2.频偏计算:根据导频相位差计算频偏值,可以使用相位差计算公式进行计算。
3.频偏补偿:将计算得到的频偏值通过数据接口传回发送端,发送端根据频偏值进行相位调整来实现频偏补偿。
OFDM调制解调及FPGA实现OFDM(Orthogonal Frequency Division Multiplexing)是一种常用的调制解调技术,也是现代通信系统中主要的多载波调制技术之一、OFDM技术通过将带宽分成多个子载波,并将信息传输到各个子载波上,实现高效率的数据传输。
首先,OFDM技术将宽带信号分成多个窄带子载波,将传统的高速串行数据转换为多个低速并行数据进行传输。
这样做的好处是可以对每个子载波进行较简单的调制和解调,大大降低了硬件的复杂度。
此外,由于子载波之间是正交的(相互垂直),对于频率选择性衰落信道,可以大大减少码间干扰的影响。
OFDM技术包括两个关键步骤,调制和解调。
调制阶段将输入数据进行调制,并将调制后的信号经过IFFT(Inverse Fast Fourier Transform)变换得到时域信号。
在解调阶段,接收端需要将接收到的信号经过FFT(Fast Fourier Transform)变换得到频域信号,并进行解调得到原始数据。
在FPGA实现OFDM调制和解调时,常用的方法是使用硬件描述语言(如Verilog或VHDL)来设计各个模块,并通过FPGA开发工具进行综合、布局和布线。
设计中的主要模块包括FFT/IFFT模块、调制模块和解调模块。
1.FFT/IFFT模块:在OFDM系统中,FFT/IFFT模块是非常重要的组成部分,用于相互转换时域和频域信号。
由于FFT的计算复杂度较高,需要使用专门的算法和硬件实现。
在FPGA中可以使用基于蝶式结构的FFT/IFFT算法进行实现。
2. 调制模块:调制模块将输入的数字数据进行调制,将其映射到不同的子载波上。
常见的调制方式包括QPSK、16QAM和64QAM等。
调制模块还需要实现保护间隔(Guard Interval)的插入,用于对抗多径传播引起的码间干扰。
3.解调模块:解调模块接收来自信道的OFDM信号,并进行FFT变换得到频域信号。
The Research and the FPGA Realization ofOFDM Telecommunication ModemAbstractOrthogonal Frequency Division Multiplexing(OFDM) is a kind of digital modulation technology of multi-carriers which has many characteristics. It is suitable for the demand of the wireless telecommunications in high speed, broad band and mobility.This paper first describes the OFDM fundamental principle. For OFDM modulation, demodulation, characteristic and key technologies, it analyses them on theory and shows the more advantage than other modulating technology. Aim at channel estimation, deeply analyzes FFT-based cascade one-dimensional channel estimation algorithms and united iterative maximum likelihood semi-blind estimation algorithms, based on it, iterative maximum likelihood estimation algorithms is also described and compared by Matlab, both of them are validated.And then, OFDM system simulation platform is built with Matlab and Simulink. On this platform, the data curve is given for OFDM system based on various module parameter, just like multi-path fade, Gauss White noise and so on. Through analyzing the simulation result, some system performances can be appraised exactly.After combining the front several chapters and illuminating the OFDM system configuration and simulation analysis aimed to system characteristics, emphasis is design and implementation of OFDM baseband processing based on FPGA. According to802.16 protocol and OFDM characteristic, reasonable parameters are established. From modulator and demodulator to series-to-parallel conversion, QPSK mapping, sampling, pilot insertion, guard interval addition, IFFT/FFT and frame synchronization detection, paper makes design and implementation for every module of system, meanwhile present simulation waves and parameter explanation. Thereinto, due to limitation of fixed point, 24 float pointformat is design for system, and participated in IFFT/FFT with making full use of system resource and improving operation efficiency in parameter allowed. And IFFT/FFT based on FPGA is emphasized, for the problem that Algorithm operation