专题二 函数概念与基本初等函数 第五讲函数与方程 (1)
- 格式:doc
- 大小:671.00 KB
- 文档页数:6
第二章⎪⎪⎪函数的概念与基本初等函数Ⅰ 第一节 函数及其表示突破点(一) 函数的定义域1.函数与映射的概念(1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(1)分式函数中分母不等于零.本节主要包括3个知识点:1.函数的定义域;2.函数的表示方法;分段函数.(2)偶次根式函数的被开方式大于或等于0. (3)一次函数、二次函数的定义域均为R. (4)y =x 0的定义域是{x |x ≠0}.(5)y =a x (a >0且a ≠1),y =sin x ,y =cos x 的定义域均为R. (6)y =log a x (a >0且a ≠1)的定义域为(0,+∞). (7)y =tan x 的定义域为⎩⎨⎧ x ⎪⎪⎭⎬⎫x ≠k π+π2,k ∈Z .[例1] y =x -12x-log 2(4-x 2)的定义域是( ) A .(-2,0)∪(1,2) B .(-2,0]∪(1,2) C .(-2,0)∪[1,2)D .[-2,0]∪[1,2][解析] 要使函数有意义,必须⎩⎪⎨⎪⎧x -12x ≥0,x ≠0,4-x 2>0,∴x ∈(-2,0)∪[1,2).即函数的定义域是(-2,0)∪[1,2). [答案] C [易错提醒](1)不要对解析式进行化简变形,以免定义域发生变化.(2)当一个函数由有限个基本初等函数的和、差、积、商的形式构成时,定义域一般是各个基本初等函数定义域的交集.(3)定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.求抽象函数的定义域对于抽象函数定义域的求解(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. [例2] 若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域为________.[解析] 由题意得,⎩⎪⎨⎪⎧x -1≠0,0≤2x ≤2,解得0≤x <1,即g (x )的定义域是[0,1).[答案] [0,1)[易错提醒]函数f [g (x )]的定义域指的是x 的取值范围,而不是g (x )的取值范围.已知函数定义域求参数[例3] (2017·杭州模拟)若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是( )A .[0,4)B .(0,4)C .[4,+∞)D .[0,4][解析] 由题意可得mx 2+mx +1≥0恒成立. 当m =0时,1≥0恒成立;当m ≠0时,则⎩⎪⎨⎪⎧m >0,Δ=m 2-4m ≤0,解得0<m ≤4. 综上可得:0≤m ≤4. [答案] D[方法技巧]已知函数定义域求参数的思想方法已知函数的定义域,逆向求解函数中参数的取值,需运用分类讨论以及转化与化归的思想方法.转化与化归的思想方法是通过某种转化过程,将一个难以解决的问题转化为一个已经解决或者比较容易解决的问题,从而获解.基础联通 抓主干知识的“源”与“流” 1.[考点一]函数y =x ln(2-x )的定义域为( ) A .(0,2) B .[0,2) C .(0,1]D .[0,2]解析:选B 由题意知,x ≥0且2-x >0,解得0≤x <2,故其定义域是[0,2). 2.[考点一](2017·青岛模拟)函数y =1-x 22x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞)D.⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1解析:选D 由题意得⎩⎪⎨⎪⎧1-x 2≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠2且x ≠-12,即-1≤x ≤1且x ≠-12, 所以函数的定义域为⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1.故选D. 3.[考点一]函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为________.解析:由题意得⎩⎪⎨⎪⎧ 1-|x -1|≥0,a x -1≠0,解得⎩⎪⎨⎪⎧0≤x ≤2,x ≠0,即0<x ≤2,故所求函数的定义域为(0,2].答案:(0,2]4.[考点二]已知函数y =f (x 2-1)的定义域为[-3, 3 ],则函数y =f (x )的定义域为________.解析:∵y =f (x 2-1)的定义域为[-3, 3 ],∴x ∈[-3, 3 ],x 2-1∈[-1,2],∴y =f (x )的定义域为[-1,2].答案:[-1,2]5.[考点三]若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________. 解析:函数f (x )的定义域是不等式ax 2+abx +b ≥0的解集.不等式ax 2+abx +b ≥0的解集为{x |1≤x ≤2},所以⎩⎪⎨⎪⎧a <0,1+2=-b ,1×2=b a ,解得⎩⎪⎨⎪⎧a =-32,b =-3,所以a +b =-32-3=-92.答案:-92突破点(二) 函数的表示方法1.函数的表示方法函数的表示方法有三种,分别为解析法、列表法和图象法.同一个函数可以用不同的方法表示.2.应用三种方法表示函数的注意事项(1)解析法:一般情况下,必须注明函数的定义域;(2)列表法:选取的自变量要有代表性,应能反映定义域的特征;(3)图象法:注意定义域对图象的影响.与x 轴垂直的直线与其最多有一个公共点.3.函数的三种表示方法的优缺点[典例] (1)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为( )A .y =12x 3-12x 2-xB .y =12x 3+12x 2-3xC .y =14x 3-xD .y =14x 3+12x 2-2x(2)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.(3)(2017·合肥模拟)已知f (x )的定义域为{x |x ≠0},满足3f (x )+5f ⎝⎛⎭⎫1x =3x +1,则函数f (x )的解析式为________.[解析] (1)设该函数解析式为f (x )=ax 3+bx 2+cx +d ,则f ′(x )=3ax 2+2bx +c , 由题意知⎩⎪⎨⎪⎧f (0)=d =0,f (2)=8a +4b +2c +d =0,f ′(0)=c =-1,f ′(2)=12a +4b +c =3,解得⎩⎪⎨⎪⎧a =12,b =-12,c =-1,d =0,∴f (x )=12x 3-12x 2-x .(2)∵-1≤x ≤0,∴0≤x +1≤1,∴f (x )=12f (x +1)=12(x +1)[1-(x +1)]=-12x (x +1).故当-1≤x ≤0时,f (x )=-12x (x +1).(3)用1x 代替3f (x )+5f ⎝⎛⎭⎫1x =3x +1中的x ,得3f ⎝⎛⎭⎫1x +5f (x )=3x +1, ∴⎩⎨⎧3f (x )+5f ⎝⎛⎭⎫1x =3x +1, ①3f ⎝⎛⎭⎫1x +5f (x )=3x +1, ②①×3-②×5得f (x )=1516x -916x +18(x ≠0).[答案] (1)A (2)-12x (x +1) (3)f (x )=1516x -916x +18(x ≠0)[易错提醒]在求解析式时,一定要注意自变量的范围,也就是定义域.如已知f (x )=x +1,求函数f (x )的解析式,通过换元的方法可得f (x )=x 2+1,函数f (x )的定义域是[0,+∞),而不是(-∞,+∞).能力练通 抓应用体验的“得”与“失” 1.已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x x -1,则f (x )=________. 解析:在f (x )=2f ⎝⎛⎭⎫1x x -1中,用1x 代替x ,得f ⎝⎛⎭⎫1x =2f (x )1x -1,将f ⎝⎛⎭⎫1x =2f (x )1x-1代入f (x )=2f ⎝⎛⎭⎫1x x -1中,求得f (x )=23x +13(x >0). 答案:23x +13(x >0) 2.函数f (x )满足2f (x )+f (-x )=2x ,则f (x )=________.解析:由题意知⎩⎪⎨⎪⎧2f (x )+f (-x )=2x ,2f (-x )+f (x )=-2x ,解得f (x )=2x . 答案:2x3.已知f (x +1)=x +2x ,求f (x )的解析式. 解:设t =x +1,则x =(t -1)2,t ≥1,代入原式有 f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1,x ≥1.4.已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x )的解析式. 解:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R.5.已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式. 解:由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2.突破点(三) 分段函数基础联通 抓主干知识的“源”与“流”1.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.2.分段函数的相关结论(1)分段函数虽由几个部分组成,但它表示的是一个函数.(2)分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集. 考点贯通 抓高考命题的“形”与“神”分段函数求值[例1] (1)设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))=( )A .-1 B.14 C.12D.32(2)(2017·张掖高三模拟)已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x ,x ≥4,f (x +1),x <4,则f (1+log 25)的值为( )A.14 B.⎝⎛⎭⎫12 21log 5+ C.12D.120[解析] (1)因为f (-2)=2-2=14,所以f (f (-2))=f ⎝⎛⎭⎫14=1- 14=12,故选C. (2)因为2<log 25<3,所以3<1+log 25<4,则4<2+log 25<5,则f (1+log 25)=f (1+log 25+1)=f (2+log 25)=⎝⎛⎭⎫12 22log 5+=14×⎝⎛⎭⎫12 2log 5=14×15=120,故选D. [答案] (1)C (2)D [方法技巧]分段函数求值的解题思路求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.求参数或自变量的值或范围[例2] (1)(2017·西安模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,x 2,x ≤0,若f (4)=2f (a ),则实数a 的值为( )A .-1或2B .2C .-1D .-2(2)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.[解析] (1)f (4)=log 24=2,因而2f (a )=2,即f (a )=1,当a >0时,f (a )=log 2a =1,因而a =2,当a ≤0时,f (a )=a 2=1,因而a =-1,故选A.(2)当x <1时,由e x -1≤2得x ≤1+ln 2,∴x <1;当x ≥1时,由x 13≤2得x ≤8,∴1≤x ≤8.综上,符合题意的x 的取值范围是x ≤8.[答案] (1)A (2)(-∞,8][方法技巧]求分段函数自变量的值或范围的方法求某条件下自变量的值或范围,先假设所求的值或范围在分段函数定义区间的各段上,然后求出相应自变量的值或范围,切记代入检验,看所求的自变量的值或范围是否满足相应各段自变量的取值范围.能力练通 抓应用体验的“得”与“失”1.[考点一]已知函数f (x )=⎩⎪⎨⎪⎧1-2x,x ≤0,x 2,x >0,则f (f (-1))=( )A .2B .1 C.14D.12解析:选C 由题意得f (-1)=1-2-1=12,则f (f (-1))=f ⎝⎛⎭⎫12=⎝⎛⎭⎫122=14. 2.[考点一]已知f (x )=⎩⎨⎧3sin πx ,x ≤0,f (x -1)+1,x >0,则f ⎝⎛⎭⎫23的值为( ) A.12B .-12C .1D .-1解析:选B f ⎝⎛⎭⎫23=f ⎝⎛⎭⎫-13+1=3sin ⎝⎛⎭⎫-π3+1=-12. 3.[考点一]已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3解析:选B 由题意得f (0)=a 0+b =1+b =2, 解得b =1.f (-1)=a -1+b =a -1+1=3,解得a =12.则f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,故f (-3)=⎝⎛⎭⎫12-3+1=9, 从而f (f (-3))=f (9)=log 39=2.4.[考点二]设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x , x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎡⎦⎤23,1 B .[0,1] C.⎣⎡⎭⎫23,+∞ D .[1,+∞)解析:选C 由f (f (a ))=2f (a )得,f (a )≥1. 当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1. 综上,a ≥23,故选C.5.[考点二]已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≥0,3x 2,x <0,且f (x 0)=3,则实数x 0的值为________.解析:由条件可知,当x 0≥0时,f (x 0)=2x 0+1=3,所以x 0=1;当x 0<0时,f (x 0)=3x 20=3,所以x 0=-1.所以实数x 0的值为-1或1.答案:-1或16.[考点二]已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1, 解得-4≤x ≤0或0<x ≤2,故x 的取值范围是[-4,2]. 答案:[-4,2][全国卷5年真题集中演练——明规律] 1.(2016·全国甲卷)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x解析:选D 函数y =10lg x 的定义域与值域均为(0,+∞). 函数y =x 的定义域与值域均为(-∞,+∞).函数y =lg x 的定义域为(0,+∞),值域为(-∞,+∞). 函数y =2x 的定义域为(-∞,+∞),值域为(0,+∞). 函数y =1x的定义域与值域均为(0,+∞).故选D. 2.(2015·新课标全国卷Ⅱ)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12解析:选C ∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3.∵log 212>1,∴f (log 212)=2log 212-1=122=6.∴f (-2)+f (log 212)=3+6=9.3.(2015·新课标全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-14解析:选A 由于f (a )=-3,①若a ≤1,则2a -1-2=-3,整理得2a -1=-1.由于2x >0,所以2a -1=-1无解;②若a >1,则-log 2(a +1)=-3,解得a =7,所以f (6-a )=f (-1)=2-1-1-2=-74.综上所述,f (6-a )=-74.4.(2013·新课标全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1)C .[-2,1]D .[-2,0]解析:选D y =|f (x )|的图象如图所示,y =ax 为过原点的一条直线,当|f (x )|≥ax 时,必有k ≤a ≤0,其中k 是y =x 2-2x (x ≤0)在原点处的切线的斜率,显然,k =-2.所以a 的取值范围是[-2,0].[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.下列图象可以表示以M ={x |0≤x ≤1}为定义域,以N ={y |0≤y ≤1}为值域的函数的是( )解析:选C A 选项中的值域不对,B 选项中的定义域错误,D 选项不是函数的图象,由函数的定义可知选项C 正确.2.若函数f (x +1)的定义域为[0,1],则f (2x -2)的定义域为( ) A .[0,1] B .[log 23,2] C .[1,log 23]D .[1,2]解析:选B ∵f (x +1)的定义域为[0,1],即0≤x ≤1,∴1≤x +1≤2.∵f (x +1)与f (2x -2)是同一个对应关系f ,∴2x -2与x +1的取值范围相同,即1≤2x -2≤2,也就是3≤2x ≤4,解得log 23≤x ≤2.∴函数f (2x -2)的定义域为[log 23,2].3.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2xD .g (x )=-3x 2-2x解析:选B 设g (x )=ax 2+bx +c (a ≠0),∵g (1)=1,g (-1)=5,且图象过原点,∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3,b =-2,c =0,∴g (x )=3x 2-2x .4.若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.解析:因为函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥20,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0.答案:[-1,0]5.设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x ,x ≥1.若f ⎝⎛⎭⎫f ⎝⎛⎭⎫56=4,则b =________. 解析:f ⎝⎛⎭⎫56=3×56-b =52-b ,若52-b <1,即b >32,则3×⎝⎛⎭⎫52-b -b =152-4b =4,解得b =78,不符合题意,舍去;若52-b ≥1,即b ≤32,则252-b =4,解得b =12. 答案:12[练常考题点——检验高考能力]一、选择题1.函数f (x )=10+9x -x 2lg (x -1)的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10]解析:选D 要使函数f (x )有意义,则x 须满足⎩⎪⎨⎪⎧10+9x -x 2≥0,x -1>0,lg (x -1)≠0,即⎩⎪⎨⎪⎧(x +1)(x -10)≤0,x >1,x ≠2,解得1<x ≤10,且x ≠2,所以函数f (x )的定义域为(1,2)∪(2,10].2.已知f (x )=⎩⎪⎨⎪⎧-cos πx ,x >0,f (x +1)+1,x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于( ) A .1 B .2 C .3 D .-2解析:选C f ⎝⎛⎭⎫43=-cos 4π3=cos π3=12;f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13+1=f ⎝⎛⎭⎫23+2=-cos 2π3+2=12+2=52.故f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=3. 3.