马氏体相变
- 格式:doc
- 大小:39.50 KB
- 文档页数:3
第四章 马氏体相变随着科学技术的发展和人们对材料性能的要求越来越高,材料相变的研究也成为了一个热门的领域。
其中,固态相变是最为基础和广泛的相变形式之一。
在这其中,马氏体相变是一个相对特殊和有意义的相变过程。
一、马氏体相变的定义和分类马氏体相变,是指在含碳钢中,当钢经过一定的热处理过程后,在室温下形成一种具有变形性能的组织结构。
其核心原理是在高温下形成一种奥氏体,然后通过快速冷却过程,在室温下形成一种具有弹性、变形及塑性的马氏体组织结构。
根据马氏体相变的不同起始组织结构,其可以分为两种类型:一类是由完全奥氏体组成的马氏体相变,另一类是由贝氏体(以及在贝氏体上产生马氏体)组成的马氏体相变。
1.完全奥氏体马氏体相变当钢经过高温处理后,在其细小的晶粒中,完全转化为奥氏体组织。
通过钢的快速冷却 (通常在水、油、盐水等介质中进行),奥氏体中的部分碳原子被固溶,在马氏体的组织中重新排列,最终形成一种具有高强度和塑性的马氏体组织结构。
这种马氏体相变过程,称为完全奥氏体马氏体相变。
2.贝氏体马氏体相变贝氏体正常情况下是由冷却慢、回火温度低的钢中形成的。
它是由一种由铁与铁素体间化合物构成的细小晶粒组成的组织,这种组织强度比较低,韧性高,且具有较高的弹性变形和形变能力。
当这种钢经过高温处理后,由于组织发生了相变,大量贝氏体消失,而代替它的则是奥氏体组织。
这样在快速冷却的过程中,就会在奥氏体中形成一定数量的针状马氏体组织结构。
二、马氏体相变的影响因素马氏体相变的过程涉及到多个变量和影响因素,其中最重要的一些因素包括:1.冷却速度作为一种固态相变过程,马氏体相变的核心就是快速冷却过程。
通常来说,冷却速度越快,产生的马氏体组织也就越细小,强度也就越高。
2.合金元素含量合金元素在钢制造中有着重要的作用。
它们可以调节钢的合金成分和钢的性能,使钢的性能得到提升。
其中,加入Cr、Ni、Mn等元素可以有效地提高马氏体相变的开始和结束温度,这有利于得到良好的马氏体组织结构。
马氏体相变的基本特征一、马氏体相变的概念及基本过程马氏体相变是指在一定条件下,由奥氏体向马氏体的转变。
奥氏体是指碳钢中的一种组织结构,具有良好的塑性和韧性,但强度和硬度较低;而马氏体则是碳钢中另一种组织结构,具有较高的强度和硬度,但韧性较差。
因此,在特定情况下将奥氏体转变为马氏体可以提高材料的强度和硬度。
马氏体相变的基本过程包括两个阶段:淬火和回火。
淬火是指将钢件加热至适宜温度后迅速冷却至室温,使其形成完全马氏体组织;回火是指将淬火后的钢件加热至适宜温度后进行恒温保持一段时间,然后缓慢冷却至室温,使其形成具有良好韧性和适当硬度的马氏体-贝氏体组织。
二、影响马氏体相变的因素1. 淬火介质淬火介质的选择对马氏体相变的影响非常大。
常用的淬火介质包括水、油和空气等。
水冷却速度最快,可以使钢件形成完全马氏体组织,但易产生变形和裂纹;油冷却速度较慢,可以降低变形和裂纹的风险,但易产生不完全马氏体组织;空气冷却速度最慢,可以避免变形和裂纹,但难以形成马氏体组织。
2. 淬火温度淬火温度是指将钢件加热至何种温度后进行淬火。
淬火温度越高,钢件中残留奥氏体的含量越高,从而影响马氏体相变的程度。
一般来说,淬火温度越低,马氏体相变越充分。
3. 回火温度回火温度是指将淬火后的钢件加热至何种温度进行回火处理。
回火温度对马氏体-贝氏体组织的形成有重要影响。
过高或过低的回火温度都会导致组织不均匀或性能下降。
4. 淬火时间淬火时间是指将钢件放入淬火介质中的时间。
淬火时间越长,相变程度越充分,但也容易产生变形和裂纹。
三、马氏体相变的应用马氏体相变广泛应用于制造高强度、高硬度的零部件。
