小学数学《数式谜》练习题(含答案)
- 格式:doc
- 大小:110.04 KB
- 文档页数:7
第二十讲数字谜综合一在三四年级,我们学过加减法填空格,破译字母、汉字的竖式谜、横式谜,添算符等数字谜问题,其中既有加减法,也有乘除法.它们各有一些特定的解题方法和思路,像加减法的进位、借位、错位,乘除法里面的末位分析、首位及位数的估算等,这些方法我们当然还要进一步的学习和训练.但在这一讲中,我们将主要运用前一阵刚学过的数论知识来解决相应的数字谜问题.-------------------------------------------------------------------------------------------例题1.已知“BAD+BAD=GOOD”是一个正确的加法算式,其中相同的字母表示相同的数字,不同的字母表示不同的数字.已知GOOD不是8的倍数,那么四位数ABGD是多少?「分析」解决数字谜的题目,最关键在于找突破口.本题的突破口在哪里?练习1.在算式“路亨+路亨=刘吉吉”中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.已知刘吉吉是8的倍数,那么四位数亨吉刘路是多少?“ “ ×例题 2.从 1~9 中选出 8 个数字填入下式的各个方框中,使等式成立.⨯= ⨯ = 952「分析」从算式来看,是要找出两个两位数的乘积为 952.但是把 952 写成两个两位数的乘 积,方法非常多,要从中选出两种满足题目条件还是挺麻烦的.我们不妨先把 952 分解质因 数,通过分析它的构成来选出满足题目条件的填法.练习 2.从 1~9 中选出 8 个数字填入下式的各个方框中,使等式成立.⨯= ⨯ = 1026- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题 3.用 0 至 9 这 10 个数字恰好组成一位数、两位数、三位数、四位数各一个(每个数字只能用 一次),且这四个数两两互质.其中的四位数是 2940.另外三个数可能是多少?「分析」其中四位数是 2940,那么组成另外三个数的 6 个数字就确定了.这四个数两两互 质,那么另外三个数都与 2940 互质,我们就从 2940 的质因数构成入手.练习 3.用 1、2、3、4、5、6、7 这 7 个数字恰好组成一个一位数和两个三位数,每个数字只用一次, 使得这三个数两两互质.已知其中一个三位数已填好,它是714,那么其他两个数是多少?在前面的例题中,我们通过分解质因数,分析其质因数的构成,从而解决了问题.那如果没有给出具体的数,而是由数字或字母构成的特殊形式又该如何?是否也能分解质因数呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - -例题 4.数数 ⨯ 科学 = 学数学 .在上面的算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.请问: 数学 ”所代表的两位数是多少?「分析」对于乘法数字谜问题,我们一般先考虑个位数字. 数”“学”的个位数字是“学”,& &但符合这一条件的情况有好几种,讨论的过程会很长.我们不妨再来仔细观察算式,能发现题中的“ 数数 ”有什么特点吗?练习 4.数好 ⨯ 学好 =棒棒棒 .在上面的乘法算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.那么“ 好棒 ”所代表的两位数是多少?例题 5.在下面两个算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.“ 花相似人不同 ”代表的六位数是多少?年年 ⨯ 岁岁 = 花相似 岁岁 ÷ 年年 = 人 ÷ 不同「分析」“ 年年 ”、“ 岁岁 ”都是 11 的倍数,那么“花相似 ”所代表的三位数又是多少的倍数呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -在暑期中,我们学习了分数与循环小数的互化与四则运算,其实在数字谜里面也有分数与循环小数形式的问题.要解决这一类问题,需要我们灵活运用学过的循环小数的相关知识.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题 6.已知 a 是一个自然数,A 、B 是 1 至 9 中的数字,最简分数 a 222= 0.3A3B .请问:a 是多少?「分析」等式两边一个是分数,一个是循环小数,可以都化成分数来比较.美妙的竖式荣获斯大林奖金的前苏联数学家、教育家柯尔⋅詹姆斯基曾以开发心灵美为题,列举了一些令人叹服的巧妙算法,其中之一如下:例:8888⨯3333=29623704.8888⨯3333224 2422422424242424242442442424429623704这道题如果只是要算出结果,办法有很多,甚至拿计算器一按答案就出来了.但结果并非是重点,趣味性才是它的精髓所在.5 6 b & &作业1. 在算式12 ⨯ 23 =32 ⨯ 21 的两个方框中填入一个相同的数字,使得等式成立且等式关于等号是对称的.作业2. 用 0 至 9 这十个数码各 1 次,组成四位数、三位数、两位数和一位数各 1 个,并使这四个数两两互质.已知组成的四位数是 1860,那么其他的三个数是多少?作业3. 将 1~9 这九个数字各一个填到下面的横式中,使等式成立(其中 1,, 已经填好).⨯= ⨯ = 156作业4. 在算式“ 钓钓 ⨯ 钓鱼 ⨯岛⨯ 钓鱼岛 = 钓鱼岛钓鱼岛”中,“钓”、“鱼”、“岛”各代表一个不同的数字,要使算式成立,那么钓鱼岛 表示的三位数是多少?作业5. 已知 a 是一个自然数, 是一个 1 至 9 中的数字,如果a555= 0.4b 3 ,那么 a 是多少?( 第二十讲 数字谜综合一例题1. 答案:3810详解:列竖式,易知 D 是 0,G 是 1,且 O 是偶数.那么 GOOD 可能是 1220、1440、1660 和 1880,其中 1220 和 1660 不是 8 的倍数,对应的加法算式分别是 610 + 610 = 1220和 830 + 830 = 1660 ,只有第二个满足.那么 ABGD 是 3810.例题2. 答案: 56 ⨯17 = 28 ⨯ 34 = 952详解: 952 = 23 ⨯ 7 ⨯17 .考虑最大的质因数 17,可知等号两边的两位数中都有 17 的倍 数,可能是 17、34、68.那么 952 可以拆成 56 ⨯ 17 、 28 ⨯ 34 和14 ⨯ 68 .考虑到 8 个数 字不重复,只能是 56 ⨯17 = 28 ⨯ 34 = 952 .例题3. 答案:1、67、583 或 1、67、853详解: 2940 = 22 ⨯ 3 ⨯ 5 ⨯ 72 ,则另外三个数不能有质因数 2、3、5、7.其中一位数只能 是 1.还剩 3、5、6、7、8 这五个数字.两位数要分情况讨论:(1)个位数字为 3,有53、73、83 三组符合要求.对应的,三位数的三个数字分别为 6、7、8;5、6、8;5、 6、7.经检验,均不符合要求. 2)个位数字为 7,有 37、67 两组符合要求.对应的, 三位数的三个数字分别为 5、6、8;3、5、8.经检验,有 583、 853 符合要求.综上 所述,一共有:1、67、583;1、67、853 两组答案.例题4. 答案:16详解:数数 是 11 的倍数,所以 学数学 也是 11 的倍数.三位数中满足 学数学 这种形式,又是 11 的倍数的数有:121、242、363、484、616、737、858、979.依次验证几种情况,发现:当学数学 为 616,那么“学”为 6,“数”为 1,“ 数数 ⨯ 科学 = 学数学 ”变为“11 ⨯ 科6 = 616 ”,可知“科”为 5,符合题意.其它情况逐一检验,没有符合题目要求的答案.所以“ 数学 ”代表的两位数为 16.例题5. 答案:968510详解:第一个算式可以变为“ 年 ⨯ 岁⨯ 121 = 花相似 ”,所以“ 花相似 ”是 121 的倍数.121 的倍数中,三位数有 121、242、363、484、605、726、847、968,共 8 个.“ 花相似 ”中没有重复数字,所以只可能是 605、726、847、968 之一.依次验证几种情况,发现: 当“花相似”是 968,那么“ 年 ⨯ 岁 ”为 8,只能分别是 1、8 或 2、4.其中 1、8 这种 情况与“似”等于 8 矛盾,2、4 这种情况满足要求.由第二个算式可以看出,“岁”小 于“年”,因此岁 = 2 ,年 = 4 .