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (1)=( ) A .2 B .0 C .1D .-1解析:选A 令x =1,得2f (1)-f (-1)=4,① 令x =-1,得2f (-1)-f (1)=-2, ② 联立①②得f (1)=2.4.(2017·贵阳检测)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx,x <a ,ca ,x ≥a ,(a ,c 为常数).已知工人组装第4件产品用时30分钟,组装第a 件产品用时15分钟,那么c 和a 的值分别是( )A .75,25B .75,16C .60,25D .60,16 解析:选D 因为组装第a 件产品用时15分钟, 所以ca=15,① 所以必有4<a ,且c 4=c2=30.② 联立①②解得c =60,a =16.5.设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则( )A .|x |=x |sgn x |B .|x |=x sgn|x |C .|x |=|x |sgn xD .|x |=x sgn x解析:选D 当x <0时,|x |=-x ,x |sgn x |=x ,x sgn|x |=x ,|x |sgn x =(-x )·(-1)=x ,排除A ,B ,C ,故选D.6.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x -x =-f (x ),满足“倒负”变换;对于②,f ⎝⎛⎭⎫1x =1x+x =f (x ),不满足“倒负”变换;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足“倒负”变换.综上可知,满足“倒负”变换的函数是①③.二、填空题7.已知函数f (x )对任意的x ∈R ,f (x +1 001)=2f (x )+1,已知f (15)=1,则f (2 017)=________.解析:根据题意,f (2 017)=f (1 016+1 001)=2f (1 016)+1,f (1 016)=f (15+1 001)=2f (15)+1,而f (15)=1,所以f (1 016)=21+1=1,则f (2 017)=2f (1 016)+1=21+1=1.答案:18.(2017· 绵阳诊断)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析:当a >0时,1-a <1,1+a >1,此时f (1-a )=2(1-a )+a =2-a ,f (1+a )=-(1+a )-2a =-1-3a .由f (1-a )=f (1+a )得2-a =-1-3a ,解得a =-32,不合题意,舍去.当a <0时,1-a >1,1+a <1,此时f (1-a )=-(1-a )-2a =-1-a ,f (1+a )=2(1+a )+a =2+3a ,由f (1-a )=f (1+a )得-1-a =2+3a ,解得a =-34.综上可知,a 的值为-34.答案:-349.已知函数f (x )满足对任意的x ∈R 都有f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2成立,则f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫28+…+f ⎝⎛⎭⎫78=________.解析:由f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2,得f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫78=2,f ⎝⎛⎭⎫28+f ⎝⎛⎭⎫68=2,f ⎝⎛⎭⎫38+f ⎝⎛⎭⎫58=2,又f ⎝⎛⎭⎫48=12⎣⎡⎦⎤f ⎝⎛⎭⎫48+f ⎝⎛⎭⎫48=12×2=1,∴f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫28+…+f ⎝⎛⎭⎫78=2×3+1=7. 答案:710.定义函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则不等式(x +1)f (x )>2的解集是________.解析:①当x >0时,f (x )=1,不等式的解集为{x |x >1};②当x =0时,f (x )=0,不等式无解;③当x <0时,f (x )=-1,不等式的解集为{x |x <-3}.所以不等式(x +1)·f (x )>2的解集为{x |x <-3或x >1}.答案:{x |x <-3或x >1} 三、解答题11.已知函数f (x )对任意实数x 均有f (x )=-2f (x +1),且f (x )在区间[0,1]上有解析式f (x )=x 2.(1)求f (-1),f (1.5);(2)写出f (x )在区间[-2,2]上的解析式.解:(1)由题意知f (-1)=-2f (-1+1)=-2f (0)=0, f (1.5)=f (1+0.5)=-12f (0.5)=-12×14=-18.(2)当x ∈[0,1]时,f (x )=x 2;当x ∈(1,2]时,x -1∈(0,1],f (x )=-12f (x -1)=-12(x -1)2;当x ∈[-1,0)时,x +1∈[0,1),f (x )=-2f (x +1)=-2(x +1)2;当x ∈[-2,-1)时,x +1∈[-1,0),f (x )=-2f (x +1)=-2×[-2(x +1+1)2]=4(x +2)2.所以f (x )=⎩⎪⎨⎪⎧4(x +2)2,x ∈[-2,-1),-2(x +1)2,x ∈[-1,0),x 2,x ∈[0,1],-12(x -1)2,x ∈(1,2].12.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx+n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数解析式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解:(1)由题意及函数图象,得⎩⎨⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x 100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0,∴0≤x ≤70.故行驶的最大速度是70千米/时.第二节函数的单调性与最值本节主要包括2个知识点:1.函数的单调性;函数的最值.突破点(一)函数的单调性1.单调函数的定义2.单调区间的定义若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.1.复合函数单调性的规则若两个简单函数的单调性相同,则它们的复合函数为增函数;若两个简单函数的单调性相反,则它们的复合函数为减函数.即“同增异减”.2.函数单调性的性质(1)若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数,更进一步,即增+增=增,增-减=增,减+减=减,减-增=减;(2)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (3)在公共定义域内,函数y =f (x )(f (x )≠0)与y =-f (x ),y =1f (x )单调性相反; (4)在公共定义域内,函数y =f (x )(f (x )≥0)与y =f (x )单调性相同;(5)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反.[例1] (1)下列四个函数中,在(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |(2)已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为( ) A .(-∞,1] B .[3,+∞) C .(-∞,-1]D .[1,+∞)[解析] (1)当x >0时,f (x )=3-x 为减函数; 当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数; 当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数. (2)设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3. 所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞). [答案] (1)C (2)B [易错提醒](1)单调区间是定义域的子集,故求单调区间时应树立“定义域优先”的原则.(2)单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分开写,不能用并集符号“∪”连接,也不能用“或”连接.(3)函数的单调性是函数在某个区间上的“整体”性质,所以不能仅仅根据某个区间内的两个特殊变量x 1,x 2对应的函数值的大小就判断函数在该区间的单调性,必须保证这两个变量是区间内的任意两个自变量.函数单调性的应用应用(一) 比较函数值或自变量的大小[例2] 已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c[解析] 由f (x )的图象关于直线x =1对称,可得f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.由x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.∵1<2<52<e ,∴f (2)>f ⎝⎛⎭⎫52>f (e),∴b >a >c . [答案] D应用(二) 解函数不等式[例3] f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)[解析] 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x ) 是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.[答案] B [方法技巧]用单调性求解与抽象函数有关不等式的策略(1)在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(2)有时,在不等式一边没有符号“f ”时,需转化为含符号“f ”的形式.如若已知f (a )=0,f (x -b )<0,则f (x -b )<f (a ).应用(三) 求参数的取值范围[例4] (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( )A.⎝⎛⎭⎫-14,+∞ B.⎣⎡⎭⎫-14,+∞C.⎣⎡⎭⎫-14,0 D.⎣⎡⎦⎤-14,0 (2)设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是( )A .(-∞,1]B .[1,4]C .[4,+∞)D .(-∞,1]∪[4,+∞)[解析] (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a , 因为f (x )在(-∞,4)上单调递增, 所以a <0,且-1a ≥4,解得-14≤a <0.综上所述得-14≤a ≤0.(2)作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4,故选D.[答案] (1)D (2)D[易错提醒](1)若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的. (2)对于分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.能力练通 抓应用体验的“得”与“失”1.[考点一]函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2]D .[2,+∞)解析:选A 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象(图略)可知函数的单调减区间是[1,2].2.[考点二·应用(一)]已知函数y =f (x )是R 上的偶函数,当x 1,x 2∈(0,+∞),x 1≠x 2时,都有(x 1-x 2)·[f (x 1)-f (x 2)]<0.设a =ln 1π,b =(ln π)2,c =ln π,则( )A .f (a )>f (b )>f (c )B .f (b )>f (a )>f (c )C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )解析:选C 由题意可知f (x )在(0,+∞)上是减函数,且f (a )=f (|a |),f (b )=f (|b |),f (c )=f (|c |),又|a |=ln π>1,|b |=(ln π)2>|a |,|c |=12ln π,且0<12ln π<|a |,故|b |>|a |>|c |>0,∴f (|c |)>f (|a |)>f (|b |),即f (c )>f (a )>f (b ).3.[考点二·应用(二)](2017·太原模拟)定义在R 上的奇函数y =f (x )在(0,+∞)上单调递增,且f ⎝⎛⎭⎫12=0,则满足f log 19x >0的x 的集合为________.解析:由题意,y =f (x )为奇函数且f ⎝⎛⎭⎫12=0, 所以f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12=0, 又y =f (x )在(0,+∞)上单调递增,则y =f (x )在(-∞,0)上单调递增, 于是⎩⎪⎨⎪⎧log 19x >0,f log 19x >f ⎝⎛⎭⎫12或⎩⎪⎨⎪⎧log 19x <0,f log 19x >f ⎝⎛⎭⎫-12,即⎩⎪⎨⎪⎧log 19x >0,log 19x >12或⎩⎪⎨⎪⎧log19x <0,log 19x >-12,解得0<x <13或1<x <3.答案:⎝⎛⎭⎫0,13∪(1,3) 4.[考点二·应用(三)]已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.解析:由已知条件得f (x )为增函数,∴⎩⎪⎨⎪⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2,∴a 的取值范围是⎣⎡⎭⎫32,2.答案:⎣⎡⎭⎫32,25.[考点一]用定义法讨论函数f (x )=x +ax (a >0)的单调性.解:函数的定义域为{x |x ≠0}.任取x 1,x 2∈{x |x ≠0},且x 1<x 2,则f (x 1)-f (x 2)=x 1+ax 1-x 2-a x 2=(x 1-x 2)(x 1x 2-a )x 1·x 2=(x 1-x 2)⎝⎛⎭⎫1-a x 1x 2. 令x 1=x 2=x 0,1-ax 20=0可得到x 0=±a ,这样就把f (x )的定义域分为(-∞,-a ],[-a ,0),(0,a ],[a ,+∞)四个区间,下面讨论它的单调性.若0<x 1<x 2≤a ,则x 1-x 2<0,0<x 1x 2<a ,所以x 1x 2-a <0.所以f (x 1)-f (x 2)=x 1+a x 1-x 2-ax 2=(x 1-x 2)(x 1x 2-a )x 1·x 2>0,即f (x 1)>f (x 2),所以f (x )在(0,a ]上单调递减.同理可得,f (x )在[a ,+∞)上单调递增,在(-∞,-a ]上单调递增,在[-a ,0)上单调递减.故函数f (x )在(-∞,-a ]和[a ,+∞)上单调递增,在[-a ,0)和(0,a ]上单调递减.突破点(二) 函数的最值1.函数的最值2.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点处取到.(2)开区间上的“单峰”函数一定存在最大或最小值.1.(1)判断或证明函数的单调性; (2)计算端点处的函数值; (3)确定最大值和最小值.2.分段函数的最值由于分段函数在定义域不同的子区间上对应不同的解析式,因而求其最值的常用方法是先求出分段函数在每一个子区间上的最值,然后取各区间上最大值中的最大者作为分段函数的最大值,各区间上最小值中的最小者作为分段函数的最小值.[典例] (1)函数y =x +x -1的最小值为________. (2)函数y =2x 2-2x +3x 2-x +1的值域为________.(3)函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.[解析] (1)法一:令t =x -1,且t ≥0,则x =t 2+1, ∴原函数变为y =t 2+1+t ,t ≥0. 配方得y =⎝⎛⎭⎫t +122+34, 又∵t ≥0,∴y ≥14+34=1.故函数y =x +x -1的最小值为1.法二:因为函数y =x 和y =x -1在定义域内均为增函数,故函数y =x +x -1在其定义域[1,+∞)内为增函数,所以当x =1时y 取最小值,即y min =1.(2)y =2x 2-2x +3x 2-x +1=2(x 2-x +1)+1x 2-x +1=2+1x 2-x +1=2+1⎝⎛⎭⎫x -122+34. ∵⎝⎛⎭⎫x -122+34≥34,∴2<2+1⎝⎛⎭⎫x -122+34≤2+43=103.故函数的值域为⎝⎛⎦⎤2,103. (3)当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.[答案] (1)1 (2)⎝⎛⎦⎤2,103 (3)2 [方法技巧] 求函数最值的五种常用方法1.已知a >0,设函数f (x )=2 018x +1+2 0162 018x +1(x ∈[-a ,a ])的最大值为M ,最小值为N ,那么M +N =( )A .2 016B .2 018C .4 032D .4 034解析:选D 由题意得f (x )=2 018x +1+2 0162 018x +1=2 018-22 018x+1.∵y =2 018x +1在[-a ,a ]上是单调递增的,∴f (x )=2 018-22 018x +1在[-a ,a ]上是单调递增的,∴M =f (a ),N =f (-a ),∴M +N =f (a )+f (-a )=4 036-22 018a+1-22 018-a +1=4 034. 2.(2017·贵阳检测)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -2⊕x ,x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数,且1-2=13-2=-1.∴f (x )的最大值为f (2)=23-2=6.3.函数f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________.解析:∵y =⎝⎛⎭⎫13x 和y =-log 2(x +2)都是[-1,1]上的减函数,∴f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上是减函数,∴函数f (x )在区间[-1,1]上的最大值为f (-1)=3.答案:34.(2017·益阳模拟)已知函数f (x )的值域为⎣⎡⎦⎤38,49,则函数g (x )=f (x )+1-2f (x )的值域为________.解析:∵38≤f (x )≤49,∴13≤1-2f (x )≤12.令t =1-2f (x ),则f (x )=12(1-t 2)⎝⎛⎭⎫13≤t ≤12,令y =g (x ),则y =12(1-t 2)+t ,即y =-12(t -1)2+1⎝⎛⎭⎫13≤t ≤12.∴当t =13时,y 有最小值79;当t =12时,y 有最大值78.∴g (x )的值域为⎣⎡⎦⎤79,78. 答案:⎣⎡⎦⎤79,785.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.解析:依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数,当x >2时,h (x )=3-x 是减函数,则h (x )max =h (2)=1.