例如汽车发动机凸轮轴、齿轮、摇臂等零部件,以及航空航天领域中的发动机叶片、转子等部件均采用了马氏体相变技术。
此外,马氏体相变还可以用于制造刀具、弹簧等产品。
总之,马氏体相变是一种重要的金属加工技术,在提高材料强度和硬度方面具有重要作用。
了解其基本特征和影响因素有助于更好地掌握该技术,并在实践中取得更好的效果。
马氏体相变的特点
马氏体相变的特点
马氏体相变是金属和合金在温度变化时出现的一种结构变化现象,它的特点主要是结构的拉伸和缩紧。
一、温度变化范围狭窄
马氏体相变的温度变化范围很狭窄,一般是5℃左右,也有变化范围大于10℃的,但都不是很多。
二、变化量小
马氏体相变的变化量较小,长度变化很小,一般变化不超过0.1~
0.2%。
三、温度变化率大
温度变化率较大,当温度在马氏体相变范围内,由于结构的拉伸和缩紧,长度会变化很大,可达数十倍,温度变化率也很大,可达数百倍以上。
四、延展性差
马氏体相变的导热性能差,其密度和硬度较大,所以延展性也很差,一般变化不超过0.2%。
五、热力学易变
热力学可以显示马氏体相变时金属和合金的温度变化,以及在不同温度下状态的各项物理性能,如结构、强度、尺寸等。
六、熔化温度变化
马氏体相变还会影响金属和合金的熔化温度,一般情况下,熔化
温度会随着温度变化而变化。
马氏体相变的名词解释马氏体相变是固态材料在经历加热后,发生固态相变形成马氏体的一种自发性相变过程。
这个过程是由于固态材料中的结构发生了变化,从而导致其宏观性质发生显著改变。
马氏体相变是一种重要的材料科学研究领域,具有广泛的应用价值,特别是在材料加工、制造以及机械、电子等领域。
马氏体是一种具有特殊晶体结构的金属或合金相。
通过马氏体相变,材料的原子排列发生变化,从立方晶系转变为正交晶系,这种转变导致了材料在微观尺度上的形变。
马氏体相变在材料中的应用包括增加材料的硬度、降低材料的延展性、改变材料的导电性等。
马氏体相变过程可以通过控制材料的组成、冷却速率以及外加应变等手段来实现。
根据不同的材料组成和处理方式,马氏体相变可以分为多种类型,如亚稳的马氏体相变、稳定的马氏体相变等。
亚稳的马氏体相变具有可逆性,即可以通过加热使马氏体再次转变为原有的相,而稳定的马氏体相变则是不可逆的,材料无法通过加热来回复到原有的相。
马氏体相变的研究在金属、合金和陶瓷等材料中广泛进行。
研究者们通过实验和理论模拟等方法,探索材料的晶体结构和其相变机制。
他们研究材料的组成、热处理条件以及外部应力对马氏体相变的影响,并尝试开发新的材料设计和加工方法来改变马氏体相变的性质。
在材料科学领域,马氏体相变被广泛应用于制造高强度材料、形状记忆合金和超弹性材料等。
高强度材料通过马氏体相变提高了材料的硬度和强度,在制造领域具有重要的应用价值。
形状记忆合金则是一种具有记忆效应的特殊合金材料,可以通过马氏体相变来实现形状的记忆和恢复。
超弹性材料具有很高的弹性形变能力,可以通过马氏体相变来实现材料的超大形变。
总结来说,马氏体相变是固态材料在加热过程中发生的一种自发性相变,其通过改变材料的晶体结构和原子排列来实现材料性能的改变。
马氏体相变对于材料科学的发展具有重要的意义,它在材料制造、加工以及电子等领域的应用也呈现出广阔的前景。
研究者们将继续在这一领域进行深入研究,以推动材料科学的发展和创新。
马氏体相变
目录[隐藏]
马氏体相变
相变特征和机制
马氏体的惯习(析)面
马氏体相变的可逆性
马氏体转变的温度-时间关系
工业应用
马氏体相变的研究
参考书目:
[编辑本段]
马氏体相变
马氏体最初是在钢(中、高碳钢)中发现的:将钢加热到一定温度(形成奥氏体)后经迅速冷却(淬火),得到的能使钢变硬、增强的一种淬火组织。
1895年法国人奥斯蒙(F.Osmond)为纪念德国冶金学家马滕斯(A.Martens),把这种组织命名为马氏体(Martensite)。