第二个算式为 22 ÷ 44 = 人 ÷ 不同,已经用过的数字为 2、4、6、8、9,所以“人”、“不”、“同”只能在 0、1、3、5、7 中取,只能分别& & a 3A3B - 3 45a 3A3B - 3,即 当 B = 8 时,3 A 3B - 3 = 3 A 38 - 3 = 3 A 35 是 9 的倍数,可知 A = 7 ,原数为0.3738& ,符合是 5 和 10.综上所述,“花相似人不同”所代表的六位数是 968510.例题6. 答案:83详 解 : 按 照 混 循 环 小 数 化 分 数 的 方 法 , 0.3A3B = 3A3B - 3 9990,因此等式变为= =222 9990 9990 9990,可知 45 ⨯ a = 3 A 3B - 3 .那么 3 A 3B - 3 一定是 45 的倍数,即为 5 和 9 的倍数,因此 3 A 3B - 3 计算结果的个位一定是 0 后者 5,那么 3 A 3B 的个位一定是 3 或者 8,即 B = 3 或 B = 8 .当 B = 3 时, 3 A 3B - 3 = 3 A 33 - 3 = 3 A 30 一定是 9 的倍数,可知 A = 3 ,原数为 0.3333L不符合题意.&题意,可知 45 ⨯ a = 3735 ,a 为 83.练习1. 答案:2417简答:易知刘是 1,且吉是偶数.那么刘吉吉 可能是 100、122、144、166、188,其中只有 144 是 8 的倍数.那么算式应该是 72 + 72 = 144 ,要求的四位数是 2417.练习2. 答案:1026简答:1026 = 2 ⨯ 33 ⨯19 .考虑最大的质因数 19.等号两边都有 19 的倍数,可以是 19、 38、57.1026 可以拆成19 ⨯ 54 、 38 ⨯ 27 或 57 ⨯ 18 .考虑到 8 个数字互不相同,只能是 19 ⨯ 54 = 38 ⨯ 27 = 1026 .练习3. 答案:5 和 263简答:还有 2、3、5 和 6 可以用. 714 = 2 ⨯ 3 ⨯ 7 ⨯17 ,一位数只能是 5.剩下的三位数 只能以 3 结尾,而 623 是 7 的倍数,不满足条件,只能是 263.练习4. 答案:79简答:棒棒棒 是 37 的倍数,说明等号左边一定有 37 的倍数,可能是 37 或 74.经验证 算式只能是 27 ⨯ 37=999 .作业1. 答案:12 ⨯ 231 = 132 ⨯ 21简答:21 中有质因数 7,所以 23应该是 7 的倍数,只能填 1 或 8,经检验,应填 1.作业2. 答案:7,43,529简答:1860 = 22 ⨯ 3 ⨯ 5 ⨯ 31 ,一位数只能是 7,另外两个数的末尾只能是 3 和 9.剩下的数字之和除以 3 余 2,只能拆成两个除以 3 余 1 的组合,所以 4 和 2、5 是分成两组,49是7的倍数,所以两位数只能是43,259是7的倍数,所以三位数只能是529.作业3.答案:4⨯39=2⨯78=156简答:156=22⨯3⨯13,所以是4⨯39=2⨯78=156.作业4.答案:137简答:两个重复的三位数组成的六位数一定是1001的倍数,而1001=7⨯11⨯13,所以“钓”、“鱼”、“岛”分别为1、3、7.作业5.答案:235简答:由分数化循环小数的方法可得,a÷5⨯9=4b3.所以94b3,b=2,a=235.。
第二十讲数字谜综合一在三四年级,我们学过加减法填空格,破译字母、汉字的竖式谜、横式谜,添算符等数字谜问题,其中既有加减法,也有乘除法.它们各有一些特定的解题方法和思路,像加减法的进位、借位、错位,乘除法里面的末位分析、首位及位数的估算等,这些方法我们当然还要进一步的学习和训练.但在这一讲中,我们将主要运用前一阵刚学过的数论知识来解决相应的数字谜问题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1.已知“BAD BAD GOOD+=”是一个正确的加法算式,其中相同的字母表示相同的数字,不同的字母表示不同的数字.已知GOOD不是8的倍数,那么四位数ABGD是多少?「分析」解决数字谜的题目,最关键在于找突破口.本题的突破口在哪里?练习1.在算式“+=路亨路亨刘吉吉”中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.已知刘吉吉是8的倍数,那么四位数亨吉刘路是多少?例题2.从1~9中选出8个数字填入下式的各个方框中,使等式成立.⨯=⨯=952「分析」从算式来看,是要找出两个两位数的乘积为952.但是把952写成两个两位数的乘积,方法非常多,要从中选出两种满足题目条件还是挺麻烦的.我们不妨先把952分解质因数,通过分析它的构成来选出满足题目条件的填法.练习2.从1~9中选出8个数字填入下式的各个方框中,使等式成立.1026⨯=⨯=- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题3.用0至9这10个数字恰好组成一位数、两位数、三位数、四位数各一个(每个数字只能用一次),且这四个数两两互质.其中的四位数是2940.另外三个数可能是多少?「分析」其中四位数是2940,那么组成另外三个数的6个数字就确定了.这四个数两两互质,那么另外三个数都与2940互质,我们就从2940的质因数构成入手.练习3.用1、2、3、4、5、6、7这7个数字恰好组成一个一位数和两个三位数,每个数字只用一次,使得这三个数两两互质.已知其中一个三位数已填好,它是714,那么其他两个数是多少?在前面的例题中,我们通过分解质因数,分析其质因数的构成,从而解决了问题.那如果没有给出具体的数,而是由数字或字母构成的特殊形式又该如何?是否也能分解质因数呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题4.数数科学学数学.⨯=在上面的算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.请问:“数学”所代表的两位数是多少?「分析」对于乘法数字谜问题,我们一般先考虑个位数字.“数”ד学”的个位数字是“学”,但符合这一条件的情况有好几种,讨论的过程会很长.我们不妨再来仔细观察算式,能发现题中的“数数”有什么特点吗?练习4.⨯数好学好=棒棒棒.在上面的乘法算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.那么“好棒”所代表的两位数是多少?例题5.在下面两个算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.“花相似人不同”代表的六位数是多少?⨯=年年岁岁花相似÷=÷岁岁年年人不同「分析」“年年”、“岁岁”都是11的倍数,那么“花相似”所代表的三位数又是多少的倍数呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -在暑期中,我们学习了分数与循环小数的互化与四则运算,其实在数字谜里面也有分数与循环小数形式的问题.要解决这一类问题,需要我们灵活运用学过的循环小数的相关知识. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题6.已知a 是一个自然数,A 、B 是1至9中的数字,最简分数0.33222a A B =&&.请问:a 是多少? 「分析」等式两边一个是分数,一个是循环小数,可以都化成分数来比较.美妙的竖式荣获斯大林奖金的前苏联数学家、教育家柯尔⋅詹姆斯基曾以开发心灵美为题,列举了一些令人叹服的巧妙算法,其中之一如下:⨯=.例:88883333296237048 8 8 8⨯ 3 3 3 32 42 4 2 42 4 2 4 2 42 4 2 4 2 4 2 42 4 2 4 2 42 4 2 42 42 9 6 23 7 0 4这道题如果只是要算出结果,办法有很多,甚至拿计算器一按答案就出来了.但结果并非是重点,趣味性才是它的精髓所在.作业1. 在算式12233221⨯=⨯的两个方框中填入一个相同的数字,使得等式成立且等式关于等号是对称的.作业2. 用0至9这十个数码各1次,组成四位数、三位数、两位数和一位数各1个,并使这四个数两两互质.已知组成的四位数是1860,那么其他的三个数是多少?作业3. 将1~9这九个数字各一个填到下面的横式中,使等式成立(其中1,5,6已经填好).156⨯=⨯=作业4. 在算式“⨯⨯⨯=钓钓钓鱼岛钓鱼岛钓鱼岛钓鱼岛”中,“钓”、“鱼”、“岛”各代表一个不同的数字,要使算式成立,那么钓鱼岛表示的三位数是多少?