答案:1[全国卷5年真题集中演练——明规律] 1.(2015·新课标全国卷Ⅱ)设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是( )A.⎝⎛⎭⎫13,1 B.⎝⎛⎭⎫-∞,13∪(1,+∞) C.⎝⎛⎭⎫-13,13 D.⎝⎛⎭⎫-∞,-13∪⎝⎛⎭⎫13,+∞ 解析:选A ∵f (-x )=ln(1+|-x |)-11+(-x )2=f (x ),∴函数f (x )为偶函数.∵当x ≥0时,f (x )=ln(1+x )-11+x 2,在(0,+∞)上y =ln(1+x )递增,y =-11+x 2也递增,根据单调性的性质知,f (x )在(0,+∞)上单调递增.综上可知:f (x )>f (2x -1)⇔f (|x |)>f (|2x -1|)⇔|x |>|2x -1|⇔x 2>(2x -1)2⇔3x 2-4x +1<0⇔13<x <1.故选A.2.(2013·新课标全国卷Ⅰ)若函数f (x )=(1-x 2)(x 2+ax +b )的图象关于直线x =-2对称,则f (x )的最大值为________.解析:∵点(1,0),(-1,0)在f (x )的图象上,且图象关于直线x =-2对称, ∴点(-5,0),(-3,0)必在f (x )的图象上.∴⎩⎪⎨⎪⎧f (-5)=(1-25)(25-5a +b )=0,f (-3)=(1-9)(9-3a +b )=0, 即⎩⎪⎨⎪⎧ 5a -b =25,3a -b =9,解得⎩⎪⎨⎪⎧a =8,b =15. ∴f (x )=(1-x 2)(x 2+8x +15) =-(x +1)(x -1)(x +3)(x +5) =-(x 2+4x +3)(x 2+4x -5) 令t =x 2+4x =(x +2)2-4≥-4, 则y =-(t +3)(t -5) =-(t 2-2t -15)=-(t -1)2+16.故当t =1时,f (x )max =16. 答案:16[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2) B .y =-x +1 C .y =⎝⎛⎭⎫12xD .y =x +1x解析:选A 函数y =ln(x +2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数. 2.如果二次函数f (x )=3x 2+2(a -1)x +b 在区间(-∞,1)上是减函数,则( ) A .a =-2 B .a =2 C .a ≤-2D .a ≥2解析:选C 二次函数的对称轴方程为x =-a -13,由题意知-a -13≥1,即a ≤-2. 3.函数y =|x |(1-x )在区间A 上是增函数,那么区间A 是( ) A .(-∞,0) B.⎣⎡⎦⎤0,12 C .[0,+∞) D.⎝⎛⎭⎫12,+∞解析:选B y =|x |(1-x )=⎩⎪⎨⎪⎧x (1-x ),x ≥0,-x (1-x ),x <0=⎩⎨⎧-⎝⎛⎭⎫x -122+14,x ≥0,⎝⎛⎭⎫x -122-14,x <0.画出函数的大致图象,如图所示.由图易知函数在⎣⎡⎦⎤0,12上单调递增,故选B.4.函数f (x )=2x -1在[-6,-2]上的最大值是________;最小值是________. 解析:因为f (x )=2x -1在[-6,-2]上是减函数,故当x =-6时,f (x )取最大值-27.当x=-2时,f (x )取最小值-23.答案:-27 -235.已知f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是________.解析:要使函数f (x )的值域为R ,需使⎩⎪⎨⎪⎧1-2a >0,ln 1≤1-2a +3a ,∴⎩⎪⎨⎪⎧a <12,a ≥-1,∴-1≤a <12,即a 的取值范围是⎣⎡⎭⎫-1,12. 答案:⎣⎡⎭⎫-1,12[练常考题点——检验高考能力]一、选择题1.给定函数①y =x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1.其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④解析:选B ①y =x 12在(0,1)上递增;②∵t =x +1在(0,1)上递增,且0<12<1,故y =log 12(x+1)在(0,1)上递减;③结合图象(图略)可知y =|x -1|在(0,1)上递减;④∵u =x +1在(0,1)上递增,且2>1,故y =2x+1在(0,1)上递增.故在区间(0,1)上单调递减的函数序号是②③.2.定义在R 上的函数f (x )的图象关于直线x =2对称,且f (x )在(-∞,2)上是增函数,则( )A .f (-1)<f (3)B .f (0)>f (3)C .f (-1)=f (3)D .f (0)=f (3)解析:选A 依题意得f (3)=f (1),且-1<1<2,于是由函数f (x )在(-∞,2)上是增函数得f (-1)<f (1)=f (3).3.函数y =⎝⎛⎭⎫132x 2-3x +1的单调递增区间为( ) A .(1,+∞) B.⎝⎛⎦⎤-∞,34 C.⎝⎛⎭⎫12,+∞ D.⎣⎡⎭⎫34,+∞ 解析:选B 令u =2x 2-3x +1=2⎝⎛⎭⎫x -342-18.因为u =2⎝⎛⎭⎫x -342-18在⎝⎛⎦⎤-∞,34上单调递减,函数y =⎝⎛⎭⎫13u 在R 上单调递减.所以y =⎝⎛⎭⎫132x 2-3x +1在⎝⎛⎦⎤-∞,34上单调递增,即该函数的单调递增区间为⎝⎛⎦⎤-∞,34.4.已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,log a x ,x ≥1是(-∞,+∞)上的减函数,那么a 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫0,13 C.⎣⎡⎭⎫17,13D.⎣⎡⎭⎫17,1解析:选C 当x =1时,log a 1=0,若f (x )为R 上的减函数,则(3a -1)x +4a >0在x <1时恒成立,令g (x )=(3a -1)x +4a ,则必有⎩⎪⎨⎪⎧ 3a -1<0,g (1)≥0,即⎩⎪⎨⎪⎧3a -1<0,3a -1+4a ≥0,解得17≤a <13.此时,log a x 是减函数,符合题意.5.(2017·九江模拟)已知函数f (x )=log 2x +11-x ,若x 1∈(1,2),x 2∈(2,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析:选B ∵函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0;当x 2∈(2,+∞)时,f (x 2)>f (2)=0,即f (x 1)<0,f (x 2)>0.6.(2017·日照模拟)若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1]解析:选D ∵f (x )=-x 2+2ax 在[1,2]上是减函数,∴a ≤1,又∵g (x )=ax +1在[1,2]上是减函数,∴a >0,∴0<a ≤1.二、填空题7.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________.解析:由已知可得⎩⎪⎨⎪⎧a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3.所以实数a 的取值范围为(-3,-1)∪(3,+∞).答案:(-3,-1)∪(3,+∞)8.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的单调递减区间是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,由函数图象易得函数g (x )的单调递减区间是[0,1).答案:[0,1)9.已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (x )的最小值是________.解析:当x ≥1时,x +2x-3≥2x ·2x -3=22-3,当且仅当x =2x,即x =2时等号成立,此时f (x )min =22-3<0;当x <1时,lg(x 2+1)≥lg(02+1)=0,此时f (x )min =0.所以f (x )的最小值为22-3.答案:22-310.(2017·豫南名校联考)已知f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是________.解析:作出函数f (x )的图象的草图如图所示,易知函数f (x )在R 上为单调递减函数,所以不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立等价于x+a <2a -x ,即x <a 2在[a ,a +1]上恒成立,所以只需a +1<a2,即a <-2.答案:(-∞,-2) 三、解答题 11.已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解:(1)证明:任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增.(2)任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ).∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1.综上所述知a 的取值范围是(0,1].12.已知函数f (x )=ax +1a (1-x )(a >0),且f (x )在[0,1]上的最小值为g (a ),求g (a )的最大值.解:f (x )=⎝⎛⎭⎫a -1a x +1a ,当a >1时,a -1a >0,此时f (x )在[0,1]上为增函数,∴g (a )=f (0)=1a ;当0<a <1时,a -1a <0,此时f (x )在[0,1]上为减函数,∴g (a )=f (1)=a ;当a =1时,f (x )=1,此时g (a )=1.∴g (a )=⎩⎪⎨⎪⎧a ,0<a <1,1a ,a ≥1,∴g (a )在(0,1)上为增函数,在[1,+∞)上为减函数,又a=1时,有a =1a =1,∴当a =1时,g (a )取最大值1. 第三节函数的奇偶性及周期性突破点(一) 函数的奇偶性1.函数的奇偶性2.函数奇偶性常用结论(1)如果函数f (x )是偶函数,那么f (x )=f (|x |).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇. 本节主要包括3个知识点: 1.函数的奇偶性; 2.函数的周期性;函数性质的综合问题.。
第二章函数概念与基本初等函数知识点与方法1.函数解析式的求法主要有换元法和待定系数法等:利用函数的解析式研究问题时要特别注意分析自变量x与函数值y的关系,尤其要注意分段函数各段的自变量所对ƒ的解析式.已知函数解析式,计算有限个函数值的和.fl类问题一般都具有明显的规律,或者函数具有周期性,或者函数具有对称性(自变量具有某种关系,其函数值和fi定值).如£(x)=,求+的值(这$£(x)+£(1—x)=).².确定函数定义域的基本原则.(1)分式函数y=中,满足分母g(x)≠0.(²)偶次式y=(n∈N*)中,满足被开方式£(x)≥0.(3)对数函数y=log£(x)g(x)中,满足且£(x)≠1.(4)幂函数y=[£(x)]0中,满足£(x)≠0.(±)fl切函数y=tanx中,满足x≠kπ+(k∈Z).(6)在实际问题中考虑自变量的实际意义.3.函数值域(最值)的求法.(1)二次型函数——配方法.(²)©曲函数——均值н等式.(3)利用换元法转化fi二次型函数或©曲函数.(4)函数单调性法.(±)导数法.对于н等式恒成立、fl在性问题h要通过求函数最值的方法解决.4.判断函数单调性的方法.(1)定义法:一般地,设函数y=£(x)的定义域fiA,区间W⊆A,∀x1,x²∈W,(x1—x²)[£(x1)—£(x²)]>0⇔>0⇔£(x)在区间W L是增函数.若£(x)在区间W L fi增函数,x1, x²∈W,则有x1<x²⇔£(x1)<£(x²),减函数有类似结论.(注意:在涉þ到н等式的求解、证明等有关问题时可以考虑构造函数,利用函数单调性求解).(²)用已知函数单调性判断(下列函数都在¿共单调区间L): ķ增函数+增函数=增函数:ĸ减函数+减函数=减函数:③复合函数单调性:④奇(偶)函数在对称区间L的单调性相¼(相反).(3)借助图像判断函数单调性.(4)导数法:对可导函数£(x),x∈(a,b ),£′(x)≥0⇔£(x)在(a,b)L是增函数:£′(x)≤0⇔£(x)在(a,b)L 是减函数(其中导致导数fi0的点是孤立的).±.函数的奇偶性.(1)判定函数奇偶性的方法.函数具有奇偶性的必要条fl是定义域fi 关于原点对称的区间.判断函数奇偶性首先确定函数定义域.ķ定义法:∀x∈D£,£(x)±£(—x)=0: ĸ用已知函数奇偶性判定:(i)奇±奇=奇:偶±偶=偶:奇±偶=非奇非偶(非零函数): 奇×偶=奇:奇×奇=偶:偶×偶=偶.(ii)复合函数奇偶性,内偶则偶,两奇fi奇.③借助图像确定奇偶性.(²)奇偶函数的性质.ķ定义域含0的奇函数图像必过原点: ĸ奇函数若fl在最大(小)值,则它们的和fi0:③£(x)是偶函数,则有£(—x)=£(x)=£(|x|):④既奇又偶的函数的解析式必fi£(x)=0:⑤对于奇(偶)函数,已知y轴一侧的图像、解析式、单调性,能够确定y轴另一侧的图像、解析式、单调性.题目中出现x与—x的函数值问题,需考虑函数的奇偶性.(3)奇偶函数性质推广(对称性问题).已知函数£(x),x∈D.ķ满足£(a+x)=£(b—x)⇔£(x)关于直线x=对称, 特别地,£(—x)=£(x)⇔£(x)关于y轴(x=0)对称: ĸ满足£(a+x)=—£(b—x)⇔£(x)关于点,0 对称, 特别地,£(—x)=—£(x)⇔£(x)关于原点(0,0)中心对称:③函数y=£(x)与y=£(—x)的图像关于y轴对称:④函数y=£(x)与y=—£(x)的图像关于x轴对称:⑤函数y=£(a+x)与y=£(b—x)的图像关于x=对称. 6.函数的周期性.(1)定义:已知函数y=£(x),x∈D,若对任意x∈D,fl在非零fl 常数T,满足:ķ£(x+T)=£(x),周期fiT:ĸ£(x+T)=—£(x),周期fi²T:£(x+T)+£(x)=G,周期fi²T:③£(x+T)=±,周期fi²T:£(x+T)·£(x)=G(G≠0),周期FI²T:④£(x+T)=—£(x—T),周期fi4T:⑤£(x+T)+£(x—T)=£(x),周期fi6T.(²)对称性与周期性关系:若函数£(x)具有两个对称性(中心、轴)þ周期性三个性质中的两个,则必定具有第三个性质.例如:ķ若£(x)的图像关于直线x=a和x=b对称(a≠b),则£(x)是周期fi²|a—b|的周期函数.ĸ若£(x)的图像关于点(a,0)和(b,0)对称(a≠b),则£(x)是周期fi²|a—b|的周期函数.③若£(x)的图像关于直线x=aþ点(b,0)对称(a≠b),则£(x)是周期fi4|a—b|的周期函数.7.三个二次(一元二次方程、二次н等式、二次函数)间的问题可相互转化.如二次函数零点是相ƒ二次方程的,二次н等式的求解依赖于二次方程与二次函数的图像等.(1)一元二次方程.ķ判别式,求¿式, 与系数关系:ĸ的分布问题,要由判别式、对称轴、端点值三者确定.例如:(i)二次方程ax²+BX+G=0(A>0)两都大于k⇔(ii)一大于k,一小于k⇔£(k)<0.(²)二次函数的三种表现形式. y=ax²+bx+G=a(x—m)²+n=a (x—x1)(x—x²)(a≠0),其中(m,n)是顶点,x1,x²fi零点.对于限定区间L的二次函数最值要注意对称轴与区间的ƒ置关系.(3)一元二次н等式解法依赖于相ƒ方程与二次函数图像.(4)对于二次函数£(x)=ax²+bx+G,若£(x1 )=£(x²), x1≠x²,则x1+x²=—.8.关于幂、指数、对数函数问题.(1)幂函数£(x)=xα在第一象限的图像如图1—3所示,单调性fi:当α>0时,函数£(x)在(0,+∞)Lfi增函数:当α<0时,函数£(x)在(0,+∞)Lfi减函数.图1-3(²)指数与对数.a b=N⇔b=log a N(a>0,a≠1),a log a N=N,log a a b=b,=,log a m b n=log a b.(3)指数函数y=a x(a>0,a≠1)与对数函数y=log a x(a>0, a≠1).ķ互fi反函数: ĸ定义域、值域之间的关系fl好相反:③单调性:在各自定义域L,当0<a<1时,均fi减函数:当a>1 时,均fi增函数.(4)以各自的䘀算规则fi模型的抽象函数的表示法.ķ幂函数:£(xy)=£(x)£(y),£=(y≠0,£(y)≠0),£(1)=1:ĸ指数函数:£(x+y)=£(x)·£(y),£(x—y)=,£(0)=1:③对数函数:£(x y)=£(x)+£(y),£=£(x)—£(y),£(1)=0.(±)会画y=a|x|,y=log a|x|,y=|log a x|(a>0,a≠1)的图像.9.图像问题.(1)注意以下两个函数图像.ķ形如y=的函数能变fi形如y=n±的函数,其图像是关于点(m,n)对称的反比例函数图像:ĸ形如y=ax+ 的“©曲函数”,若ab>0,则fi“对勾函数”: 若ab<0,则fi单调函数.(²)图像变换.ķᒣ移变换:ĸ伸缩变换:③对称变换:函数y=£(—x)的图像与函数y=£(x)的图像关于y轴对称.函数y=—£(x)的图像与函数y=£(x)的图像关于x轴对称.函数y=—£(—x)的图像与函数y=£(x)的图像关于原点对称.④翻折变换:y=£(|x|)与y=£(x)之间的关系,y=£(x)与y=£(x)之间的关系.(3)研究问题方法.会由图像特征研究函数性质,能用性质描函数图像,养成用图像、性质分析思考问题,即数形结合思想解题的习惯.查漏补缺1. 函数是数集到数集的特殊映射,其对应法则必须满足自变量在定义域内的任意性,函数值的唯一性例8 已知集合A=(1,²,3,…,²3),求证:нfl在这fi的函数£:A→(1,²,3),使得对任意的整数x1,x²∈A,若|x1—x²|∈(1,²,3),则£(x1)≠£(x²).变式1 函数y=£(x)的图像与直线x=a(a∈R)的交点个数fi ().A.0B.1 C.0或 1 D.可多于12. 结合函数图像研究函数性质如图1—4所示,以函数fi核心,其核心内容包括函数的图像与性质,函数的图像包括基本初等函数的图像的作法þ图像变换,函数的性质主要包括函数的定义域、解析式、值域、奇偶性、单调性、周期性, 对称性þ特殊点.函数知识的外延主要体现在函数与方程(函数零点)þ函数与н等式的结合.而函数与方程(函数零点)þ函数与н等式问题可通过转化思想,利用函数图像与性质求解.图1-4例9 关于x的方程(x—a)(x—b)=²(a<b)的两实fiα, β,且α<β,试比较α,β,a,b的大小.变式1 已知函数£(x)=,若£(²—a²)>£(a),则实数a的ᒣ值范围是().(—1,²)A.(—∞,—1)∪(²,+∞) B.C.(—²,1)D.(—∞,—²)∪(1,+∞)3. 已知函数的解析式研究函数的性质给出函数的解析式,常常需要¼学们能够有意识地通过函数的解析式来研究函数的性质,如函数的奇偶性、单调性、周期性þ函数值的分布等,进而解决函数的有关问题.已知函数£(x)=x²—GOSX,对于L的任意x1 ,x²,有如下条fl:ķx1>x²:ĸ>:③|x1|>x²,其中能使£(x1 )>£(x²)恒成立的条fl序号是.4. 构造函数的解析式研究函数的性质看似与函数无关的问题,如果我们能够分析其本质特点,引入变量并根据其模型构造函数,利用函数性质求解.这才是函数的真正魅力例10 若α,β∈,且αsinα—βsinβ>0,则下列结论fl确的是().A.α>βB.α+β>0C.α<βD.α²>β²变式1 比较, ,ln 这三个实数的大小,并说明理由.变式2 比较, , 的大小.。
专题02 函数概念与基本初等函数
(新定义,高数观点,选填压轴题)
目录
一、函数及其表示 (1)
二、函数的基本性质 (2)
三、分段函数 (4)
四、函数的图象 (5)
五、二次函数 (7)
六、指对幂函数 (7)
七、函数与方程 (8)
八、新定义题 (9)
一、函数及其表示
二、函数的基本性质
三、分段函数
四、函数的图象..