人们最早只把钢中由奥氏体转变为马氏体的相变称为马氏体相变。
20世纪以来,对钢中马氏体相变的特征累积了较多的知识,又相继发现在某些纯金属和合金中也具有马氏体相变,如:Ce、Co、Hf、Hg、La、Li、Ti、Tl、Pu、V、Zr、和Ag-Cd、A g-Zn、Au-Cd、Au-Mn、Cu-Al、Cu-Sn、Cu-Zn、In-Tl、Ti-Ni等。
目前广泛地把基本特征属马氏体相变型的相变产物统称为马氏体(见固态相变)。
[编辑本段]
相变特征和机制
马氏体相变[1]具有热效应和体积效应,相变过程是形核和长大的过程。
但核心如何形成,又如何长大,目前尚无完整的模型。
马氏体长大速率一般较大,有的甚至高达10cm·s。
人们推想母相中的晶体缺陷(如位错)的组态对马氏体形核具有影响,但目前实验技术还无法观察到相界面上位错的组态,因此对马氏体相变的过程,尚不能窥其全貌。
其特征可概括如下:
马氏体相变是无扩散相变之一,相变时没有穿越界面的原子无规行走或顺序跳跃,因而新相(马氏体)承袭了母相的化学成分、原子序态和晶体缺陷。
马氏体相变时原子有规则地保持其相邻原子间的相对关系进行位移,这种位移是切变式的(图1)。
原子位移的结果产生点阵应变(或形变)(图2)。
这种切变位移不但使母相点阵结构改变,而且产生宏观的形状改变。
将一个抛光试样的表面先划上一条直线,如图3a 中的PQRS,若试样中一部分(A1B1C1D1-A2B2C2D2)发生马氏体相变(形成马氏体),则PQRS直线就折成PQ、QR'及R'S'三段相连的直线,两相界面的平面A1B1C1D1及A2B2C2D2保持无应变、不转动,称惯习(析)面。
这种形状改变称为不变平面应变(图3)。
形状改变使先经抛光的试样表面形成浮突。
由图4可见,高碳钢马氏体的表面浮突,它可由图5示意,可见马氏体形成时,与马氏体相交的表面上发生倾动,在干涉显微镜下可见到浮突的高度以及完整尖锐的边缘(图6)。
[编辑本段]
马氏体的惯习(析)面
马氏体相变时在一定的母相面上形成新相马氏体,这个面称为惯习(析)面,它往往不是简单的指数面,如镍钢中马氏体在奥氏体(γ)的{135}上最先形成(图7)。
马氏体形成时和母相的界面上存在大的应变。
为了部分地减低这种应变能,会发生辅助的变形,使界面改变如图7中由{135}变为{224}面。
图7中马氏体呈透镜状,它具有中脊面,是孪晶密度很高的面,即{135}γ面,这些马氏体内部的孪晶是马氏体内的亚结构。
在铁基合金的马氏体中存在孪晶或(和)位错,在非铁合金中一般存在孪晶或层错。
由图7还可见到:在马氏体周围的母相(奥氏体)中形成密度很高的位错,这是在马氏体相变时,母相发生协作形变而形成的。
由于马氏体相变时原子规则地发生位移,使新相(马氏体)和母相之间始终保持一定的位向关系。
在铁基合金中由面心立方母相γ变为体心立方(正方)马氏体M时具有著名的курдюмов-Sachs关系(简称K-S关系){111}γ∥{011}M,<01ī>γ∥<ī11>M和西山关系;{111}γ∥{110}M,<211>γ∥<110>M。
由面心立方母相P变为六方马氏体ε时,则有:{111}p∥{001}ε,<110>p∥<110>ε。
[编辑本段]
马氏体相变的可逆性
马氏体相变具有可逆性。
当母相冷却时在一定温度开始转变为马氏体,把这温度标作M s,加热时马氏体逆变为母相,开始逆变的温度标为A s。
图8中表示Fe-Ni和Au-Cd合金的M s和A s,它们所包围的面积称为热滞面积,可见Fe-Ni马氏体相变具有的热滞大,而Au-Cd则很小。
相变时的协作形变为范性形变时,一般热滞较大;而为弹性形变时,热滞很小。
像Au-Cd这类合金冷却时马氏体长大、增多,一经加热又立即收缩,甚至消失。
因此这类合金的马氏体相变具有热弹性,称为热弹性马氏体相变。