time is excessively long and occupied resource is excessively more, new Algorithm with pipelining and less resource occupied is brought out and carried out. Putting it into OFDM baseband processing system, parameter is satisfied well. Afterward, based on OFDM theory, the system debugging and performance analysis is necessary to do and the feasibility of this design is proved.KEYWORDS:wirelessMAN, OFDM, FPGA, baseband processing, FFT/IFFTWritten by:Xia BinSupervised by:Lv JianpingOFDM通信系统调制解调器的研究及其FPGA实现第一章绪论第一章绪论随着以通信技术和计算机技术为标志的高科技的发展,人们的生活发生了日新月异的巨大变化。
可见光通信OFDM技术在FPGA上的设计与实现可见光通信是一种利用可见光作为传输介质的无线通信技术,具有频谱资源丰富、安全可靠等优势。
OFDM技术作为一种多载波调制技术,具有抗多径衰落、高频谱利用效率等特点。
本文针对进行了研究。
首先,对可见光通信OFDM技术进行了简要介绍。
OFDM技术将高速数据流分为多个低速子载波,通过并行传输的方式提高了传输效率。
同时,OFDM技术采用循环前缀技术来抵消多径衰落引起的码间干扰,提高了系统的抗干扰能力。
然后,针对可见光通信OFDM技术的特点,设计了相应的FPGA实现方案。
首先,根据OFDM技术的特点,设计了一种合适的调制解调器结构。
调制解调器包括子载波生成模块、IFFT模块和FFT模块等。
其中,子载波生成模块负责生成不同频率的子载波,IFFT模块将数据从频域转换到时域,FFT模块将数据从时域转换到频域。
其次,设计了一套合适的信道编码和解码方案,提高了系统的抗噪声能力。
最后,根据FPGA的资源约束,对整个系统进行了优化和实现。
在设计和实现过程中,对FPGA的资源利用进行了充分考虑。
通过合理的模块划分和资源分配,保证了系统的性能和可靠性。
同时,通过对FPGA的时序约束进行优化,提高了系统的工作频率和稳定性。
最后,通过实验验证了所设计的可见光通信OFDM技术在FPGA上的可行性和有效性。
实验结果表明,所设计的系统具有较高的传输速率和较好的抗干扰能力,能够满足实际应用需求。
综上所述,本文对可见光通信OFDM技术在FPGA上的设计与实现进行了研究。
通过合理的系统设计和优化,实现了高效、稳定的可见光通信系统。
这对于推动可见光通信技术的发展具有重要意义,为未来可见光通信应用的推广奠定了基础。
东南大学硕士学位论文基于OFDM技术的PLC通信系统中同步算法的研究及其FPGA实现姓名:***申请学位级别:硕士专业:信号与信息处理指导教师:***20060601东南人学颀I‘学位论文图3.6M(玎)的形状曲线在接收端,当接收机发现M(门)的输山值在一段时间内保持大于某个门限时,则认为有信号到达,于是在随后的一段时间内搜索膨(撑)的最大值,认为最大值处为帧头起始点。
其实。
这个晟大值只要落入上图所示的平坦区域,则认为帧头被正确捕获。
虽然从某种角度来说,这个帧头捕获函数具有一定的模糊性,但是它实现简单,可以最快得捕捉帧头,并且并不影响后面频偏估计等子同步算法。
而随后还有精细同步模块来给出精确的定时位置。
存在频偏和高斯噪声时的包头捕获前面提到在设计合理的同步方案时需要考虑到时偏和频偏的相互影响,如定时的准确是以频率偏移己纠正为前提条件,频率偏移的估计算法又是以定时准确为前提等;帧头捕获是实现同步功能的第一块,因此不希望它的性能是以其他同步子模块为前提的。
本文中所使用帧头捕获方式确实可以做剑。
设接收到的信号,(厅)受频偏△厂=p+D);和高斯噪卢V∽)影响,。
是离号争最近的整数,s为纯小数,且川≤0.5。
,(以):(s(一)+v(玎))P埘勺nT:(J(一)+v(行))P肺寻(式3—2)州=芝Ⅺ+向,o+t+加“(式3-3)=丑I《H+七)12协+置矿(H+t+肋+'伽+宣心("+t+^D+’伽+七)v+(H+t+加】,“R(”):N-I∑lr(n+k)lz:篁I(so+Ji})+,伽+七))e’2”警IzR(”)=2=∑㈨月+Ji})+V(月+七))e”8可r…k=O(式3—4)=∑IJ(月+t)+v(n+女)12东南人学颀I学位论文胄。
(”)=∑I,("+女+Ⅳ)J2=∑㈨Ⅳ+t+Ⅳ)+v如+k+N))eS2'w!ff-一“‘。
(式3-5)=∑lJ(Ⅳ+女)+v(n+☆)12由上面二个式张明,帧头捕获函数肘(玎)2丽IP砰(n)洄[2不含与频偏有关的囚子,所以其函数形状主要受-姨头训练符号自身的统计特性和噪卢影响,而与频偏无关。
5 2009年第1期通信与广播电视OFDM 调制/解调的FPGA 实现*王洪强摘要本文主要讨论了OFDM 的FPGA 实现, 在高速无线通信系统中实现调制/解调的重要方案; 重点叙述了OFDM 调制/解调实现方法, 及在FPGA 中的设计实现。
关键词: OFDM FPGA 调制/解调OFDM M odulation / Dem odulation w ith FPGAW ang H ongq iangA bstractTh is paper m ainly discusses the FPGA realization for OFDM. An im portant proposal to re-alize dem o in high speed w ireless comnunication. Em phasis is placed on the realization o fOFDM dem o and the design of FPGA.K ey w ords: OFDM FPGA DEMO一、引言OFDM ( Orthogona lFrequency D iv isionM ultiplex ing) 即正交频分复用技术, 实际上OFDM 是MCM M ult-iC arrierM odu la tion, 多载波调制的一种。
其主要思想是: 将信道分成若干正交子信道, 将高速数据信号转换成并行的低速子数据流, 调制到在每个子信道上进行传输。
正交信号可以通过在接收端采用相关技术来分开, 这样可以减少子信道之间的相互干扰IC I。
OFDM 设计优点: 一是无需线性均衡, 从而避免了噪声的增强, 而且由于它的符号间隔很长, 对多径效应、脉冲噪声和快速衰落有较强的抵抗能力; 二是由于子载波是相互正交的, 所以频谱可以交叠使用, 频谱利用率比普通的多载波系统要高得多。
为了防止各子信道之间的串扰, OFDM 要求子载波相互正交。