..
2023春·广东韶关·高二统考期末)
e3
cosπ
e2
x
x
x
⎫
-⎛⎫
⋅+
⎪ ⎪
+⎝⎭
⎭
部分图象大致是(
..
. .
2023春·云南楚雄·高二统考期末)函数)32e e 1
x
x x =-的部分图象大致为( )
2023春·湖北武汉·高一华中师大一附中校考期末)下列四个函数中的某个函数在区间致图象如图所示,则该函数是(
A .322x
x
x x
y --=+B .cos222x
x
x x
y -=+5.(2023春·河北沧州·高二统考期中)函数. .
. .
2023·内蒙古赤峰·统考二模)函数2
1
sin x x -
在()π,0-
A.B.
C.D.
五、二次函数
六、指对幂函数
七、函数与方程
八、新定义题A.2
=-B.
4
y x x。
函数概念与基本初等函数函数是一种特殊的数学模型,它描述了一个输入变量和一个输出值之间的关系。
函数可以用一条函数曲线连接起来,函数曲线表示在函数中设定的变量值以及变量值对应的函数值之间的关系。
它也可以用一个公式来表示,公式是把变量和函数值之间的关系简洁的表示出来的符号表达式。
函数有着重要的应用:它们可以帮助我们简化复杂的实际情况,解决实际问题;它们也可以借助图解描绘出函数曲线,给我们带来美观的数学图像;它们还可以运用于统计、分析和建模,用于分析实际问题,从而帮助我们做出正确的决策;它们同样也在许多工程中有着重要的应用,借助函数可以解决工程问题,提高效率。
二、基本初等函数①性函数:线性函数是一类最基本的数学函数,它们的关系是一元一次的,可以用一条直线表示,也可以用一个简单的一元一次方程式y=ax+b来表示。
其中,a为参数,b为常数,x为自变量,y为因变量。
②数函数:指数函数和一般的线性函数有着显著不同,它不是把变量与常数相加,而是将变量与常数指数相乘。
指数函数可以用一条曲线表示,也可以用一个一元指数方程y=a^x来表示,其中a为正数,x为自变量,y为因变量。
③数函数:对数函数也是一类基本的数学函数,它可以用一条曲线表示,可以用一个简单的一元对数方程y=loga x表示,其中a为正数,x为自变量,y为因变量。
④函数:幂函数是一类基本的函数,它可以用一条曲线表示,可以用一个简单的一元幂函数y=x^a表示,其中a为正数,x为自变量,y为因变量。
三、应用上述基本初等函数在数学和工程等不同领域有着重要的应用。
(1)数学线性函数、指数函数、对数函数和幂函数等四种基本的初等函数可以用来简化复杂的实际情况,解决实际问题;它们也可以描绘出美观的数学图像,帮助我们分析实际问题,掌握事物的发展规律;它们还可以运用于统计、分析和建模,为我们做出正确的决策提供支持。
(2)工程初等函数在工程领域应用相当广泛。
借助它们我们可以实现复杂的功能设计、参数调整、运动控制、数据处理等任务,能够更快更准确地解决一些复杂的工程问题,有效提高工程运行的效率。
专题二 函数概念与基本初等函数Ⅰ第五讲 函数与方程2019年1.(2019全国Ⅱ理12)设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦2.(2019江苏14)设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()1)f x ,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 .3.(2019浙江9)已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有3个零点,则A .a <-1,b <0B .a <-1,b >0C .a >-1,b <0D .a >-1,b >02010-2018年一、选择题1.(2018全国卷Ⅰ)已知函数0()ln 0⎧=⎨>⎩,≤,,,x e x f x x x ()()=++g x f x x a .若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞2.(2017新课标Ⅲ)已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .13.(2017山东)已知当[0,1]x ∈时,函数2(1)y mx =-的图象与y m =的图象有且只有一个交点,则正实数m 的取值范围是 A .(])0,123,⎡+∞⎣B .(][)0,13,+∞C .()23,⎡+∞⎣D .([)3,+∞4.(2016年天津)已知函数()f x =2(4,0,log (1)13,03)ax a x a x x x ⎧+<⎨++≥-+⎩(0a >,且1a ≠)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是 A .(0,23] B .[23,34] C .[13,23]{34} D .[13,23){34} 5.(2015安徽)下列函数中,既是偶函数又存在零点的是A .y cos x =B .y sin x =C .y ln x =D .21y x =+ 6.(2015福建)若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于A .6B .7C .8D .97.(2015天津)已知函数()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中 b R ∈ ,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是A .7(,)4+∞ B .7(,)4-∞ C .7(0,)4 D .7(,2)48.(2015陕西)对二次函数2()f x ax bx c =++(a 为非零整数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是 A .-1是()f x 的零点 B .1是()f x 的极值点 C .3是()f x 的极值 D .点(2,8)在曲线()y f x =上9.(2014山东)已知函数()12+-=x x f ,()kx x g =.若方程()()f x g x =有两个不相等的实根,则实数k 的取值范围是A .),(210B .),(121C .),(21D .),(∞+210.(2014北京)已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是 A .()0,1 B .()1,2 C .()2,4 D .()4,+∞11.(2014重庆)已知函数13,(1,0]()1,(0,1]x f x x x x ⎧-∈-⎪=+⎨⎪∈⎩, 且()()g x f x mx m =--在(1,1]-内有且仅有两个不同的零点,则实数m 的取值范围是A .]21,0(]2,49(⋃--B .]21,0(]2,411(⋃-- C .]32,0(]2,49(⋃-- D .]32,0(]2,411(⋃--12.(2014湖北)已知()f x 是定义在R 上的奇函数,当0x ≥时,2()=3f x x x -.则函数()()+3g x f x x =-的零点的集合为A .{1,3}B .{3,1,1,3}-- C.{23} D.{21,3}- 13.(2013安徽)已知函数32()f x x ax bx c =+++有两个极值点12,x x ,若112()f x x x =<,则关于x 的方程23(())2()0f x af x b ++=的不同实根个数为A .3B .4C .5D .614.(2013重庆)若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间A .(),a b 和(),b c 内B .(),a -∞和(),a b 内C .(),b c 和(),c +∞内D .(),a -∞和(),c +∞内15.(2013湖南)函数()2ln f x x =的图像与函数()245g x x x =-+的图象的交点个数为A .3B .2C .1D .0 16.(2013天津)函数0.5()2|log |1x f x x =-的零点个数为A .1B .2C .3D .417.(2012北京)函数121()()2xf x x =-的零点个数为A .0B .1C .2D .3 18.(2012湖北)函数2()cos f x x x =在区间[0,4]上的零点个数为A .4B .5C .6D .719.(2012辽宁)设函数)(x f ()x R ∈满足()()f x f x -=,()(2)f x f x =-,且当[]0,1x ∈时,()3=f x x .又函数()()=cos g x x x π,则函数()()()h x g x f x =-在13[,]22-上的零点个数为A .5B .6C .7D .8 20.(2011天津)对实数a 与b ,定义新运算“⊗”:,1,, 1.a ab a b b a b -≤⎧⊗=⎨->⎩ 设函数()()22()2,.f x x x x x R =-⊗-∈若函数()y f x c =-的图像与x 轴恰有两个公共点,则实数c 的取值范围是 A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭ B .(]3,21,4⎛⎫-∞-⋃-- ⎪⎝⎭C .11,,44⎛⎫⎛⎫-∞⋃+∞ ⎪⎪⎝⎭⎝⎭ D .311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭21.(2011福建)若关于x 的方程210x mx ++=有两个不相等的实数根,则实数m 的取值范围是A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞) 22.(2011全国新课标)函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于A .2B .4C .6D .823.(2011山东)已知()f x 是R 上最小正周期为2的周期函数,且当02x <≤时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为A .6B .7C .8D .924.(2010年福建)函数223,0()2ln ,0x x x f x x x ⎧+-=⎨-+>⎩≤,的零点个数为A .0B .1C .2D .325.(2010天津)函数()23xf x x =+的零点所在的一个区间是A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2) 26.(2010广东)“14m <”是“一元二次方程20x x m ++=有实数解”的 A .充分非必要条件 B .充分必要条件 C .必要非充分条件 D .非充分非必要条件27.(2010浙江)设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是A .[]4,2--B .[]2,0-C .[]0,2D .[]2,4 二、填空题28.(2018全国卷Ⅲ)函数()cos(3)6f x x π=+在[0,]π的零点个数为________.29.(2018天津)已知0a >,函数222,0,()22,0.x ax a x f x x ax a x ⎧++=⎨-+->⎩≤若关于x 的方程()f x ax=恰有2个互异的实数解,则a 的取值范围是 .30.(2018江苏)若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 .31.(2018浙江)已知λ∈R ,函数24,()43,x x f x x x x λλ-⎧=⎨-+<⎩≥,当2λ=时,不等式()0f x <的解集是_____.若函数()f x 恰有2个零点,则λ的取值范围是______.32.(2018浙江)我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x ,y ,z ,则1001531003x y z x y z ++=⎧⎪⎨++=⎪⎩,当81z =时,x = ,y = .33.(2017江苏)设()f x 是定义在R 且周期为1的函数,在区间[0,1)上,2,(),x x Df x x x D⎧∈=⎨∉⎩其中集合1{|,}n D x x n n-==∈*N ,则方程()lg 0f x x -=的解的个数是 . 34.(2016年山东)已知函数2||,()24,x x m f x x mx m x m ⎧=⎨-+>⎩≤ 其中0m >,若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值范围是_________. 35.(2015湖北)函数2π()4coscos()2sin |ln(1)|22x f x x x x =---+的零点个数为 . 36.(2015北京)设函数()()()2142 1.xa x f x x a x a x ⎧-<⎪=⎨--⎪⎩≥‚‚‚①若1a =,则()f x 的最小值为;②若()f x 恰有2个零点,则实数a 的取值范围是.37.(2015湖南)已知函数32,(),x x af x x x a ⎧=⎨>⎩≤,若存在实数b ,使函数()()g x f x b =-有两个零点,则a 的取值范围是 .38.(2014江苏)已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 .39.(2014福建)函数()⎩⎨⎧>+-≤-=0,ln 620,22x x x x x x f 的零点个数是_________.40.(2014天津)已知函数2()|3|f x x x =+,x ∈R .若方程()|1|0f x a x --=恰有4个互异的实数根,则实数a 的取值范围为__________.41.(2012福建)对于实数a 和b ,定义运算“*”:22,,,,a ab a b a b b ab a b ⎧-*=⎨->⎩… 设()f x =(21)(1)x x -*-,且关于x 的方程为()f x m =(m ∈R )恰有三个互不相等的实数根123,,x x x ,则123x x x 的取值范围是____________.42.(2011北京)已知函数32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x =k 有两个不同的实根,则数k 的取值范围是_______.43.(2011辽宁)已知函数a x e x f x +-=2)(有零点,则a 的取值范围是_____.专题二 函数概念与基本初等函数Ⅰ第五讲 函数与方程答案部分 2019年1.解析:因为(1)2()f x f x +=,所以()2(1)f x f x =-,当(0,1]x ∈时,1()(1),04f x x x ⎡⎤=-∈-⎢⎥⎣⎦, 当(1,2]x ∈时,1(0,1]x -∈,1()2(1)2(1)(2),02f x f x x x ⎡⎤=-=--∈-⎢⎥⎣⎦, 当(2,3]x ∈时,1(1,2]x -∈,[]()2(1)4(2)(3)1,0f x f x x x =-=--∈-, 当(2,3]x ∈时,由84(2)(3)9x x --=-解得73x =或83x =,若对任意(,]x m ∈-∞,都有8()9f x -…,则73m ….故选B .2.解析 作出函数()f x 与()g x 的图像如图所示,由图可知,函数()f x 与1()(12,34,56,78)2g x x x x x =-<<<<剟剟仅有2个实数根;要使关于x 的方程()()f x g x =有8个不同的实数根,则()f x =,(0,2]x ∈与()(2)g x k x =+,(0,1]x ∈的图象有2个不同交点, 由(1,0)到直线20kx y k -+=的距离为11=,解得0)k k =>,因为两点(2,0)-,(1,1)连线的斜率13k =,所以13k <…,即k的取值范围为1[3.3.解析:当0x <时,()(1)y f x ax b x ax b a x b =--=--=--,最多一个零点;当0x …时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-, 2(1)y x a x '=-+,当10a +…,即1a -…时,0y '>,()y f x ax b =--在上递增,()y f x ax b=--最多一个零点不合题意;当10a +>,即1a >-时,令0y '>得(1,)x a ∈++∞,函数递增,令0y '<得(0,1)x a ∈+,函数递减;函数最多有2个零点;根据题意函数()y f x ax b =--恰有3个零点函数()y f x ax b =--在(,0)-∞上有一个零点,在[0,)+∞上有2个零点, 如下图:所以01b a <-且3211(1)(1)(1)032b a a a b ->⎧⎪⎨+-++-<⎪⎩, 解得0b <,10a ->,31(1)6b a >-+. 故选C .2010-2018年1.C 【解析】函数()()=++g x f x x a 存在 2个零点,即关于x 的方程()=--f x x a 有2个不同的实根,即函数()f x 的图象与直线=--y x a 有2个交点,作出直线=--y x a 与函数()f x 的图象,如图所示,由图可知,1-≤a ,解得1≥a ,故选C . 2.C 【解析】令()0f x =,则方程112()2x x a ee x x --++=-+有唯一解,设2()2h x x x =-+,11()x x g x e e --+=+,则()h x 与()g x 有唯一交点,又11111()2x x x x g x ee e e--+--=+=+≥,当且仅当1x =时取得最小值2.而2()(1)11h x x =--+≤,此时1x =时取得最大值1,()()ag x h x =有唯一的交点,则12a =.