作业5. 已知a 是一个自然数,b 是一个1至9中的数字,如果0.43555a b =&&,那么a 是多少?第二十讲 数字谜综合一例题1. 答案:3810详解:列竖式,易知D 是0,G 是1,且O 是偶数.那么GOOD 可能是1220、1440、1660和1880,其中1220和1660不是8的倍数,对应的加法算式分别是6106101220+=和8308301660+=,只有第二个满足.那么ABGD 是3810.例题2. 答案:56172834952⨯=⨯=详解:39522717=⨯⨯.考虑最大的质因数17,可知等号两边的两位数中都有17的倍数,可能是17、34、68.那么952可以拆成5617⨯、2834⨯和1468⨯.考虑到8个数字不重复,只能是56172834952⨯=⨯=.例题3. 答案:1、67、583或1、67、853详解:2229402357=⨯⨯⨯,则另外三个数不能有质因数2、3、5、7.其中一位数只能是1.还剩3、5、6、7、8这五个数字.两位数要分情况讨论:(1)个位数字为3,有53、73、83三组符合要求.对应的,三位数的三个数字分别为6、7、8;5、6、8;5、6、7.经检验,均不符合要求.(2)个位数字为7,有37、67两组符合要求.对应的,三位数的三个数字分别为5、6、8;3、5、8.经检验,有583、 853符合要求.综上所述,一共有:1、67、583;1、67、853两组答案.例题4. 答案:16详解:数数是11的倍数,所以学数学也是11的倍数.三位数中满足学数学这种形式,又是11的倍数的数有:121、242、363、484、616、737、858、979.依次验证几种情况,发现:当学数学为616,那么“学”为6,“数”为1,“⨯=数数科学学数学”变为“116616⨯=科”,可知“科”为5,符合题意.其它情况逐一检验,没有符合题目要求的答案.所以“数学”代表的两位数为16.例题5. 答案:968510详解:第一个算式可以变为“121⨯⨯=年岁花相似”,所以“花相似”是121的倍数.121的倍数中,三位数有121、242、363、484、605、726、847、968,共8个.“花相似”中没有重复数字,所以只可能是605、726、847、968之一.依次验证几种情况,发现:当“花相似”是968,那么“⨯年岁”为8,只能分别是1、8或2、4.其中1、8这种情况与“似”等于8矛盾,2、4这种情况满足要求.由第二个算式可以看出,“岁”小于“年”,因此岁2=,年4=.第二个算式为2244÷=÷人不同,已经用过的数字为2、4、6、8、9,所以“人”、“不”、“同”只能在0、1、3、5、7中取,只能分别是5和10.综上所述,“花相似人不同”所代表的六位数是968510.例题6. 答案:83详解:按照混循环小数化分数的方法,3330.339990A B A B-=&&,因此等式变为3332229990a A B -=,即4533399909990a A B -=,可知45333a A B ⨯=-.那么333A B -一定是45的倍数,即为5和9的倍数,因此333A B -计算结果的个位一定是0后者5,那么33A B 的个位一定是3或者8,即3B =或8B =.当3B =时,3333333330A B A A -=-=一定是9的倍数,可知3A =,原数为0.3333L 不符合题意.当8B =时,3333383335A B A A -=-=是9的倍数,可知7A =,原数为0.3738&&,符合题意,可知453735a ⨯=,a 为83.练习1. 答案:2417简答:易知刘是1,且吉是偶数.那么刘吉吉可能是100、122、144、166、188,其中只有144是8的倍数.那么算式应该是7272144+=,要求的四位数是2417.练习2. 答案:1026简答:310262319=⨯⨯.考虑最大的质因数19.等号两边都有19的倍数,可以是19、38、57.1026可以拆成1954⨯、3827⨯或5718⨯.考虑到8个数字互不相同,只能是195438271026⨯=⨯=.练习3. 答案:5和263简答:还有2、3、5和6可以用.71423717=⨯⨯⨯,一位数只能是5.剩下的三位数只能以3结尾,而623是7的倍数,不满足条件,只能是263.练习4. 答案:79简答:棒棒棒是37的倍数,说明等号左边一定有37的倍数,可能是37或74.经验证算式只能是2737=999⨯.作业1. 答案:1223113221⨯=⨯简答:21中有质因数7,所以23应该是7的倍数,只能填1或8,经检验,应填1.作业2. 答案:7,43,529简答:2186023531=⨯⨯⨯,一位数只能是7,另外两个数的末尾只能是3和9.剩下的数字之和除以3余2,只能拆成两个除以3余1的组合,所以4和2、5是分成两组,49是7的倍数,所以两位数只能是43,259是7的倍数,所以三位数只能是529.⨯=⨯=作业3.答案:439278156⨯=⨯=.简答:21562313=⨯⨯,所以是439278156作业4.答案:137=⨯⨯,所以简答:两个重复的三位数组成的六位数一定是1001的倍数,而100171113“钓”、“鱼”、“岛”分别为1、3、7.作业5.答案:235b,b=2,a=235.简答:由分数化循环小数的方法可得,5943a b÷⨯=.所以943。
小学奥数数字谜(加减法)专项练习30题(有答案)第9讲数字谜(二)专项练习30题(有答案)1.在如图所示的两位数的加法运算式中,已知A+B+C+D=22,则X+Y=()A .2 B.4 C.7 D.132.计算右面小题()A .趣=5味=6 B.趣=4味=7 C.趣=6味=5 D.趣=3味=83.下边的竖式加法算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字,当算式成立时,我+爱+奥+数=_________.4.在下面的加法算式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字.那么,车+马+炮+卒=_________.5.如图式中,不同的汉字代表不同的数字,“马年好”代表的三位数是_________.6.图竖式A、B、C分别表示不同的数字,且A+B+C最小值是_________.7.图中的△、□、○分别代表不同的数字,要使算式成立,则△代表数字_________,□代表数字_________,○代表数字_________.8.竖式中“兔子”图案表示的数字是_________.9.在如图的算式中,每个字母代表一个1 至9 之间的数,不同的字母代表不同的数字,则A+B+C=_________.10.如图是两个两位数的减法竖式,其中A,B,C,D代表不同的数字.当被减数取最大值时,A×B+(C+E)×(D+F)=_________.11.在横线里填上汉字所代表的数字:“数”=_________,“学”=_________,“好”=_________.12.在右面的算式中,学习优秀=_________.13.不同的汉字表示不同的数,在下面的竖式中,“争”表示_________,“先”表示_________,“创”表示_________,“优”表示_________.14.在图所示的算式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字.则“奥”表示数字_________,“数”表示数字_________,“好”表示数字_________.15.已知除法竖式如图:则除数是_________,商是_________.16.A、B、C、D各代表不同的数字.要使右式成立,A=_________B=_________C=_________D=_________.17.如图,式中不同的字母表示不同的数字,那么ABC表示的三位数是_________.18.下面的加法算式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字.那么这些不同的汉字代表的数字之和是_________.19.在如图的式子中,字母A、B、C代表三个不同的数字,其中A比B大,B比C大,如果用数字A、B、C组成的三个三位数相加的和为777,其竖式如图,那么三位数ABC是_________.20.如图所示的算式中,相同的汉字表示相同的一位数字,不同的汉字表示不同的一位数字.则数+学+竞+赛=_________或_________.21.下面各式中“巨”、“龙”、“腾”、“飞”分别代表不同的数字,相同的汉字代表相同的数字.当它们各代表什么数字时,下列的算式成立.