[编辑本段]
马氏体转变的温度-时间关系
在一般合金的马氏体相变中,马氏体形成量只是温度的函数,即随着温度的下降,马氏体的形成量增大,称为变温马氏体的形成,如图9所示(图中ƒ为马氏体形成量、T q为淬火介质的温度)。
但在有些合金(Fe-Ni-Mn)中马氏体的形成量却是时间的函数,即在一定温度下,随时间的延长,马氏体形成量增多,称为等温马氏体的形成,如图10所示(图中%指马氏体形成量)。
一些高碳高合金钢,如高速钢、轴承钢,主要形成变温马氏体,但在一定条件下也能形成等温马氏体。
这两类马氏体在本质上可能是一致的,不过在变温马氏体形成时母相不易继续相变(稳定化),必须降温,增加相变的驱动力才能继续形成马氏体。
一定的应力和形变作为附加的驱动力,会促使马氏体的形成;但过量的形变又会阻碍马氏体相变的进行(力学的稳定化)。
[编辑本段]
工业应用
马氏体相变规律在工业上的应用,已具显著效果。
除马氏体强化普遍应用于钢铁外,在钢铁热处理中还利用相变规律来控制变形,以及改善性能。
人们目前对铁基合金的成分、马氏体形态和力学性质之间的关系已有较明晰的认识,具备位错亚结构的低碳型(条状)马氏体有一定的强度和良好的韧性,具备孪晶亚结构的高碳型(片状)马氏体有很高的强度但韧性很差。
按此,低碳马氏体已在工业上有较大量的应用。
形变热处理的应用,以及马氏体时效钢(含碳~0.02%)的创制都是利用低碳马氏体的良好韧性。
图11是低碳型马氏体的光学显微镜下的金相组织;图12是低碳型马氏体的透射电子显微镜下的金相组织,可以见到内部的位错亚结构。
利用马氏体相变时塑性增长,已建立了相变诱发塑性钢(TRIP钢)(见形变热处理)。
有些合金如(Au-Cd,In-Tl等)在受一定应力时会诱发形成马氏体,相应地产生应变,应力去除后马氏体立即逆变为母相,应变回复。
这现象称为“伪弹性”。
图13示Ag-Cd合金的伪弹性现象。
具有热弹性和伪弹性的部分合金中还具有“形状记忆效应”,即合金经马氏体相变后经过形变使形状改变,但经过加热逆变后对母相原来形状有记忆效应,会自动回复母相的原来形状,图14为形状记忆效应示意图。
有的合金不但对母相形状,而且再次冷却时对马氏体形状也具有记忆效应称为“双程记忆效应”。
利用这种效应制成的形状记忆合金,已可工业应用。
[编辑本段]
马氏体相变的研究
几十年来马氏体相变的研究,从表象逐步深入到相变的本质,但是对一些根本性问题还认识得不很完整。
马氏体相变时母相和新相成分相同,因此可以把合金作为单元系进行相变的热力学研究。
用热力学处理来计算M s 温度以及验证相变过程的工作还处于发动阶段。
虽然从实验上可以得到相变的惯习(析)面、取向关系以及应变量,但相变过程中原子迁动的过程尚未了解。
晶体学的表象理论,应用数学(矩阵)处理,预测马氏体相变过程的形状改变是均匀点阵形变、不均匀形变和刚性转动的结果;这只在Au-Cd、Fe3Pt 及高镍钢和高铝钢中得到验证,对大多数合金还不完全与实验结果相符合。
在某些马氏体相变前观察到物理性质异变(如弹性模量下降)揭示了相变前母相点阵振动(声学模)的软化,预相变和软模已为人们所注意。
马氏体相变研究历史较久,工业上应用较广,也开始对金属和非金属的马氏体相变进行统一的研究。
[编辑本段]
参考书目:
徐祖耀:《马氏体相变与马氏体》,科学出版社,北京,1980。
Z. Nishiyama,Martensitic Transformation,Academic Press, New York, 1978.
Morris Cohen & C. M. Wayman,Metallargical Treatise,中美冶金会议论文集ed. by J.K.Tien,J.
F.Elliott, Met.Soc.AIME.,pp.445~466,1981.。