选C . 3.B 【解析】当01m <≤时,11m≥,函数2()(1)y f x mx ==-,在[0,1]上单调递减,函数()y g x m ==,在[0,1]上单调递增,因为(0)1f =,(0)g m =,2(1)(1)f m =-,(1)1g m =+,所以(0)(0)f g >,(1)(1)f g <,此时()f x 与()g x 在[0,1]x ∈有一个交点;当1m >时,101m<<,函数2()(1)y f x mx ==-,在 1[0,]m 上单调递减,在1[,1]m 上单调递增,此时(0)(0)f g <,在1[0,]m无交点, 要使两个函数的图象有一个交点,需(1)(1)f g ≥,即2(1)1m m -+≥,解得3m ≥. 选B .4.C 【解析】当0x <时,()f x 单调递减,必须满足4302a --…,故304a <…,此时函数()f x 在[0,)+∞上单调递减,若()f x 在R 上单调递减,还需31a …,即13a …,所以1334a 剟.当0x …时,函数|()|y f x =的图象和直线2y x =-只有一个公共点,即当0x …时,方程|()|2f x x =-只有一个实数解.因此,只需当0x <时,方程|()|2f x x =-只有一个实数解,根据已知条件可得,当0x <时,方程2(43)x a x +-+32a x =-,即22(21)320x a x a +-+-=在(,0)-∞上恰有唯一的实数解.判别式24(21)4(32)4(1)(43)a a a a ∆=---=--,当34a =时,0∆=,此时12x =-满足题意;令2()2(21)32h x x a x a =+-+-,由题意得(0)0h <,即320a -<,即23a <时,方程22(21)320x a x a +-+-=有一个正根、一个负根,满足要求;当(0)0h =,即23a =时,方程22(21)320x a x a +-+-=有一个为0、一个根为23-,满足要求;当(0)0h >,即320a ->,即2334a <<时对称轴(21)0a --<,此时方程22(21)320x a x a +-+-=有两个负根,不满足要求;综上实数a 的取值范围是123[,]{}334. 5.A 【解析】cos y x =是偶函数且有无数多个零点,sin y x =为奇函数,ln y x =既不是奇函数又不是偶函数,21y x =+是偶函数但没有零点.故选A .6.D 【解析】由韦达定理得a b p +=,a b q ⋅=,则0,0a b >>,当,,2a b -适当排序后成等比数列时,2-必为等比中项,故4a b q ⋅==,4b a=.当适当排序后成等差数列时,2-必不是等差中项,当a 是等差中项时,422a a=-,解得1a =,4b =; 当4a是等差中项时,82a a =-,解得4a =,1b =,综上所述,5a b p +==,所以p q +9=,选D .7.D 【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩, 即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧++<⎪=+-=≤≤⎨⎪-+>⎩, ()()()(2)y f x g x f x f x b =-=+--,所以()()y f x g x =-恰有4个零点等价于方程()(2)0f x f x b +--=有4个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知724b <<. x8.A 【解析】由A 知0a b c -+=;由B 知()2f x ax b '=+,20a b +=;由C 知()2f x ax b '=+,令()0f x '=可得2b x a =-,则()32bf a-=,则2434ac b a -=; 由D 知428a b c ++=,假设A 选项错误,则2020434428a b c a b ac b a a b c -+≠⎧⎪+=⎪⎪⎨-=⎪⎪++=⎪⎩,得5108a b c =⎧⎪=-⎨⎪=⎩,满足题意,故A 结论错误,同理易知当B 或C 或D 选项错误时不符合题意,故选A . 9.B 【解析】如图所示,方程()()f x g x =有两个不相等的实根等价于两个函数的图象有两个不同的交点,结合图象可知,当直线y kx =的斜率大于坐标原点与点(2,1)的连续的斜率,且小于直线1y x =-的斜率时符合题意,故选112k <<.10.C 【解析】∵2(1)6log 160f =-=>,2(2)3log 220f =-=>,231(4)log 4022f =-=-<,∴()f x 零点的区间是()2,4. 11.A 【解析】()()g x f x mx m =--在(1,1]-内有且仅有两个不同的零点就是函数()y f x =的图象与函数(1)y m x =+的图象有两个交点,在同一直角坐标系内作出函数13,(1,0]()1,(0,1]x f x x x x ⎧-∈-⎪=+⎨⎪∈⎩,和函数(1)y m x =+的图象,如图,当直线(1)y m x =+与13,(1,0]1y x x =-∈-+和,(0,1]y x x =∈都相交时 102m <≤;当直线(1)y m x =+与13,(1,0]1y x x =-∈-+有两个交点时,由(1)131y m x y x =+⎧⎪⎨=-⎪+⎩,消元得13(1)1m x x -=++,即2(1)3(1)10m x x +++-=, 化简得2(23)20mx m x m ++++=,当940m ∆=+=,即94m =-时直线 (1)y m x =+与13,(1,0]1y x x =-∈-+相切,当直线(1)y m x =+过点(0,2)- 时,2m =-,所以9(,2]4m ∈--,综上实数m 的取值范围是91(,2](0,]42--⋃.12.D 【解析】当0x ≥时,函数()g x 的零点即方程()3f x x =-的根,由233x x x -=-,解得1x =或3;当0x <时,由()f x 是奇函数得2()()3()f x f x x x -=-=--,即()f x =23x x --,由()3f x x =-得2x =--. 13.A 【解析】2'()32f x x ax b =++,12,x x 是方程2320x ax b ++=的两根,由23(())2()0f x af x b ++=,则又两个()f x 使得等式成立,11()x f x =,211()x x f x >=,其函数图象如下:x21)=x 1如图则有3个交点,故选A.14.A 【解析】由a b c <<,可得()()()0f a a b a c =-->,()()()0f b b c b a =--<,()()()0f c c a c b =-->.显然()()0f a f b ⋅<,()()0f b f c ⋅<,所以该函数在(,)a b 和(,)b c 上均有零点,故选A .15.B 【解析】二次函数()245g x x x =-+的图像开口向上,在x 轴上方,对称轴为2x =,(2)1g =; (2)2ln 2ln 41f ==>.所以(2)(2)g f <,从图像上可知交点个数为2.16.B 【解析】令()0f x =,可得0.51log 2x x =,由图象法可知()f x 有两个零点. 17.B 【解析】因为()f x 在[0,)+∞内单调递增,又1(0)10,(1)02f f =-<=>,所以()f x 在[0,)+∞内存在唯一的零点.18.C 【解析】0)(=x f ,则0=x 或0cos 2=x ,Z k k x ∈+=,22ππ,又[]4,0∈x ,4,3,2,1,0=k 所以共有6个解.选C .19.B 【解析】由题意()()f x f x -=知,所以函数()f x 为偶函数,所以()(2)(2)f x f x f x =-=-,所以函数()f x 为周期为2的周期函数,且(0)0f =,(1)1f =,而()|cos()|g x x x π=为偶函数,且113(0)()()()0222g g g g ==-==,在同一坐标系下作出两函数在13[,]22-上的图像,发现在13[,]22-内图像共有6个公共点,则函数()()()h x g x f x =-在13[,]22-上的零点个数为6,故选B .20.B 【解析】由题意知,若222()1x x x ---≤,即312x -≤≤时,2()2f x x =-;当222()1x x x --->,即1x <-或32x >时,2()f x x x =-,要使函数()y f x c =-的图像与x 轴恰有两个公共点,只须方程()0f x c -=有两个不相等的实数根即可,即函数()y f x =的图像与直线y c =有两个不同的交点即可,画出函数()y f x =的图像与直线y c =,不难得出答案B .21.C 【解析】由一元二次方程有两个不相等的实数根,可得判别式0∆>,即240m ->,解得2m <-或2m >,故选C . 22.D 【解析】图像法求解.11y x =-的对称中心是(1,0)也是2sin (24)y x x π=-≤≤的中心,24x -≤≤他们的图像在1x =的左侧有4个交点,则1x =右侧必有4个交点.不妨把他们的横坐标由小到大设为1,2345678,,,,,,x x x x x x x x , 则182736452x x x x x x x x +=+=+=+=,所以选D23.B 【解析】因为当02x ≤<时, 3()f x x x =-,又因为()f x 是R 上最小正周期为2的周期函数,且(0)0f =,所以(6)(4)(2)(0)0f f f f ====,又因为(1)0f =,所以(3)0f =,(5)0f =,故函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为7个,选B .24.C 【解析】当0x ≤时,令2230x x +-=解得3x =-;当0x >时,令2ln 0x -+=解得100x =,所以已知函数有两个零点,选C . 25.B 【解析】因为1(1)230f --=-<,0(0)2010f =-=>,所以选B . 26.A 【解析】20x x m ++=有实数解等价于140m ∆=-≥,即14m ≤.当14m <时,14m ≤成立,但14m ≤时,14m <不一定成立,故选A .27.A 【解析】(0)4sin10f =>,(2)4sin 52f =-,由于52ππ<<,所以(2)0f <,故函数()f x 在[0,2]上存在零点;由于(1)4sin(1)10f -=-+<,故函数()f x 在[1,0]-上存在零点,在[0,2]上也存在零点,令52[2,4]4x π-=∈, 则52552()4sin 0424f πππ--=->,而(2)0f <, 所以函数在[2,4]上存在零点,故选A . 28.3【解析】由题意知,cos(3)06x π+=,所以362x k πππ+=+,k ∈Z ,所以93k x ππ=+,k ∈Z ,当0k =时,9x π=;当1k =时,49x π=;当2k =时,79x π=,均满足题意,所以函数()f x 在[0,]π的零点个数为3.29.(48),【解析】当0x ≤时,由22x ax a ax ++=,得2a x ax =--;当0x >时,由222x ax a ax -+-=,得22a x ax =-+.令22,0(),0x ax x g x x ax x ⎧--=⎨-+>⎩≤,作出直线y a =,2y a =,函数()g x 的图象如图所示,()g x 的最大值为222424a a a -+=,由图象可知,若()f x ax =恰有2个互异的实数解,则224a a a <<,得48a <<. 30.3-【解析】2()622(3)f x x ax x x a '=-=-(a ∈R ),当0a ≤时()0f x '>在(0,)+∞上恒成立,则()f x 在(0,)+∞上单调递增,又(0)1f =,所以此时()f x 在(0,)+∞内无零点,不满足题意.当0a >时,由()0f x '>得3a x >,由()0f x '<得03a x <<,则()f x 在(0,)3a上单调递减,在(,)3a +∞上单调递增,又()f x 在(0,)+∞内有且只有一个零点,所以3()10327a a f =-+=,得3a =,所以32()231f x x x =-+, 则()6(1)f x x x '=-,当(1,0)x ∈-时,()0f x '>,()f x 单调递增,当(0,1)x ∈时,()0f x '<,()f x 单调递减,则max ()(0)1f x f ==,(1)4f -=-,(1)0f =,则min ()4f x =-,所以()f x 在[1,1]-上的最大值与最小值的和为3-.31.(1,4);(1,3](4,)+∞【解析】若2λ=,则当2x ≥时,令40x -<,得24x <≤;当2x <时,令2430x x -+<,得12x <<.综上可知14x <<,所以不等式()0f x <的解集为(1,4).令40x -=,解得4x =;令2430x x -+=,解得1x =或3x =.因为函数()f x 恰有2个零点,结合函数的图象(图略)可知13λ<≤或4λ>.32.8;11【解析】因为81z =,所以195373x y x y +=⎧⎨+=⎩,解得811x y =⎧⎨=⎩.33.8【解析】由于()[0,1)f x ∈,则需考虑110x ≤<的情况,在此范围内,x ∈Q 且x D ∈时,设*,,,2qx p q p p=∈≥N ,且,p q 互质, 若lg x ∈Q ,则由lg (0,1)x ∈,可设*lg ,,,2nx m n m m=∈≥N ,且,m n 互质, 因此10n mq p=,则10()nm q p =,此时左边为整数,右边为非整数,矛盾, 因此lg x ∉Q ,因此lg x 不可能与每个周期内x D ∈对应的部分相等, 只需考虑lg x 与每个周期x D ∉的部分的交点,画出函数图象,图中交点除外(1,0)其他交点横坐标均为无理数,属于每个周期x D ∉的部分,且1x =处11(lg )1ln10ln10x x '==<,则在1x =附近仅有一个交点,因此方程()lg 0f x x -=的解的个数为8.34.(3,)+∞【解析】由题意,当x m >时,222()24()4f x x mx m x m m m =-+=-+-,其顶点为2(,4)m m m -;当x m …时,函数()f x 的图象与直线x m =的交点为(,)Q m m .①当24m m m m>⎧⎨-⎩…,即03m <…时,函数()f x 的图象如图1所示,此时直线y b =与函数()f x 的图象有一个或两个不同的交点,不符合题意;②当240m m m m ⎧-<⎨>⎩,即3m >时,函数()f x 的图象如图2所示,则存在实数b 满足24m m b m -<…,使得直线y b =与函数()f x 的图象有三个不同的交点,符合题意.综上,m 的取值范围为(3,)+∞.图1 图235.2【解析】因为2()4coscos()2sin |ln(1)|22x f x x x x π=---+ 2(1cos )sin 2sin |ln(1)|x x x x =+⋅--+=sin 2|ln(1)|x x -+36.1- 1[,1)2[2,)+∞【解析】①若1a =,则21()4()(2) 1.x a x f x x a x a x ⎧-<=⎨--⎩≥‚‚‚,作出函数()f x 的图象如图所示,由图可知()f x 的最小值为1-.②当1a ≥时,要使()f x 恰好有3个零点,需满足120a -≤,即2a ≥.所以2a ≥;当1a <时,要使()f x 恰好有2个零点,需满足11220a a a <⎧⎨->⎩≤,解得112a <≤.37.),1()0,(+∞-∞ 【解析】分析题意可知,问题等价于方程)(3a xb x ≤=与方程)(2a x b x >=的根的个数和为2,若两个方程各有一个根:则可知关于b 的不等式组⎪⎪⎩⎪⎪⎨⎧≤->≤a b a b a b 31有解,从而1>a ;若方程)(3a x b x ≤=无解,方程)(2a xb x >=有2个根:则可知关于b 的不等式组⎪⎩⎪⎨⎧>->ab ab 31有解,从而0<a ;综上,实数a 的取值范围是),1()0,(+∞-∞ .38.1(0,)2【解析】函数()y f x a =-在区间[3,4]-上有互不相同的10个零点,即函数()y fx =与y a =的图象有10个不同的交点,在坐标系中作出函数()y f x =在一个周期内的图象,可知102a <<.39.2【解析】当0x ≤时,令220x -=,解得x =当0x >时,()26ln f x x x =-+,∵1()20f x x'=+>,∴()f x 在(0,)+∞上单调递增,因为(1)40f =-<,(3)ln30f =>,所以函数()26ln f x x x =-+在(0,)+∞有且只有一个零点,所以()f x 的零点个数为2.40.01a <<或9a >【解析】法一 显然0a >.(ⅰ)当(1)y a x =--与23y x x =--相切时,1a =,此时()|1|0f x a x --=恰有3个互异的实数根. (ⅱ)当直线(1)y a x =-与函数23y x x =+相切时,9a =,此时()|1|0f x a x --=恰有2个互异的实数根.结合图象可知01a <<或9a >.法二:显然1a ¹,所以231x xa x +=-.令1t x =-,则45a t t =++.因为4(,4]t t +∈-∞-[4,)+∞,所以45t t++Î(,1][9,)-∞+∞.结合图象可得01a <<或9a >.41.116-()【解析】由定义运算“*”可知 22(21)(21)(1),211()(1)(21)(1),211x x x x x f x x x x x x ⎧------=⎨----->-⎩…=222,0,0x x x x x x ⎧-⎨-+>⎩…,如图可知满足题意的m 的范围是104m <<,不妨设123x x x <<,当0x >时,2x x -+=m ,即20x x m -+=∴231x x +=;∴2232310()24x x x x +<<= 当0x …时,由212,(0)4x x x -=<,得14x -= 10x <<1230x x x << 42.(0,1)【解析】当2x <时,2()3(1)0f x x '=-≥,说明函数在(,2)-∞上单调递增,函数的值域是(,1)-∞,又函数在[2,)+∞上单调递减,函数的值域是(0,1],因此要使方程()f x k =有两个不同实根,则01k <<.43.(,2ln 22]-∞-【解析】由原函数有零点,可将问题转化为方程20xe x a -+=有解问题,即方程2x a x e =-有解.令函数()2x g x x e =-,则()2x g x e '=-,令()0g x '=,得ln 2x =,所以()g x 在(,ln 2)-∞上是增函数,在(ln 2,)+∞上是减函数,所以()g x 的最大值为(ln 2)2ln 22g =-,所以(,2ln 22]a ∈-∞-.。