巨=_________龙=_________腾=_________飞=_________.22.在如图的加法算式中,每个汉字分别代表1至9中的一个数字,且相同的汉字代表相同的数字,不同的汉字代表不同的数字,那么这个加法算式的和是_________.23.下面的算式中相同的汉字代表相同的数字,不同的汉字代表不同的数字.24.不同汉字表示不同数字,用数字0﹣9组成了下面一个加法算式,已经填出了数字6,4,0,请补充完算式,那么这个算式的和是_________.25.如图的加法竖式的申、办、奥、运四个汉字,分别代表四个不同的数字,请问:申办奥运分别为何数字时算式成立.申=_________;办=_________;奥=_________;运=_________.26.“爱好数学”代表的四位数是_________.27.在右边的加法竖式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.如果“纪”=3,那么“北京奥运新世纪”七个字的乘积是_________.28.在右图的算式中,不同的汉字表示不同的数字,相同的谜汉字表示相同的数字,如果,巧+解+数+字+谜=30,那么,字谜“数字谜”所代表的三位数是_________.29.请你猜一猜,每个算式中的汉字各表示几?30.猜一猜,下面每个算式中的汉字所代表的数字是几?数=_________学=_________.参考答案:1.根据题干分析可得:B+D=9,则A+C=22﹣9=13,所以可得x=1,y=3,则x+y=1+3=4.故选:B.2.根据竖式可知,在个位上,趣+味的末尾数字1,这时有两种情况,一种是不向十位进1,0+1=1,十位上,2+ 趣=8,趣=8﹣2=6,与个位数字不符,所以,只能是个位数字相加向十位进1,即趣+味=11;十位上,2+趣+1=8,趣=8﹣1﹣2=5,那么,味=11﹣5=6;根据以上推算可得竖式是:故选:A3.由竖式可得:个位上,数×3的末尾是7,由9×3=27,可得,数=9,向十位进2;十位上,奥×3+2的末尾是0,由6×3+2=20,可得,奥=6,向百位进2;百位上,爱×2+2的末尾是0,由4×2+2=10,9×2+2=20,可得,爱是4或9,当爱为9时与数=9重复,不符合题意,故爱=4,向千位进1;千位上,我+1=2,可得:我=1.由以上分析可得竖式是:所以,我+爱+奥+数=1+4+6+9=20.故填:20.4.车=1,炮=0,马=8,卒=5,故车+马+炮+卒=14;故答案为:145.根据竖式可知,好×7的末尾是好,由5×7=35,可得,好=5,向十位进3;马×7+3=马年,由1×7+3=10,可得,马=1,年=0;由以上分析可得竖式是:故答案为:1056.根据竖式可知,B+B的末尾是4,由2+2=4.或7+7=14可得,B是2或7;当B=2时,十位上,A+C=4,那么,A+B+C=2+4=6;当B=7时,要向十位进1,十位上,A+C+1=4,A+C=4﹣1=3,那么,A+B+C=7+3=10;6<10,所以,A+B+C最小值是6.故答案为:67.竖式结果中千位上是2,可以得知△代表的数字可以能是1或2,在个位上,□+○=□,可以推知○代表的数字是0,那么百位上结果就是0,△、□、○分别代表不同的数字,可以推知千位上的2,是进位后和△相加得出来的,可以推知△代表的数字是1.十位上△+□=0可以知道1+9=10推知□代表的数字是9.故△代表数字1,□代表数字9,○代表数字08.根据题干分析可得:故答案为:69.解:根据题得:DEF+HIJ=ABC,又因为1+2+3+4+5+6+7+8+9=45,假设个位与十位相加都进位,则可得:F+J=10+C,E+I=10+B﹣1=9+B,D+H=A﹣1,则D+E+F+H+I+J=10+C+9+B+A﹣1=A+B+C+18,所以A+B+C+D+E+F+H+I+J=2(A+B+C)+18=45,即A+B+C=,不符合题意;则假设只有个位数字相加进位,则F+J=10+C,E+I=B﹣1,D+H=A,则D+E+F+H+I+J=10+C+B﹣1+A=A+B+C+9,所以A+B+C+D+E+F+H+I+J=2(A+B+C)+9=45,即A+B+C=18,符合题意;答:A+B+C=18.故答案为:18.10.A,B,C,D代表不同的数字.当被减数取最大值可以是98,所以C、D都是小于8的数,则F+D=B=8,C+E=A=9,所以A×B+(C+E)×(D+F)=9×8+9×8=72+72=144,故答案为:14411.根据题干分析可得:答:数=8,学=5,好=2.故答案为:8;5;212.根据竖式是特点,先确定学代表的数字,即为2或1,当学代表2时,此是习应该为8,这样千位上的数会是3,与题干矛盾,所以学代表1,习代表8,优代表0,秀代表3,根据以上推算可得竖式是:故答案为:180313. 根据竖式可知,优+优+优的末尾是2,由4+4+4=12可得,“优”表示4,向十位进1;创+创+创+1的末尾是6,由5+5+5+1=16可得,“创”表示5,向百位进1;先+先+1的末尾是3,由1+1+1=3,6+6+1=13可得,“先”表示3或6,当“先”表示3时,“争”只能表示4,与优重复不符合,所以,“先”表示6,向千位进1;争+1=4,争=4﹣1=3,所以,“争”表示3.由以上分析可得竖式是:故答案为:3,6,5,414.根据题意,由竖式可得:“数”代表的数字是1;千位上:“奥”+1要想得到11,最大的数字9+1才等于10,也就是9+1再加上进位的1才能得到11,因此“奥”代表的数字是9;个位上:9+1=10,那么,“好”代表的数字是0;由以上可得竖式是:.故答案为:9,1,015.根据竖式可知,除数与商的个位数相乘的积的末尾是5,可得,除数的个位数与商的个位数必有一个是5,另一个是奇数;假设,商的个位数是5,即商是25,由135÷5=27,27×2=54,大于被除数的前两位,不符合题意,那么除数的个位数字是5;由□5×2是两位数,并且小于4□,可知除数的十位数字小于或等于2,假设是2即25×2=50>4□,不符合题意,那么除数只能是15;又因为15×9=135,所以,商是29,被除数是29×15=435.竖式是:故答案为:15,2916. 根据题意,由竖式可得:A=1;百位上,B+A=9,B=8,或B+A+1=9,B=7;十位上,C+B+A=2,B+A大于2,所以,十位上一定满十,要向百位上进一,所以,B+A+1=9,B=7,符合题意;那么,C+B+A=12,C=4或C+B+A+1=12,C=3;个位上,D+C+B+A=7,因为C+B+A=12,大于10了,所以个位上也满十,向十位上进一,因此,C+B+A+1=12,C=3符合题意;那么,D+C+B+A=17,D=6.根据以上推算可得竖式是:故答案为:1,7,3,617.根据题意,由竖式可得:个位上:C+C+C=3C的末尾是8,由3×6=18,可得,C=6,向十位进1;十位上:B+B+B+1=3B+1的末尾是8,也就是3B的末尾是8﹣1=7,由3×9=27,可得,B=9,向百位进2;百位上:A+A+A+2=8,3A=6,A=2;由以上可得竖式是:;所以,ABC表示的三位数是276.故答案为:29618.由以上分析可知:“我”=1,“爱”=7,“数”=9,“学”=3;算式是:;数字之和是:1+7+9+3=20;故答案为:2019.根据题意可知,可知A+B+C=7,A、B、C都不是0,字母A、B、C代表三个不同的数字,A比B大,B比C大,可知A>B>C,因1+2+4=7,那么A=4,B=2,C=1,所以三位数ABC是421.故填:42120.根据竖式可知,赛×5的末尾是赛,由0×5=0,5×5=25,可得赛是0或5,当赛是0时,竞×4的末尾是竞,由0×4=0,可得,竞是0,与题意不符,所以,赛只能是5,向十位进2;十位上,竞×4+2的末尾是竞,由6×4+2=26,可得,竞是6.向百位进2;百位上,学×3+2的末尾是学,由4×3+2=14,9×3+2=29,可得,学是4或9;当学是4时,向千位进1,千位上,数×2+1的末尾是数,由9×2+1=19,可得数是9,向万位上进1,万位上1+1=2,符合题意;当学是9时,向千位进2,千位上,数×2+2的末尾是数,由8×2+2=18,可得数是8,向万位上进1,万位上1+1=2,符合题意;由以上分析可得竖式是:或所以,数+学+竞+赛=9+4+6+5=24,或数+学+竞+赛=8+9+6+5=28;故答案为:24,2821.根据题意.