专题02函数的概念与基本初等函数1.【2019年天津理科06】已知a=log52,b=log0.50.2,c=0.50.2,则a,b,c的大小关系为()A.a<c<b B.a<b<c C.b<c<a D.c<a<b【解答】解:由题意,可知:a=log52<1,b=log0.50.2log25>log24=2.c=0.50.2<1,∴b最大,a、c都小于1.∵a=log52,c=0.50.2.而log25>log24=2,∴.∴a<c,∴a<c<b.故选:A.2.【2019年天津理科08】已知a∈R.设函数f(x)若关于x的不等式f(x)≥0在R上恒成立,则a的取值范围为()A.[0,1] B.[0,2] C.[0,e] D.[1,e]【解答】解:当x=1时,f(1)=1﹣2a+2a=1>0恒成立;当x<1时,f(x)=x2﹣2ax+2a≥0⇔2a恒成立,令g(x)(1﹣x2)≤﹣(22)=0,∴2a≥g(x)max=0,∴a>0.当x>1时,f(x)=x﹣alnx≥0⇔a恒成立,令h(x),则h′(x),当x>e时,h′(x)>0,h(x)递增,当1<x<e时,h′′(x)<0,h(x)递减,∴x=e时,h(x)取得最小值h(e)=e,∴a≤h(x)e,综上a的取值范围是[0,e].故选:C.3.【2019年新课标3理科11】设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()A.f(log3)>f(2)>f(2)B.f(log3)>f(2)>f(2)C.f(2)>f(2)>f(log3)D.f(2)>f(2)>f(log3)【解答】解:∵f(x)是定义域为R的偶函数∴,∵log34>log33=1,,∴0f(x)在(0,+∞)上单调递减,∴,故选:C.4.【2019年全国新课标2理科12】设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x(x﹣1).若对任意x∈(﹣∞,m],都有f(x),则m的取值范围是()A.(﹣∞,] B.(﹣∞,] C.(﹣∞,] D.(﹣∞,]【解答】解:因为f(x+1)=2f(x),∴f(x)=2f(x﹣1),∵x∈(0,1]时,f(x)=x(x﹣1)∈[,0],∴x∈(1,2]时,x﹣1∈(0,1],f(x)=2f(x﹣1)=2(x﹣1)(x﹣2)∈[,0];∴x∈(2,3]时,x﹣1∈(1,2],f(x)=2f(x﹣1)=4(x﹣2)(x﹣3)∈[﹣1,0],当x∈(2,3]时,由4(x﹣2)(x﹣3)解得m或m,若对任意x∈(﹣∞,m],都有f(x),则m.故选:B.5.【2019年新课标1理科03】已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a【解答】解:a=log20.2<log21=0,b=20.2>20=1,∵0<0.20.3<0.20=1,∴c=0.20.3∈(0,1),∴a<c<b,故选:B.6.【2019年浙江06】在同一直角坐标系中,函数y,y=1og a(x)(a>0且a≠1)的图象可能是()A.B.C.D.【解答】解:由函数y,y=1og a(x),当a>1时,可得y是递减函数,图象恒过(0,1)点,函数y=1og a(x),是递增函数,图象恒过(,0);当1>a>0时,可得y是递增函数,图象恒过(0,1)点,函数y=1og a(x),是递减函数,图象恒过(,0);∴满足要求的图象为:D故选:D.7.【2019年浙江09】设a,b∈R,函数f(x)若函数y=f(x)﹣ax﹣b 恰有3个零点,则()A.a<﹣1,b<0 B.a<﹣1,b>0 C.a>﹣1,b<0 D.a>﹣1,b>0【解答】解:当x<0时,y=f(x)﹣ax﹣b=x﹣ax﹣b=(1﹣a)x﹣b=0,得x;y=f(x)﹣ax﹣b最多一个零点;当x≥0时,y=f(x)﹣ax﹣b x3(a+1)x2+ax﹣ax﹣b x3(a+1)x2﹣b,y′=x2﹣(a+1)x,当a+1≤0,即a≤﹣1时,y′≥0,y=f(x)﹣ax﹣b在[0,+∞)上递增,y=f(x)﹣ax﹣b最多一个零点.不合题意;当a+1>0,即a<﹣1时,令y′>0得x∈[a+1,+∞),函数递增,令y′<0得x∈[0,a+1),函数递减;函数最多有2个零点;根据题意函数y=f(x)﹣ax﹣b恰有3个零点⇔函数y=f(x)﹣ax﹣b在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点,如右图:∴0且,解得b<0,1﹣a>0,b(a+1)3.故选:C.8.【2018年新课标1理科09】已知函数f(x),g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)【解答】解:由g(x)=0得f(x)=﹣x﹣a,作出函数f(x)和y=﹣x﹣a的图象如图:当直线y=﹣x﹣a的截距﹣a≤1,即a≥﹣1时,两个函数的图象都有2个交点,即函数g(x)存在2个零点,故实数a的取值范围是[﹣1,+∞),故选:C.9.【2018年新课标2理科11】已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.50【解答】解:∵f(x)是奇函数,且f(1﹣x)=f(1+x),∴f(1﹣x)=f(1+x)=﹣f(x﹣1),f(0)=0,则f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,∵f(1)=2,∴f(2)=f(0)=0,f(3)=f(1﹣2)=f(﹣1)=﹣f(1)=﹣2,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=f(1)+f(2)=2+0=2,故选:C.10.【2018年新课标3理科12】设a=log0.20.3,b=log20.3,则()A.a+b<ab<0 B.ab<a+b<0 C.a+b<0<ab D.ab<0<a+b【解答】解:∵a=log0.20.3,b=log20.3,∴,,∵,,∴ab<a+b<0.故选:B.11.【2018年上海16】设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1),,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.故选:B.12.【2018年北京理科04】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A.f B.f C.f D.f【解答】解:从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为:.故选:D.13.【2018年天津理科05】已知a=log2e,b=ln2,c,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b【解答】解:a=log2e>1,0<b=ln2<1,c log23>log2e=a,则a,b,c的大小关系c>a>b,故选:D.14.【2017年新课标1理科05】函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2] B.[﹣1,1] C.[0,4] D.[1,3]【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.15.【2017年新课标1理科11】设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x,y,z.∴3y,2x,5z.∵,.∴lg0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x,y,z.∴1,可得2x>3y,1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.16.【2017年浙江05】若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m()A.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关【解答】解:函数f(x)=x2+ax+b的图象是开口朝上且以直线x为对称轴的抛物线,①当1或0,即a<﹣2,或a>0时,函数f(x)在区间[0,1]上单调,此时M﹣m=|f(1)﹣f(0)|=|a+1|,故M﹣m的值与a有关,与b无关②当1,即﹣2≤a≤﹣1时,函数f(x)在区间[0,]上递减,在[,1]上递增,且f(0)>f(1),此时M﹣m=f(0)﹣f(),故M﹣m的值与a有关,与b无关③当0,即﹣1<a≤0时,函数f(x)在区间[0,]上递减,在[,1]上递增,且f(0)<f(1),此时M﹣m=f(1)﹣f()=1+a,故M﹣m的值与a有关,与b无关综上可得:M﹣m的值与a有关,与b无关故选:B.17.【2017年北京理科05】已知函数f(x)=3x﹣()x,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数【解答】解:f(x)=3x﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x﹣()x为增函数,故选:A.18.【2017年北京理科08】根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033B.1053C.1073D.1093【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴1093,故选:D.19.【2017年天津理科06】已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(﹣log25.1),b =g(20.8),c=g(3),则a,b,c的大小关系为()A.a<b<c B.c<b<a C.b<a<c D.b<c<a【解答】解:奇函数f(x)在R上是增函数,当x>0,f(x)>f(0)=0,且f′(x)>0,∴g(x)=xf(x),则g′(x)=f(x)+xf′(x)>0,∴g(x)在(0,+∞)单调递增,且g(x)=xf(x)偶函数,∴a=g(﹣log25.1)=g(log25.1),则2<log25.1<3,1<20.8<2,由g(x)在(0,+∞)单调递增,则g(20.8)<g(log25.1)<g(3),∴b<a<c,故选:C.20.【2017年天津理科08】已知函数f(x),设a∈R,若关于x的不等式f(x)≥|a|在R上恒成立,则a的取值范围是()A.[,2] B.[,] C.[﹣2,2] D.[﹣2,]【解答】解:当x≤1时,关于x的不等式f(x)≥|a|在R上恒成立,即为﹣x2+x﹣3a≤x2﹣x+3,即有﹣x2x﹣3≤a≤x2x+3,由y=﹣x2x﹣3的对称轴为x1,可得x处取得最大值;由y=x2x+3的对称轴为x1,可得x处取得最小值,则a①当x>1时,关于x的不等式f(x)≥|a|在R上恒成立,即为﹣(x)a≤x,即有﹣(x)≤a,由y=﹣(x)≤﹣22(当且仅当x1)取得最大值﹣2;由y x22(当且仅当x=2>1)取得最小值2.则﹣2a≤2②由①②可得,a≤2.另解:作出f(x)的图象和折线y=|a|当x≤1时,y=x2﹣x+3的导数为y′=2x﹣1,由2x﹣1,可得x,切点为(,)代入y a,解得a;当x>1时,y=x的导数为y′=1,由1,可得x=2(﹣2舍去),切点为(2,3),代入y a,解得a=2.由图象平移可得,a≤2.故选:A.21.【2019年全国新课标2理科14】已知f(x)是奇函数,且当x<0时,f(x)=﹣e ax.若f(ln2)=8,则a=.【解答】解:∵f(x)是奇函数,∴f(﹣ln2)=﹣8,又∵当x<0时,f(x)=﹣e ax,∴f(﹣ln2)=﹣e﹣aln2=﹣8,∴﹣aln2=ln8,∴a=﹣3.故答案为:﹣322.【2019年江苏04】函数y的定义域是.【解答】解:由7+6x﹣x2≥0,得x2﹣6x﹣7≤0,解得:﹣1≤x≤7.∴函数y的定义域是[﹣1,7].故答案为:[﹣1,7].23.【2019年江苏14】设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x∈(0,2]时,f(x),g(x)其中k>0.若在区间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是.【解答】解:作出函数f(x)与g(x)的图象如图,由图可知,函数f(x)与g(x)(1<x≤2,3<x≤4,5<x≤6,7<x≤8)仅有2个实数根;要使关于x的方程f(x)=g(x)有8个不同的实数根,则f(x),x∈(0,2]与g(x)=k(x+2),x∈(0,1]的图象有2个不同交点,由(1,0)到直线kx﹣y+2k=0的距离为1,得,解得k(k>0),∵两点(﹣2,0),(1,1)连线的斜率k,∴k.即k的取值范围为[,).故答案为:[,).24.【2018年江苏05】函数f(x)的定义域为.【解答】解:由题意得:log2x≥1,解得:x≥2,∴函数f(x)的定义域是[2,+∞).故答案为:[2,+∞).25.【2018年江苏09】函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(﹣2,2]上,f(x),则f(f(15))的值为.【解答】解:由f(x+4)=f(x)得函数是周期为4的周期函数,则f(15)=f(16﹣1)=f(﹣1)=|﹣1|,f()=cos()=cos,即f(f(15)),故答案为:26.【2018年浙江11】我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则,当z=81时,x=,y=.【解答】解:,当z=81时,化为:,解得x=8,y=11.故答案为:8;11.27.【2018年浙江15】已知λ∈R,函数f(x),当λ=2时,不等式f(x)<0的解集是.若函数f(x)恰有2个零点,则λ的取值范围是.【解答】解:当λ=2时函数f(x),显然x≥2时,不等式x﹣4<0的解集:{x|2≤x<4};x<2时,不等式f(x)<0化为:x2﹣4x+3<0,解得1<x<2,综上,不等式的解集为:{x|1<x<4}.函数f(x)恰有2个零点,函数f(x)的草图如图:函数f(x)恰有2个零点,则1<λ≤3或λ>4.故答案为:{x|1<x<4};(1,3]∪(4,+∞).28.【2018年上海04】设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=.【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.29.【2018年上海07】已知α∈{﹣2,﹣1,,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.30.【2018年上海11】已知常数a>0,函数f(x)的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=.【解答】解:函数f(x)的图象经过点P(p,),Q(q,).则:,整理得:1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:631.【2018年北京理科13】能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是.【解答】解:例如f(x)=sin x,尽管f(x)>f(0)对任意的x∈(0,2]都成立,当x∈[0,)上为增函数,在(,2]为减函数,故答案为:f(x)=sin x.32.【2018年天津理科14】已知a>0,函数f(x).若关于x的方程f(x)=ax 恰有2个互异的实数解,则a的取值范围是.【解答】解:当x≤0时,由f(x)=ax得x2+2ax+a=ax,得x2+ax+a=0,得a(x+1)=﹣x2,得a,设g(x),则g′(x),由g′(x)>0得﹣2<x<﹣1或﹣1<x<0,此时递增,由g′(x)<0得x<﹣2,此时递减,即当x=﹣2时,g(x)取得极小值为g(﹣2)=4,当x>0时,由f(x)=ax得﹣x2+2ax﹣2a=ax,得x2﹣ax+2a=0,得a(x﹣2)=x2,当x=2时,方程不成立,当x≠2时,a设h(x),则h′(x),由h′(x)>0得x>4,此时递增,由h′(x)<0得0<x<2或2<x<4,此时递减,即当x=4时,h(x)取得极小值为h(4)=8,要使f(x)=ax恰有2个互异的实数解,则由图象知4<a<8,故答案为:(4,8)33.【2017年江苏14】设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x),其中集合D={x|x,n∈N*},则方程f(x)﹣lgx=0的解的个数是.【解答】解:∵在区间[0,1)上,f(x),第一段函数上的点的横纵坐标均为有理数,又f(x)是定义在R上且周期为1的函数,∴在区间[1,2)上,f(x),此时f(x)的图象与y=lgx有且只有一个交点;同理:区间[2,3)上,f(x)的图象与y=lgx有且只有一个交点;区间[3,4)上,f(x)的图象与y=lgx有且只有一个交点;区间[4,5)上,f(x)的图象与y=lgx有且只有一个交点;区间[5,6)上,f(x)的图象与y=lgx有且只有一个交点;区间[6,7)上,f(x)的图象与y=lgx有且只有一个交点;区间[7,8)上,f(x)的图象与y=lgx有且只有一个交点;区间[8,9)上,f(x)的图象与y=lgx有且只有一个交点;在区间[9,+∞)上,f(x)的图象与y=lgx无交点;故f(x)的图象与y=lgx有8个交点,且除了(1,0),其他交点横坐标均为无理数;即方程f(x)﹣lgx=0的解的个数是8,故答案为:834.【2017年新课标3理科15】设函数f(x),则满足f(x)+f(x)>1的x的取值范围是.【解答】解:若x≤0,则x,则f(x)+f(x)>1等价为x+1+x1>1,即2x,则x,此时x≤0,当x>0时,f(x)=2x>1,x,当x0即x时,满足f(x)+f(x)>1恒成立,当0≥x,即x>0时,f(x)=x1=x,此时f(x)+f(x)>1恒成立,综上x,故答案为:(,+∞).35.【2017年浙江17】已知a∈R,函数f(x)=|x a|+a在区间[1,4]上的最大值是5,则a的取值范围是.【解答】解:由题可知|x a|+a≤5,即|x a|≤5﹣a,所以a≤5,又因为|x a|≤5﹣a,所以a﹣5≤x a≤5﹣a,所以2a﹣5≤x5,又因为1≤x≤4,4≤x5,所以2a﹣5≤4,解得a,故答案为:(﹣∞,].36.【2017年上海08】定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),若g(x)为奇函数,则f﹣1(x)=2的解为.【解答】解:若g(x)为奇函数,可得当x>0时,﹣x<0,即有g(﹣x)=3﹣x﹣1,由g(x)为奇函数,可得g(﹣x)=﹣g(x),则g(x)=f(x)=1﹣3﹣x,x>0,由定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),且f﹣1(x)=2,可由f(2)=1﹣3﹣2,可得f﹣1(x)=2的解为x.故答案为:.37.【2017年上海09】已知四个函数:①y=﹣x,②y,③y=x3,④y,从中任选2个,则事件“所选2个函数的图象有且仅有一个公共点”的概率为.【解答】解:给出四个函数:①y=﹣x,②y,③y=x3,④y,从四个函数中任选2个,基本事件总数n,③④有两个公共点(0,0),(1,1).事件A:“所选2个函数的图象有且只有一个公共点”包含的基本事件有:①③,①④共2个,∴事件A:“所选2个函数的图象有且只有一个公共点”的概率为P(A).故答案为:.38.【2019年江苏18】如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB (AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA,规划要求:线段PB、QA上的所有点到点O的距离均不小于圆O的半径.已知点A、B到直线l的距离分别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P、Q两点间的距离.【解答】解:设BD与圆O交于M,连接AM,AB为圆O的直径,可得AM⊥BM,即有DM=AC=6,BM=6,AM=8,以C为坐标原点,l为x轴,建立直角坐标系,则A(0,﹣6),B(﹣8,﹣12),D(﹣8,0)(1)设点P(x1,0),PB⊥AB,则k BP•k AB=﹣1,即•1,解得x1=﹣17,所以P(﹣17,0),PB15;(2)当QA⊥AB时,QA上的所有点到原点O的距离不小于圆的半径,设此时Q(x2,0),则k QA•k AB=﹣1,即•1,解得x2,Q(,0),由﹣17<﹣8,在此范围内,不能满足PB,QA上所有点到O的距离不小于圆的半径,所以P,Q中不能有点选在D点;(3)设P(a,0),Q(b,0),则a≤﹣17,b,PB2=(a+8)2+144≥225,QA2=b2+36≥225,则b≥3,当d最小时,PQ=17+3.39.【2018年上海19】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f (x )=2x90>40,即x 2﹣65x +900>0,解得x <20或x >45,∴x ∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间; (2)当0<x ≤30时,g (x )=30•x %+40(1﹣x %)=40;当30<x <100时,g (x )=(2x 90)•x %+40(1﹣x %)x +58;∴g (x );当0<x <32.5时,g (x )单调递减; 当32.5<x <100时,g (x )单调递增;说明该地上班族S 中有小于32.5%的人自驾时,人均通勤时间是递减的; 有大于32.5%的人自驾时,人均通勤时间是递增的; 当自驾人数为32.5%时,人均通勤时间最少.1.【山西省晋城市2019届高三第三次模拟考试】若函数(()sin ln f x x ax =⋅的图象关于y 轴对称,则实数a 的值为( ) A .2 B .4C .2±D .4±【答案】C 【解析】依题意,函数()f x 为偶函数.由于()sin m x x =为奇函数,故(()ln g x ax =也为奇函数.而(()ln g x ax -=-+,故((()()ln ln 0g x g x ax ax -+=-+++=,即()222ln 140x a x +-=,解得2a =±.故选:C.2.【广东省东莞市2019届高三第二学期高考冲刺试题(最后一卷)】己知()f x 是定义在R 上的偶函数,在区间(]0-∞,为增函数,且()30f =,则不等式(12)0f x ->的解集为( ) A .()10-,B .()12-,C .()02,D .()2,+∞ 【答案】B 【解析】根据题意,因为f (x )是定义在R 上的偶函数,且在区间(一∞,0]为增函数, 所以函数f (x )在[0,+∞)上为减函数,由f (3)=0,则不等式f (1﹣2x )>0⇒f (1﹣2x )>f (3)⇒|1﹣2x|<3, 解可得:﹣1<x <2,即不等式的解集为(﹣1,2). 故选:B .3.【天津市河北区2019届高三一模】已知()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞内单调递减,则( )A .()()()320log 2log 3f f f <<-B .()()()32log 20log 3f f f <<-C .()()()23log 3log 20f f f -<<D .()()()32log 2log 30f f f <-<【答案】C 【解析】∵f (x )为偶函数∴()()22f log 3?f log 3-= ∵320log 21,log 31,< f (x )在[0,+∞)内单调递减,∴()()()23f log 3f log 2f 0<<,即()()()23f log 3f log 2f 0-<<故选:C4.【天津市红桥区2019届高三二模】已知 1.22a =,52log 2=b ,1ln 3c =,则( ) A .a b c >> B .a c b >> C .b a c >> D .b c a >>【答案】A【解析】1.21222a =>=5552log 2log 4log 51b ==<=且55log 4log 10b =>=1ln ln3ln 13c e ==-<-=-即1012c b a <-<<<<<a b c ∴>>本题正确选项:A5.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】已知函数()221log 2xf x x+=-,若()f a b =,则()4f a -=( )A .bB .2b -C .b -D .4b -【答案】B 【解析】因为()()()()22222213log log log 42222x xf x f x x x -++-=+==--- 故函数()f x 关于点(2,1)对称,则()4f a -=2b - 故选:B6.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】已知函数()21x f x x =-,则( )A .()f x 在()0,1单调递增B .()f x 的最小值为4C .()y f x =的图象关于直线1x =对称D .()y f x =的图象关于点()1,2对称【答案】D 【解析】由题意知:()()()()()()222222122111x x x x x x xf x x x x ----'===---当()0,1x ∈时,()0f x '<,则()f x 在()0,1上单调递减,A 错误; 当10x -<时,()0f x <,可知()f x 最小值为4不正确,B 错误;()()()22221x f x f x x --=≠--,则()f x 不关于1x =对称,C 错误; ()()()()2211114x x f x f x xx+-++-=+=-,则()f x 关于()1,2对称,D 正确.本题正确选项:D7.【山东省栖霞市2019届高三高考模拟卷(新课标I)】已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,当01x ≤≤时,2()f x x =,则(1)(2)(3)(2019)f f f f ++++=L ( )A .2019B .0C .1D .-1【答案】B 【解析】由()()()42f x f x f x +=-+=得:()f x 的周期为4 又()f x 为奇函数()11f ∴=,()()200f f =-=,()()()3111f f f =-=-=-,()()400f f ==即:()()()()12340f f f f +++=()()()()()()()()()1232019505123440f f f f f f f f f ∴+++⋅⋅⋅=⨯+++-=⎡⎤⎣⎦本题正确选项:B8.【天津市红桥区2019届高三一模】若方程2121x kx x -=--有两个不同的实数根,则实数k 的取值范围是( ) A .(),1-∞- B .()1,0-C .()0,4D .()()0,11,4【答案】D 【解析】 解:y 211111111x x x x x x x -+-⎧==⎨----⎩,>或<,<<, 画出函数y =kx ﹣2,y 211x x -=-的图象,由图象可以看出,y =kx ﹣2图象恒过A (0,﹣2),B (1,2),AB 的斜率为4,①当0<k <1时,函数y =kx ﹣2,y 211x x -=-的图象有两个交点,即方程211x x -=-kx ﹣2有两个不同的实数根;②当k =1时,函数y =kx ﹣2,y 211x x -=-的图象有1个交点,即方程211x x -=-kx ﹣2有1个不同的实数根;③当1<k <4时,函数y =kx ﹣2,y 211x x -=-的图象有两个交点,即方程211x x -=-kx ﹣2有两个不同的实数根;④当k 0≤时,函数y =kx ﹣2,y 211x x -=-的图象有1个交点.因此实数k 的取值范围是0<k <1或1<k <4. 故选:D .9.【天津市部分区2019届高三联考一模】设,m n R ∈,则“m n <”是“112m n-⎛⎫> ⎪⎝⎭”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】()12xf x ⎛⎫= ⎪⎝⎭在R 上递减,∴若011,0,122m nm n m n -⎛⎫⎛⎫<-<>= ⎪ ⎪⎝⎭⎝⎭充分性成立, 若112m n-⎛⎫> ⎪⎝⎭,则01122m n-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭, 0,m n m n -<<必要性成立,即“m n <”是“112m n-⎛⎫> ⎪⎝⎭”的充要条件,故选C.10.【广东省2019届高考适应性考试】某罐头加工厂库存芒果()m kg ,今年又购进()n kg 新芒果后,欲将芒果总量的三分之一用于加工为芒果罐头。
第二章 函数概念与基本初等函数Ⅰ第五讲 对数与对数函数练好题·考点自测1。
下列说法正确的是( )①若MN >0,则log a (MN )=log a M +log a N.②对数函数y =log a x (a >0且a ≠1)在(0,+∞)上是增函数. ③函数y =ln1+x 1-x与y =ln(1+x )—ln (1—x )的定义域相同。
④对数函数y =log a x (a 〉0且a ≠1)的图象过定点(1,0)且过点(a ,1),(1a,-1),函数图象只在第一、四象限。
A.①③④B.①③ C 。
③④ D.④2.[2019浙江,6,5分]在同一直角坐标系中,函数y =1a x,y =log a(x +12)(a >0,且a ≠1)的图象可能是( )A B CD3。
[2020全国卷Ⅰ,8,5分][文]设a log 34=2,则4-a = ( ) A 。
116B.19C 。
18D.164.[2020全国卷Ⅱ,9,5分]设函数f (x )=ln|2x +1|-ln|2x —1|,则f (x )( )A 。
是偶函数,且在(12,+∞)单调递增B .是奇函数,且在(−12,12)单调递减C.是偶函数,且在(-∞,−1)单调递增2)单调递减D。
是奇函数,且在(-∞,−12, 5.[2020全国卷Ⅲ,10,5分][文]设a=log32,b=log53,c=23则() A.a〈c〈b B.a<b<cC。
b〈c<a D。
c<a〈b6.[2018全国卷Ⅲ,16,5分][文]已知函数f(x)=ln(√1+x2−x)+1,f(a)=4,则f(-a)=.,a b=b a, 7。
[2016浙江,12,6分]已知a>b>1。
若log a b+log b a=52则a=,b=.拓展变式1。
[2021安徽省四校联考]已知实数a,b满足a+b=5,log2a=log3b,则ab=()A。
第5讲 基本初等函数、函数与方程[考情分析] 1.基本初等函数的图象、性质是高考考查的重点,利用函数性质比较大小是常见题型.2.函数零点的个数判断及参数范围是高考的热点,常以压轴题形式出现.基本初等函数(Ⅰ)本节复习的基本初等函数包括:一次函数、二次函数、指数函数、对数函数和幂函数,三角函数在三角部分复习.函数的图象上直观地反映着函数的性质,学习函数的“捷径”是熟知函数的图象.熟知函数图象包括三个方面:作图,读图,用图.掌握初等函数一般包括以下一些内容:首先是函数的定义,之后是函数的图象和性质.函数的性质一般包括定义域,值域,图象特征,单调性,奇偶性,周期性,零点、最值以及值的变化特点等,研究和记忆函数性质的时候应全面考虑.函数的定义(通常情况下是解析式)决定着函数的性质,我们可以通过解析式研究函数的性质,也可以通过解析式画出函数的图象,进而直观的发现函数的性质. 【知识要点】1.一次函数:y =kx +b (k ≠0)(1)定义域为R ,值域为R ; (2)图象如图所示,为一条直线;(3)k >0时,函数为增函数,k <0时,函数为减函数;(4)当且仅当b =0时一次函数是奇函数.一次函数不可能是偶函数. (5)函数y =kx +b 的零点为⋅-kb2.二次函数:y =ax 2+bx +c (a ≠0)通过配方,函数的解析式可以变形为⋅-++=a b ac ab x a y 44)2(22 (1)定义域为R :当a >0时,值域为),44[2+∞-a b ac ;当a <0时,值域为]44,(2ab ac --∞;(2)图象为抛物线,抛物线的对称轴为abx 2-=,顶点坐标为)44,2(2a b ac a b --.当a >0时,抛物线开口向上;当a <0时,抛物线开口向下. (3)当a >0时,]2,(a b --∞是减区间,),2[+∞-ab是增区间; 当a <0时,]2,(a b --∞是增区间,),2[+∞-ab是减区间. (4)当且仅当b =0时,二次函数是偶函数;二次函数不可能是奇函数.(5)当判别式∆=b 2-4ac >0时,函数有两个变号零点aacb b 242-±-;当判别式∆=b 2-4ac =0时,函数有一个不变号零点ab 2-; 当判别式∆=b 2-4ac <0时,函数没有零点. 3.指数函数y =a x(a >0且a ≠1) (1)定义域为R ;值域为(0,+∞).(2)a >1时,指数函数为增函数;0<a <1时,指数函数为减函数; (3)函数图象如图所示.不具有奇偶性、周期性,也没有零点.4.对数函数y =log a x (a >0且a ≠1),对数函数y=log a x与指数函数y=a x互为反函数.(1)定义域为(0,+∞);值域为R.(2)a>1时,对数函数为增函数;0<a<1时,对数函数为减函数;(3)函数图象如图所示.不具有奇偶性、周期性,(4)函数的零点为1.5.