由竖式可得:个位上:“飞”+“飞”+“飞”的末尾是1,由7+7+7=21,可得:“飞”=7,向十位进2;十位上:“腾”+“腾”+“腾”+2的末尾是0,由6+6+6+2=20,可得:“腾”=6,向百位进2;百位上:“龙”+“龙”+2的末尾是0,由4+4+2=10,可得:“龙”=4,向千位进1;千位上:“巨”+1=2,“巨”=1;所以,“巨”=1,“龙”=4,“腾”=6,“飞”=7;由以上可得竖式是:故答案为:1,4,6,222.根据竖式可知,在最高位上,我+8=赛,不能有进位,所以,我=1,赛=9,个位上,9+2=11,向十位进1;爱+6=竞,也不能有进位,所以,爱只能是2或3,由竞+3的末尾是爱,当爱=3时,9+3+1=13,竞=9,与题意不符,当爱=2时,8+3+1=12,可得,爱=2,竞=8,十位上,8+3+1=12,向百位进1;由学+5+1=希,希+4=学,可知学+5+1有进位,末尾是希,8与9数字已经使用,当学是5时,5+5+1=11,与我=1重复,不符合,当学是6时,6+5+1=11,末尾是2,与爱=1重复,不符合,那么学只能是7,7+5+1=13,希=3,向千位进1;剩下的数字有4、5、6,由杯+9的末尾是杯,9+4=13,9+5=14,9+6=15,可得,数+7+1有进位,末尾是望,4+7+1=12,重复,不符合,5+7+1=13,重复,不符合,6+7+1=14,可得,数=5,望=4,那么杯只能是5.竖式是:1 2 3 4 5 6 7 8 9+8 6 4 1 9 7 5 3 2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣9 8 7 6 5 4 3 2 1所以,这个加法算式的和是987654321.故答案为:98765432123.根据题意,由竖式可知,4×习的末尾是0,可得习是0或5;当习=0时,4×学的末尾也是0,那么学是0或5,当学=0,不符合题意,故学是5,向百位进2,3×爱+2的末尾是0,由3×6+2=20,可知爱是6,向千位进2,我+们+2的末尾是0,只能是我+们+2=10,向万位进1,我+1=2,可得我是1,们=10﹣2﹣1=7,竖式是:5 06 5 01 6 5 0+1 7 6 5 0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣2 0 0 0 0当习=5时,向十位进2,4×学+2的末尾是0,由4×2+2=10,4×7+2=30,可知,学是2或7;当学=2时,向百位进1,3×爱+1的末尾是0,由3×3+1=10,可知爱是3,向千位进1,我+们+1的末尾是0,只能是我+们+1=10,向万位进1,我+1=2,可得我是1,们=10﹣1﹣1=8,竖式是:2 53 2 51 32 5+1 8 3 2 5﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣2 0 0 0 0当习=5,学=7时,向百位进3,3×爱+3的末尾是0,由3×9+3=30,可知爱是9,向千位进3,我+们+1的末尾是0,只能是我+们+3=10,向万位进1,我+1=2,可得我是1,们=10﹣3﹣1=6,竖式是:7 59 7 51 9 7 5+1 6 9 7 5﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣2 0 0 0 024.根据题意可得:欢一定是1.嘉一定不小于3,因为要进位,迎可以取值不大于5(因为嘉最大取9,6+9=15),然后再从0﹣5中扣掉不合适的0、1、4,只剩2 3 5;中=2,则,你=6,不成立;以此类推得出祥可能的值3(对应你=7),5(9),8(2),9(3);由于十位为0,则七+祥=10 或者要么个位进一即七+祥+1=10;由上得出嘉大于等于3,迎=2、3、5,中=3、5、8、9对应的你=7、9、2、3,七+祥=10或者七+祥+1=10.假设,七+祥+1=10即中+4>10,那么,中可取值8、9,你=2、3.设,中=8,你=2,6+嘉+1=欢迎,嘉取值:3(迎=0)、4(重复)、5(迎=2)、6(重复)、7(迎=4)、8(与中重复)、9(迎=6)均不可取,所以中不能取8;设,中=9,你=3,6+嘉+1=欢迎,嘉取值:3、4、6、7、9不可,5、8可行;若嘉取5,剩余数值为7、8,即十位数7+8+1=10,不成立,所以嘉不能取5;嘉取8,剩余数值为2、7,十位数2+7+1=10,符合;所以,得出629+874=1503或者679+824=1503.再假设,七+祥=10即中+4<10,那么,中可取值3、5,你=7、9.设,中=3,你=7,6+嘉+1=欢迎,嘉取值:3(与中重复)、4(重复)、6(重复)、7(与你重复)、9(迎=6)不可,5、8可行;若嘉取5,剩余数值是8、9,即十位数8+9=10,不成立,所以嘉不能取5;嘉取8,剩余数值为2、9,十位数2+9=10,不成立,所以中不能取3;设,中=5,你=9,6+嘉+1=欢迎,嘉取值:3(迎=0)、4(重复)、5(与中重复)、6(重复)、7(迎=4)、8(迎=5)、9(与你重复)均不可取,所以中不能取5;所以,七+祥=10不成立.由以上分析可得竖式是:故答案为:150325.根据题干分析可得:所以申=1,办=6,奥=7,运=2.故答案为:1;6;7;2.26.根据题干分析可得:答:“爱好数学”代表的四位数是2156.故答案为:215627.根据以上分析知:北京奥运新世纪,这七个字可能是:(1)1,3,4,5,6,7,8,它们的乘积是20160;(2)0,3,4,5,6,7,9,它们的乘积是0.故答案为:20160或028.根据竖式可知:5×迷的末尾还是迷,因为5×5=25,所以迷为5,向十位进2;4×字+2的末尾是字,字只能是偶数,4×6+2=26,所以字为6,向百位进2;数×3+2的末尾是数,4×3+2=14,9×3+2=29,所以数为4或9,当数为4时,解×2+1的末尾为解,解只能为奇数,9×2+1=19,解为9;由巧+解+数+字+谜=30,可知,巧为6,与字为6重复,不符合题意,那么数只能是9,向千位进2;解×2+2的末尾为解,解只能为偶数,且不为4,6,8×2+2=18,解为8,向万位进1;由巧+解+数+字+谜=30,可知,巧为2,赛为1,符合题意.所以”数字谜”所代表的三位数是965.故填:96529.学=6﹣1=5,好=7﹣5=2,数=5+2+1=830.根据给出的竖式,得出学代表的字大于等于6,如果学等于6,则由个位学﹣数=3,得出数等于3,但这样就是636﹣63=573,得数的百位上不是6,与原题不一致,当学=7,这时数=4,此时为747﹣74=673,与题意相符;所以数=4,学=7,故答案为:4、7。
小学数学《乘法竖式数字谜》试题部分1.补全下面的乘法竖式,那么这个乘法竖式的乘积是_______。
2.补全下面的乘法竖式,那么这个乘法竖式的乘积是_________。
3.补全下面的乘法竖式,那么这个乘法竖式的乘积是________。
4.补全下面的乘法竖式,那么这个乘法竖式的乘积是________。
5.补全下面的乘法竖式,那么这个乘法竖式的乘积是__________。
6.补全下面的乘法竖式,那么这个乘法竖式的乘积是__________。
7.补全下面的乘法竖式,那么这个乘法竖式的乘积是__________。
8.补全下面的乘法竖式,那么这个乘法竖式的乘积是_________。
9.补全下面的乘法竖式,那么这个乘法竖式的乘积是________。
11.补全下面的乘法竖式,那么“★”格里应该填的数是________。
12.补全下面的乘法竖式,那么“★”格里应该填的数是_______。
13.补全下面的乘法竖式,那么“★”格里应该填的数是_______。
14.补全下面的乘法竖式,那么“★”格里应该填的数是_______。
16.补全下面这个竖式,那么乘积可能是__________________。
17.补全下面这个竖式,那么乘积可能是__________________。
18.补全下面这个竖式,那么乘积可能是___________。
20.补全下面的乘法竖式,那么“★”格里应该填的数字是________。
21.补全下面的乘法竖式,那么“★”格里应该填的数字是_____。
22.请将下面的乘法竖式数字谜补充完整。
那么竖式的乘积为_______。
23.将下面的算式补充完整,那么算式的乘积为_______。
24.请将下面的乘法竖式数字谜补充完整,那么算式的乘积为_______。
25.补全下面的乘法竖式,这个乘法竖式的乘积是________。
26.补全下面的乘法竖式,这个乘法竖式的乘积是________。
27.补全下面的乘法竖式,这个乘法竖式的乘积是________。
1. 掌握最值中的数字谜的技巧2. 能够综合运用数论相关知识解决数字谜问题数字谜中的最值问题常用分析方法1. 数字谜一般分为横式数字谜和竖式数字谜.横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜;2. 竖式数字谜通常有如下突破口:末位和首位、进位和借位、个位数字、位数的差别等.3. 数字谜的常用分析方法有:个位数字分析法、高位数字分析法、数字大小估算分析法、进位错位分析法、分解质因数法、奇偶分析法等.4. 除了数字谜问题常用的分析方法外,还会经常采用比较法,通过比较算式计算过程的各步骤,得到所求的最值的可能值,再验证能否取到这个最值.5. 数字谜问题往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型。
【例 1】 有四个不同的数字,用它们组成最大的四位数和最小的四位数,这两个四位数之和是11469,那么其中最小的四位数是多少?【考点】加减法的进位与借位 【难度】3星 【题型】填空【解析】 设这四个数字是a b c d >>>,如果0d ≠,用它们组成的最大数与最小数的和式是11469a b c dd c b a +,由个位知9a d +=,由于百位最多向千位进1,所以此时千位的和最多为10,例题精讲知识点拨教学目标5-1-2-4.最值中的数字谜(一)与题意不符.所以0d =,最大数与最小数的和式为0011469a b c c b a +,由此可得9a =,百位没有向千位进位,所以11a c +=,2c =;64b c =-=.所以最小的四位数cdba 是2049.【答案】2049【例 2】 将一个四位数的数字顺序颠倒过来,得到一个新的四位数,如果新数比原数大7902,那么所有符合这样条件的四位数中原数最大的是 .7902D C B AA B C D -【考点】加减法的进位与借位 【难度】4星 【题型】填空【解析】 用A 、B 、C 、D 分别表示原数的千位、百位、十位、个位数字,按题意列减法算式如上式.从首位来看A 只能是1或2,D 是8或9;从末位来看,102A D +-=,得8D A =+,所以只能是1A =,9D =.被减数的十位数B ,要被个位借去1,就有1B C -=.B 最大能取9,此时C 为8,因此,符合条件的原数中,最大的是1989.【答案】1989【例 3】 在下面的算式中,A 、B 、C 、D 、E 、F 、G 分别代表1~9中的数字,不同的字母代表不同的数字,恰使得加法算式成立.则三位数EFG 的最大可能值是 .2006A B C DE F G +【考点】加减法的进位与借位 【难度】4星 【题型】填空【解析】 可以看出,1A =,6D G +=或16.若6D G +=,则D 、G 分别为2和4,此时10C F +=,只能是C 、F 分别为3或7,此时9B E +=,B 、E 只能分别取()1,8、()2,7、()3,6、()4,5,但此时1、2、3、4均已取过,不能再取,所以D G +不能为6,16D G +=.这时D 、G 分别为9和7;且9C F +=,9B E +=,所以它们可以取()3,6、()4,5两组.要使EFG 最大,百位、十位、个位都要尽可能大,因此EFG 的最大可能值为659.事实上134********+=,所以EFG 最大为659.【答案】659【巩固】 如图,相同的汉字代表相同的数字,不同的汉字代表不同的数字,那么四位数“奥林匹克”最大是奥林匹克+奥数网2008【考点】加减法的进位与借位 【难度】4星 【题型】填空【关键词】学而思杯,6年级,1试,第2题【解析】 显然“2≤奥”,所以“1=奥或2”,如果“2=奥”,则四位数与三位数的和超过2200,显然不符合条件,所以“1=奥”,所以“9≤林”,如果“9=林”那么“200819001008+=--=匹克数网”,“0=匹=数”,不符合条件,所以“林”最大只能是8,所以“20081800100108+=--=匹克数网”,为了保证不同的汉字代表不同的数字,“匹克”最大是76,所以“奥林匹克”最大是1876。
小学数学《数字谜与数阵图》练习题(含答案)数字谜这类题目往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型,因此要求同学们能够很好地掌握上述知识点,并加以灵活运用.数字谜一般分为横式数字谜和竖式数字谜.横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜来解答.解题技巧:(一)解题的突破口多在于竖式或横式中的特殊之处,例如首位、个位、重复数字以及位数的差异. (二)要根据不同的情况逐步缩小范围,并进行恰当的估算.(三)当题目中涉及多个字母或汉字时,要注意利用不同符号代表不同数字这一条件来排除若干可能性.(四)注意结合进位及退位来考虑.(五)有时可运用到数论中的分解质因数等方法.【例1】右式中不同的汉字代表1~9中不同的数字,当算式成立时,“中国”这两个汉字所代表的两位数最大是多少?【分析】显然,“新”=9.因为要使“中国”尽量大,所以可以假定“中”=8.因为十位加法(含个位加法进位)等于20,所以“北+奥”在1~7中的取值有三种可能:7,5;7,4;6,5.再考虑到“国+京+运”的个位数是8,经试算,只有“北”、“奥”等于7,5,“国”、“京”、“运”等于1,3,4.“国”取l,3,4中最大的4,得到“中国”最大是84.【例2】下图的等式中,不同的汉字表示不同的数字,如果“巧+解+数+字+谜=30”,那么,“数字谜”所代表的三位数是_______.【分析】谜字只能取0或5.如果谜=0,字也要取0,不合题目要求,所以谜=5.3个字加上2是10的倍数,所以字=6. 2个数加上2是10的倍数.所以数=4或9,如果数=4,那么解+1=10,所以解=9.但这时巧=30-9-4—6—5=6与字相同,不合题意.因此数=9,解+2=10,所以解=8,巧=30-8-9-6-5=2,所以“数字谜”所代表的三位数是965.【巩固】在下面的算式中,汉字“第、十、一、届、华、杯、赛”代表1,2,3,4,5,6,7,8,9中的7个数字,不同的汉字代表不同的数字,恰使得加法算式成立.则“第、十、一、届、华、杯、赛”所代表的7个数字的和等于多少?【分析】根据加法规则,“第”=1.“届”+“赛”=6或“届”+“赛”=16.若“届”+“赛”=6,只能是“届”、“赛”分别等于2或4,此时“一”+“杯”=10 只能是“一”、“杯”分别为3或7.此时“十”+“华”=9,“十”、“华’’分别只能取 (1,8),(2,7),(3,6),(4,5).但l,2,3,4均已被取用,不能再取.所以,“届”+ “赛”=6填不出来,只能是“届”+“赛”=16.这时“届”、“赛”只能分别取9和7.这时只能是“一”+“杯”+1=10,且“十”+“华”+1=10,也就是“一”+“杯”=9,同时“十”+“华”=9.所以它们可以分别在(3,6),(4,5)两组中取值.因此“第、十、一、届、华、杯、赛”所代表的7个数字的和等于1+9+9+16=35.【例3】在图所示的乘法算式中,每个方框和汉字都代表一个数字,相同的汉字代表相同的数字,不同的汉字代表不同的数字.那么,这个乘法算式的最后乘积是多少?【分析】问题中出现的都是末位数.而且都是奇数,故应先从末位数开始考虑.第三行的末位为1,共有三种可能的组合:1×1,3×7,9×9.由于第二行数的每一位与第一行相乘后都得到五位数,故第二行的各位数字不会为1.故1×1、9×9均不满足条件.第一行和第二行末位数为3、7或者7、3.分两种情况来讨论:若第一行末位为3,第二行末位为7,由末位的9推知第二行的数应为3337,由第三行的十位应为0知第一行的十位为4.从而得到第四、五、六行的十位皆为2,进而有第三行的百位应该是8,于是推出第一行的百位为5.这样便立刻得到第四、五、六行的百位为6,从而由第三行的4位为1得到第一行的千位为4.于是有4543×3337=15159991,满足条件.若第一行末位为7,第二行末位为3,同样的方法立刻有第二行数应为7773.依次推得第一行的十位、百位、千位分别为6、4、0,不符合题目要求.于是本题答案为15159991.评注:本题采用了枚举的方法,对可能的有限种情况分别讨论,从而求解出问题.在数字谜的求解中常常用到这种方法.【例4】内填入适当的数字,使下列竖式成立,并使商尽可能小:【分析】由右式知d=8,所以c=3或8.当a=2时,由bc×a=□5□,推出c不等于3,所以c=8,故推出b=7;因为除数是两位数,它与商的各个数位的乘积都是三位数,所以商的最小可能值为262.数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵. 幻方是特殊的数阵图,一般地,将九个不同的数填在3×3(即三行三列)的方格中,使每行、每列、及二条对角线上的三数之和均相等,这样的3×3的数阵阵列称为三阶幻方. n阶幻方的定义与三阶幻方相仿!【例5】请你把1~7这七个自然数,分别填在右图的圆圈内,使每条直线上的三个数的和都相等.应怎样填?【分析】关键在于确定中心数a和每条直线上几个圆圈内数的和k. 为了叙述方便,先在各圆圈内填上字母,设每条直线上的数字和为k.根据题意可得:2a+(1+2+3+4+5+6+7)=3k,2a+28=3k,由于28与2a的和为3的倍数,a又为1~7中的数字,经过尝试可知:a为1、4或7.答案如下:(1)当a=1,时2+7=5+4=3+6,得到第一种答案。
第10讲:数字谜(二)(含答案)例1 把下面算式中缺少的数字补上:分析与解:一个四位数减去一个三位数,差是一个两位数,也就是说被减数与减数相差不到100。
四位数与三位数相差不到100,三位数必然大于900,四位数必然小于1100。
由此我们找出解决本题的突破口在百位数上。
(1)填百位与千位。
由于被减数是四位数,减数是三位数,差是两位数,所以减数的百位应填9,被减数的千位应填1,百位应填0,且十位相减时必须向百位借1。
(2)填个位。
由于被减数个位数字是0,差的个位数字是1,所以减数的个位数字是9。
(3)填十位。
由于个位向十位借1,十位又向百位借1,所以被减数十位上的实际数值是18,18分解成两个一位数的和,只能是9与9,因此,减数与差的十位数字都是9。
所求算式如右式。
由例1看出,考虑减法算式时,借位是一个重要条件。
例 2 在下列各加法算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,求出这两个算式:分析与解:(1)这是一道四个数连加的算式,其特点是相同数位上的数字相同,且个位与百位上的数字相同,即都是汉字“学”。
从个位相同数相加的情况来看,和的个位数字是8,有两种可能情况:2+2+2+2=8与7+7+7+7=28,即“学”=2或7。
如果“学”=2,那么要使三个“数”所代表的数字相加的和的个位数字为8,“数”只能代表数字6。
此时,百位上的和为“学”+“学”+1=2+2+1=5≠4。
因此“学”≠2。
如果“学”=7,那么要使三个“数”所代表的数字相加再加上个位进位的2,和的个位数字为8,“数”只能代表数字2。
百位上两个7相加要向千位进位1,由此可得“我”代表数字3。
满足条件的解如右式。
(2)由千位看出,“努”=4。
由千、百、十、个位上都有“努”,5432-4444=988,可将竖式简化为左下式。
同理,由左下式看出,“力”=8,988-888=100,可将左下式简化为下中式,从而求出“学”=9,“习”=1。
第5讲竖式问题兴趣篇1、 如图所示,每个英文字母代表一个数字,不同的字母代表不同的数字。
其中“G ”代表“5”,“A ”代表“9”,“D ”代表“0”,“H ”代表“6”。
问:“I ”代表的数字是多少?+IHD G FE D C BA A2、(1)在图的加法竖式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字,那么每个汉字个代表什么数字?(2)在图的减法竖式中,不同的汉字代表不同数字,相同的汉字代表相同的数字,那么每个汉字各代表什么数字?马兵马炮兵-炮兵兵马兵卒车兵马卒炮兵车卒卒马兵炮+3、在如图的竖式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字。
如果巧+解+数+字+谜=30,那么“数字谜”所代表的三位数是多少?+谜字谜谜字数解数字谜谜赛字数解解数字巧谜4、图所示的竖式中,每个汉字代表一个数字,不同的汉字代表不同的数字,那么“北京奥运”代表的四位数是多少?8002运奥京北北京奥京北 北+5、已知图所示的乘法竖式成立,那么“ABCDE ”是多少?131A B C D E A B C D E ⨯6、(1)在图的竖式中,相同的符号代表相同的数字,不同的符号代表不同的数字,那么☆、△、○分别代表什么数字?⨯☆☆△△○○☆△ (2)在图的竖式中,相同的符号代表相同的数字,不同的符号代表不同的数字,那么☆、△、○分别代表什么数字?⨯☆☆△△○○○△7、如图,相同的字母表示相同的数字,不同的字母表示不同的数字,那么十个方框中数字之和是多少?A BA BC B B ⨯□□□□□□□□□□8、在下面两图的方格内填入适当的数字,使下列除法竖式成立。
328O5279O6389、在图所示的除法竖式中填入合适的数字,使得竖式成立,那么其中的商是多少?720□□□□□□□□□□□□□720cab □□□□□□□□□□10、有一个四位数,它乘以9后所得乘积恰好是将原来的四位数各位数字顺序颠倒而得的新四位数。
求原来的四位数。
小学数学《数字谜》练习题(含答案)内容概述数字谜这类题目往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型,因此要求同学们能够很好地掌握上述知识点,并加以灵活运用。
数字谜一般分为横式数字谜和竖式数字谜。
横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜;竖式数字谜通常有如下突破口:末位和首位、进位和借位、个位数字、位数的差别等。
例题分析【例1】(☆☆)请在下列各式中分别插入一个数字,使之成为等式:⑴ 111111111111=⨯⨯⑵ 377377377773=⨯⨯分析:⑴ 1221111111=⨯⨯, 1001111111111⨯=⨯⨯=711111111911311⨯⨯=⨯,说明需要改动的数应在等式左边,所以应将等式左边的1改成91。
⑵ 37777131001377377377⨯⨯=⨯=,所以应将等式左边的3改成13。
【例2】(☆☆)在下面的四个□中填入同一个数,使得“迎”、“新”、“世”、“纪”四个字所代表的各数之和等于2000。
那么□中应填多少?□-1=迎,□+9=新,□×9=世,□÷9=纪分析:设“纪”所代表的数为x ,那么□=9x ,迎=9x -1,新=9x +9,世=9x ×9=81x ,根据题意有9x-1+9x+9+81x+x=2000,整理得1992100=x ,92.19=x ,那么□28.179992.19=⨯=。
【例3】(☆☆)如图,横、竖各12个方格,每个方格都有一个数,已知横行上任意三个相邻数之和为20,竖列上任意三个相邻数之和为21。
图中已填入3,5,8和x 四个数,那么x 代表的数是 。
分析:竖列上任意三个相邻数之和为21,就是竖列上任意三个相邻数都是由三 个同样的数组成(只不过顺序不同),这样我们可把“3”向下每隔两格地“移动”,由此得出中间的一格应填21-3-8=10。
小学数学《数式谜》练习题(含答案)
教学目的:
1.了解分数与小数的各种类型的数式谜问题,包括竖式的补填、算式的构造、小数的舍入和变化等。
2.会解一些简单的数式谜。
教学内容:
1.了解数式谜的变化和解题方法
2.掌握正确的解题思路
教学重点:
研究加减乘除的数字谜
课前导入:
数学活动:小裁判
活动目标:能用自然物正确地测量线段及图形边的长度,并比较长短。
活动准备:
1、两名运动员比赛跳远的图片(运动员跳出的线段长度是2的倍数),2厘米长的短棒若干。
2、学生用书,形针若干,小木棒若干。
3、实物投影仪。
活动过程:
1、学习测量的方法。
提问:图上的运动员在干什么?我们来做小裁判,评一评他们谁跳得远?(启发学生用测量的方法来比较)
教师在实物投影仪上演示测量的方法:用小棒沿线段一一排列,使小棒头尾相接,没有空隙。
在线段下写下所用小棒的数量。
请一位学生上来,分别尝试测量另外一个运动员跳的线段的长度,教师帮助学生写下所用小棒的数量。
比一比谁跳得远,并说一说为什么。
2、讨论并尝试测量另一幅图。
(方法同测量图一)
3、学生用小棒或回形针测量学生用书上运动员跳高、跳远、投掷的线段长度,并给跳得远、投得远、跑得高的那名运动员贴上小红花。
例1:
把“+、-、×、÷”分别填入适当的圆圈中(每个符号只用一次),在方框中填入适当的数字,使下面的两个等式都成立。
9○12○6=81
9○3○2=□
【思路分析与讲解】
(1)先从第一个等式入手,等式右边是81,比9、12、6大得较多,所以等式的圆圈里肯定有×。
可9×12=108,比81大的多,即使减去6也不等于81,而12×6=72,72+9=81,故第一个算式应该是9+12×6=81.
(2)“+”、“×”已使用过,所以第二个算式只能用“-”“÷”,很容易看出3不能被2整除,所以只能在9与3之间使用÷,3和2之间只能用-号了,故第二个算式为9÷3
-2=1,因此方框中的数是1;
课堂巩固练习:
把“+、-、×、÷”分别填入适当的圆圈中,使下面的两个等式都成立。
0.9○0.9○0.9○0.9○0.9=0
0.5○0.5○0.5○0.5○0.5=2
例2:
下面的字母各代表什么数字,算式才能成立?
分析由于四位数加上四位数其和为五位数,所以可确定和的首位数字E=1.又因为个位上D+D=D,所以D=0.此时算式为:
下面分两种情况进行讨论:
①若百位没有向千位进位,则由千位可确定A=9,由十位可确定C=8,由百位可
确定B=4.因此得到问题的一个解:
②若百位向千位进1,则由千位可确定A=8,由十位可确定C=7,百位上不论B
为什么样的整数,B+B和的个位都不可能为7,因此此时不成立。
解:
A=9,B=4,C=8,D=0,E=1.
例3:
在下面的减法算式中,每一个字母代表一个数字,不同的字母代表不同的数字,那么D+G=?
分析由于是五位数减去四位数,差为三位数,所以可确定A=1,B=0,E=9.此时算式为:
分成两种情况进行讨论:
①若个位没有向十位借1,则由十位可确定F=9,但这与E=9矛盾。
②若个位向十位借1,则由十位可确定F=8,百位上可确定C=7.这时只剩下2、
3、4、5、6五个数字,由个位可确定出:
解:因为
所以 D+G=2+4=6或D+G=3+5=8
或 D+G=4+6=10
例5:
右面的算式中不同的汉字表示不同的数字,相同的汉字表示相同的数字.如果巧+解+数+字+谜=30,那么“巧解数字谜”所代表的五位数是多少?
分析观察算式的个位,由于谜+谜+谜+谜+谜和的个位还是“谜”,所以“谜”
=0或5。
①若“谜”=0,则巧+解+数+字=30,因为9+8+7+6=30,那么“巧”、“解”、
“数”、“字”这四个汉字必是9、8、7、6这四个数字.而十位上,9+9+9+9=36,36的个位不为9,8+8+8+8=32,32的个位不为8,7+7+7+7=28,28的个位不为7,6+6+6+6+=24,24的个位不为6,因而得出“字”≠9、8、7、6,矛盾,因此“谜”≠0。
②若“谜”=5,则巧+解+数+字=25.观察这个算式的十位,由于字+字+字+字+2
和的个位还是“字”,所以“字”=6,则巧+解+数=19.再看算式的百位,由于数+
数+数+2和的个位还是“数”,因而“数”=4或9,若“数”=4,则“解”=9.因
而“巧”=19-4-9=6,“赛”=5,与“谜”=5重复,因此“数”≠4,所以“数”
=9,则“巧”+“解”=10.最后看算式的千位,由于“解”+ “解”+2和的个位还是“解”,所以“解”=8,则“巧”=2,因此“赛”=1.问题得解。
因此,“巧解数字谜”所代表的五位数为28965。
课堂巩固练习:
英文“HALLEY”表示“哈雷”,“COMET”表示“彗星”,“EARTH”表示地球.在下面的算式中,每个字母均表示0~9中的某个数字,且相同的字母表示相同的数字,不同的字母表示不同的数字.这些字母各代表什么数字时,算式成立?
分析因为是一个六位数减去一个五位数,其差为五位数,所以可确定被减数的首位数字H=1.若个位没有向十位借1,则十位上E-E=0,有T=0,那么个位上,Y-0=1,得Y=1,与H=1矛盾,所以个位要向十位借1,于是十位必向百位借1,则十位上,10+E-1-E=9,则T=9,因此,由个位可确定Y=0.此时算式为:
①若百位不向千位借位,则有R+M+1=L,这时剩下数字2、3、4、5、6、7、8,
因为2+3+1=6,所以L最小为6。
若L=6,则(R,M)=(2,3)(表示R、M为2、3这两个数字,其中R可能为2,也可能为3,M也同样).这时还剩下4、5、7、8这四个数字,由千位上有O+A=6,而在4、5、7、8这四个数字中,不论哪两个数字相加,和都不可能为6,因此L≠
6.
若L=7,则M+R=6,于是(M,R)=(2,4),还剩下3、5、6、8这四个数字.由千位上O+A=7,而在 3、5、6、8这四个数字中,不论哪两个数字相加,和都不可能为7,因此L≠7。
若L=8,则M+R=7,(M,R)=(2,5)或(M,R)=(3,4)。
若(M,R)=(2,5),则还剩下3、4、6、7这四个数字。
由千位可确定O+A=8,而在3、4、6、7这四个数字中,不论哪两个数字相加,和都不可能为8,因此(M, R)≠(2,5)。
若(M,R)=(3,4),则还剩下2、5、6、7这四个数字。
由千位可确定O+A=8,而2+6=8,所以(O,A)=(2,6),最后剩下5和
7.因为5+7=12,所以可确定A=2,O=6,则(C,E)=(5,7).由于C与E可对
换,M与R可对换,所以得到问题的四个解:
解:
②若百位向千位借1,则M+R=L+9.还剩下2、3、4、5、6、7、8。
若L=2,则(M,R)=(3, 8)或(M,R)=(4,7)或(M,R)=(5,6).由千位得O+A=11,则必有C+E=11,而万位上C+E=9+A,由此可得A=2,与L=2矛盾.所以L≠2。
若L=3,则M+R=12,(M,R)=(4,8)或(M,R)=(5,7).由千位得O +A=12,这时还剩下2、6这两个数字.由万位得C+E=9+A,即2+6=9+A,A无解.所以L≠3。
若L=4,则M+R=13,(M,R)=(5,8)或(M,R)=(6,7).由千位得O+A=13,这时还剩下2和3这两个数字.由万位得C+E=A+9,即2+3=A+9,A无解.所以 L≠4。
若L=5,则M+R=14,(M,R)=(6,8).由千位得O+A=14,而在剩下的2、3、4、7这四个数中,任意两个数字的和都不等于14.所以L≠5。
若L=6,则 M+R=15,(M, R)=(7,8).由千位得O+A=5,则(O,A)=(2,3).这时还剩下4和5这两个数字,由万位得C+E=10+A,即4+5=10+A,A 无解.所以 L≠6。
因为M+R的和最大为15,所以L最大取6。
解:
共以上四个解。
知识点总结:
通过以上几个例题我们不难看出,认真分析算式中隐含的数量关系,选择有特征的部分作为解题的突破口,作出局部的判断是解数字谜的关键.其次,在采用试验法的同时,常借助估值的方法,对某些数位上的数字进行合理的估计,逐步排除一些不可能的取值,缩小所求数字的取值范围,这样可以加快解题的速度。