幂函数y=xα(α∈R)幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质:(1)所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1);(2)如果α>0,则幂函数的图象通过原点,并且在区间[0,+∞)上是增函数;(3)如果α<0,则幂函数在区间(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限地接近y轴,当x趋于+∞时,图象在x轴上方无限地接近x轴.要注意:因为所有的幂函数在(0,+∞)都有定义,并且当x∈(0,+∞)时,xα>0,所以所有的幂函数y=xα(α∈R)在第一象限都有图象.根据幂函数的共同性质,可以比较容易的画出一个幂函数在第一象限的图象,再根据幂函数的定义域和奇偶性,我们可以得到这个幂函数在其他象限的图象,这样就能够得到这个幂函数的大致图象.6.指数与对数(1)如果存在实数x ,使得x n =a (a ∈R ,n >1,n ∈N +),则x 叫做a 的n 次方根. 负数没有偶次方根.),1()(+∈>=N n n a a n n ;⎩⎨⎧=为偶数时当为奇数时当n a n a a nn|,|,)( (2)分数指数幂,)0(1>=a a a n n;,0()(>==a a a a n m m n nm n ,m ∈N *,且nm为既约分数). *N ,,0(1∈>=-m n a aanm nm ,且nm为既约分数). (3)幂的运算性质a m a n =a m +n ,(a m )n =a mn ,(ab )n =a n b n ,a 0=1(a ≠0).(4)一般地,对于指数式a b=N ,我们把“b 叫做以a 为底N 的对数”记为log a N , 即b =log a N (a >0,且a ≠1). (5)对数恒等式:Na alog =N .(6)对数的性质:零和负数没有对数(对数的真数必须大于零!); 底的对数是1,1的对数是0. (7)对数的运算法则及换底公式:N M NMN M MN a a aa a a log log log ;log log )(log -=+=; M M a a log log αα=; bNN a a b log log log =.(其中a >0且a ≠1,b >0且b ≠1,M >0,N >0).【复习要求】1.掌握基本初等函数的概念,图象和性质,能运用这些知识解决有关的问题;其中幂函数主要掌握y =x ,y =x 2,y =x 3,21,1x y xy ==这五个具体的幂函数的图象与性质.2.准确、熟练的掌握指数、对数运算;3.整体把握函数的图象和性质,解决与函数有关的综合问题.函数的图象 在函数图象上,定义域、值域、对应关系、单调性、奇偶性和周期性一览无遗.因此,快速准确地作出函数图象成为学习函数的一项基本功,而读图也从“形”的角度成为解决函数问题及其他相关问题的一种重要方法.【知识要点】作函数图象最基本的方法是列表描点作图法.常用的函数图象变换有:1.平移变换y=f(x+a):将y=f(x)的图象向左(a>0)或向右(a<0)平移|a|个单位可得.y=f(x)+a:将y=f(x)的图象向上(a>0)或向下(a<0)平移|a|个单位可得.2.对称变换y=-f(x):作y=f(x)关于x轴的对称图形可得.y=f(-x):作y=f(x)关于y轴的对称图形可得.3.翻折变换y=|f(x)|:将y=f(x)的图象在x轴下方的部分沿x轴翻折到x轴的上方,其他部分不变即得.y=f(|x|):此偶函数的图象关于y轴对称,且当x≥0时图象与y=f(x)的图象重合.【复习要求】1.能够在对函数性质作一定的讨论之后,用描点法作出函数的图象.2.能够对已知函数y=f(x)的图象,经过适当的图象变换得到预期函数的图象.3.通过读图能够分析出图形语言所表达的相关信息(包括函数性质及实际意义),运用数形结合的思想解决一些与函数有关的问题.考点一基本初等函数的图象与性质核心提炼1.指数函数y=a x(a>0,a≠1)与对数函数y=log a x(a>0,a≠1)互为反函数,其图象关于y=x对称,它们的图象和性质分0<a<1,a>1两种情况,着重关注两函数图象的异同.2.幂函数y=xα的图象和性质,主要掌握α=1,2,3,12,-1五种情况.【例题分析】1.=()A.2B.C.D.﹣2【考点】有理数指数幂及根式.【专题】转化思想;定义法;函数的性质及应用;数学运算.【答案】B【分析】利用根式与有理指数幂的互化以及有理指数幂的运算性质求解即可.【解答】解:原式=.故选:B.【点评】本题考查了有理数指数幂及根式的运算,主要考查了有理指数幂的互化以及有理指数幂的运算性质,属于基础题.2.函数y=2x(x≤0)的值域是()A.(0,1)B.(﹣∞,1)C.(0,1]D.[0,1)【考点】指数函数的定义、解析式、定义域和值域.【专题】函数思想;转化法;函数的性质及应用.【答案】C【分析】本题可利用指数函数的值域.【解答】解:∵y=2x(x≤0)为增函数,且2x>0,∴20=1,∴0<y≤1.∴函数的值域为(0,1].故选:C.【点评】本题考查的是函数值域的求法,关键是要熟悉指数函数的单调性,本题计算量极小,属于容易题.3.如果函数f(x)=3x+b的图象经过第一、二、三象限,不经过第四象限,则()A.b<﹣1B.﹣1<b<0C.0<b<1D.b>1【考点】指数函数的图象与性质.【专题】计算题;函数思想;转化法;函数的性质及应用;数学运算.【答案】B【分析】利用函数图象的平移变换,得到关于b的不等式,再求出b的范围.【解答】解:∵函数f(x)=3x+b的图象经过第一、二、三象限,不经过第四象限,∴函数f(x)=3x+b是由函数f(x)=3x的图象向下平移|b|个单位长度得到,且|b|<1,又∵图象向下平移,∴b<0,∴﹣1<b<0,故选:B.【点评】本题主要考查了函数图象的平移变换,是基础题.函数的最值最大值与最小值是研究变量问题时常需要考虑的问题,也是高中数学中最重要的问题之一.函数的最大值、最小值问题常与实际问题联系在一起.函数的最值与值域在概念上是完全不同的,但对于一些简单函数,其求法是相通的. 【知识要点】本节主要讨论两类常见的函数最值的解决方法及其应用.1.基本初等函数在特定区间上的最值(或值域)问题.解决这类问题的方法是:作出函数图象,观察单调性,求出最值(或值域).2.一些简单的复合函数的最值问题.解决这类问题的方法通常有: (1)通过作出函数图象变成第1类问题; (2)通过换元法转化成第1类问题; (3)利用平均值定理求最值;(4)通过对函数单调性进行讨论进而求出最值.其中讨论单调性的方法可以用单调性定义或导数的知识(导数的方法在后面相应章节复习); (5)转化成几何问题来求解,如线性规划问题等. 【复习要求】从整体上把握求函数最值的方法,明确求最值的一般思路.函数与方程【知识要点】1.如果函数y =f (x )在实数a 处的值等于零,即f (a )=0,则a 叫做这个函数的零点. 函数零点的几何意义:如果a 是函数y =f (x )的零点,则点(a ,0)一定在这个函数的函数图象上,即这个函数与x 轴的交点为(a ,0). 2.零点的判定如果函数y =f (x )在区间[a ,b ]上的图象是不间断的,而且f (a )f (b ),则这个函数在区间[a ,b ]上至少有一个零点.这也是二分法的依据.注意:上述判定零点的方法只是判断零点存在的充分条件.这种判定零点方法主要适用于在无法对函数进行作图而且也不易对函数所对应的方程求根的情况下.如果可以画出函数的图象(这时判断函数零点的方法将是非常直观的),如果函数所对应的方程可以求根,那么就可以用“作图”和“求根”的方法判断零点. 3.用二分法求函数y =f (x ),x ∈D 零点的一般步骤为:第一步、确定初始区间,即在D 内取一个闭区间[a ,b ],使得f (a )f (b )<0; 第二步、求中点及其对应的函数值,即求)(21b a x +=<0以及f (x )的值,如果f (x )=0,则计算终止,否则进一步确定零点所在的区间;第三步、计算精确度,即计算区间的两个端点按给定的精确度取近似值时是否相等,若相等,则计算终止,否则重复第二步.【复习要求】1、结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.2、能够用二分法求相应方程的近似解.考点二函数的零点核心提炼判断函数零点个数的方法:(1)利用零点存在性定理判断法.(2)代数法:求方程f(x)=0的实数根.(3)几何法:对于不易求根的方程,将它与函数y=f(x)的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性.规律方法利用函数零点的情况求参数值(或取值范围)的三种方法【例题分析】1.函数f(x)=﹣lnx的零点所在的大致区间是()A.(1,2)B.(2,3)C.(3,4)D.(e,+∞)【考点】函数的零点.【专题】函数的性质及应用.【答案】B【分析】由函数的解析式可得f(2)•f(3)<0,再利用函数的零点的判定定理可得函数的零点所在的大致区间.【解答】解:∵函数满足f(2)=>0,f(3)=1﹣ln3<0,∴f (2)•f(3)<0,根据函数的零点的判定定理可得函数的零点所在的大致区间是(2,3),故选:B .【点评】本题主要考查函数的零点的判定定理的应用,属于基础题. 2.已知函数f (x )=﹣log 2x ,在下列区间中,函数f (x )有零点的是( ) A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)【考点】函数的零点.【专题】计算题;函数思想;试验法;函数的性质及应用. 【答案】B【分析】首先判断函数f (x )=﹣log 2x 在(0,+∞)上是减函数,且连续;从而由零点的判定定理判断即可.【解答】解:易知函数f (x )=﹣log 2x 在(0,+∞)上是减函数,且连续; f (1)=1﹣0=1>0,f (2)=﹣1=﹣<0; 故函数f (x )有零点的区间是(1,2); 故选:B .【点评】本题考查了函数的性质的判断与应用及零点的判定定理的应用,注意掌握基本初等函数的性质.3.函数24,0()(),0x x f x g x x ⎧->=⎨<⎩是奇函数,则函数()f x 的零点是 2± .【答案】2±.【考点】函数的零点;函数奇偶性的性质与判断【专题】整体思想;综合法;函数的性质及应用;数学运算 【分析】由已知函数解析式及奇函数的对称性即可求解. 【解答】解:当0x >时,()240x f x =-=, 解得,2x =,根据奇函数的对称性可知,2x =-也是函数()f x 的零点, 故答案为:2±.【点评】本题主要考查了函数零点的求解,属于基础题.考点3 函数零点的判定定理 【例题分析】1.在下列区间中,存在函数3()2f x lnx x =-+的零点的是( )A .1(0,)2B .1(,1)2C .(1,2)D .(2,3)【答案】AD【考点】函数零点的判定定理【专题】计算题;方程思想;转化思想;综合法;函数的性质及应用;数学运算【分析】根据题意,求出函数的导数,分析()f x 的单调区间,由函数零点判断定理依次分析选项,综合即可得答案.【解答】解:根据题意,3()2f x lnx x =-+,其定义域为(0,)+∞,其导数11()1xf x x x -'=-=,在区间(0,1)上,()0f x '>,()f x 为增函数, 在区间(1,)+∞上,()0f x '<,()f x 为减函数, 依次分析选项:对于A ,()f x 在1(0,)2上递增,2222111311()022f ln e e e e =-+=--<,1113()12022222ef ln ln ln =-+=-=>,在()f x 在1(0,)2上存在零点,A 正确,对于B ,()f x 在1(2,1)上递增,1()1202f ln =->,f (1)3111022ln =-+=>,在()f x 在1(2,1)上不存在零点,B 错误,对于C ,()f x 在(1,2)上递减,f (1)102=>,f (2)31222022ln ln =-+=->, 在()f x 在(1,2)上不存在零点,C 错误, 对于D ,()f x 在(2,3)上递减,f (2)1202ln =->,f (3)33333022ln ln =-+=-<, 在()f x 在(2,3)上存在零点,D 正确, 故选:AD .【点评】本题考查函数的零点判断定理,解题的关键是确定区间端点对应的函数值异号,属于基础题.2.函数2()2log f x x x =-+的零点所在的一个区间是( ) A .(4,5) B .(3,4)C .(2,3)D .(1,2)【答案】D【考点】函数零点的判定定理【专题】转化思想;定义法;函数的性质及应用;逻辑推理【分析】由函数解析式,判断f (1)f (2)0<,由零点的存在性定理进行分析求解即可. 【解答】解:因为2()2log f x x x =-+, 所以f (1)212log 110=-+=-<, f (2)222log 210=-+=>,所以f (1)f (2)0<,由零点的存在性定理可得,函数2()2log f x x x =-+的零点所在的一个区间是(1,2). 故选:D .【点评】本题考查了函数零点的问题,主要考查了函数零点的存在性定理的应用,属于基础题.3.利用二分法求方程20lnx x +-=的近似解,已求得()2f x lnx x =+-的部分函数值的数据如表:A .1.55B .1.62C .1.71D .1.76【答案】A【考点】函数零点的判定定理【专题】函数思想;定义法;函数的性质及应用;逻辑推理【分析】利用表格中的数据,在结合零点的存在性定理进行分析求解即可. 【解答】解:根据表中的数据可得,(1.5)0.0945f =-,(1.5625)0.0088f =, 故函数()f x 的零点在区间(1.5,1.5625)之间, 只有1.55符合要求. 故选:A .【点评】本题考查了函数零点的求解,涉及了零点存在性定理的应用,解题的关键是熟练掌握函数零点的存在性定理,属于基础题. 函数零点与方程根的关系 【例题分析】1.已知函数2,12()1,21log x x f x x x <⎧⎪=⎨>⎪-⎩,若方程()0f x a -=至少有两个实数根,则实数a 的取值范围为( ) A .(0,1)B .(0,1]C .[0,2)D .[0,2]【答案】A【考点】函数的零点与方程根的关系【专题】计算题;数形结合;转化思想;演绎法;函数的性质及应用;逻辑推理;数学运算【分析】首先将问题转化为两个函数交点个数的问题,然后数形结合即可确定实数a的取值范围.【解答】解:原问题等价于函数y a与函数()f x至少有两个交点,绘制函数图象如图所示,观察可得,实数a的取值范围是(0,1).故选:A.【点评】本题主要考查由函数的零点个数求参数的方法,等价转化的数学思想,数形结合的数学思想等知识,属于基础题.2.若方程|2x﹣2|=b有一个零点,则实数b的取值范围是.【考点】函数的零点;函数的零点与方程根的关系.【专题】数形结合;数形结合法;函数的性质及应用;逻辑推理.【答案】(2,+∞)∪{0}..【分析】根据函数与方程之间的关系,作出两个函数的图象,利用数形结合进行求解即可.【解答】解:作出函数y=|2x﹣2|的图象如图:要使方程|2x﹣2|=b有一个零点,则函数y=|2x﹣2|与y=b有一个交点,则b>2或b=0,故实数b的取值范围是b>2或b=0,即(2,+∞)∪{0}.故答案为:(2,+∞)∪{0}.【点评】本题主要考查函数与方程的应用,作出函数图象,利用数形结合是解决本题的关键,是基础题.3.已知关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,且212x x =,则实数a 的值是() A .5 B .6 C .7 D .15【答案】B【考点】函数的零点与方程根的关系【专题】方程思想;转化法;高考数学专题;函数的性质及应用;数学运算【分析】根据条件可得3log (10)(010)x a a =±<<,然后由212x x =,得到33log (10)2log (10)a a +=-或33log (10)2log (10)a a -=+,再求出a 的值.【解答】解:关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,∴由|310|x a -=,可知010a <<,3log (10)(010)x a a ∴=±<<,关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,且212x x =, 33log (10)2log (10)a a ∴+=-或33log (10)2log (10)a a -=+ 210(10)a a ∴+=-或210(10)a a -=+,6a ∴=±或15a =±,又010a <<, 6a ∴=.故选:B .【点评】本题考查了函数的零点与方程根的关系,考查了方程思想和转化思想,属基础题.。
专题二函数概念与基本初等函数Ⅰ第五讲函数与方程2019 年1.(2019 全国Ⅱ理12)设函数f (x) 的定义域为R,满足f (x 1) 2 f (x) ,且当x (0,1] 时,f (x ) x(x 1) .若对任意x (,m] ,都有( ) 8f x ,则m 的取值范围是99,A .47,B .35,C .28,D.32 .(2019 江苏14)设f (x), g(x) 是定义在R上的两个周期函数,f (x) 的周期为4,g(x) 的周期为 2 ,且 f (x) 是奇函数. 当x (0, 2] 时, f (x ) 1(x 1)2 ,k(x 2), 0 x1g x ,其中k>0.若在区间(0,9]上,关于x 的方程f (x ) g(x) 有8 ( ) 1,1x22个不同的实数根,则k 的取值范围是.3.(2019 浙江9)已知a,b R,函数x, xf x( ) 1 1x (a 1)x ax, x 03 23 2,若函数y f x ax b 恰有3 个零点,则( )A.a<-1,b<0 B.a<-1,b>0C.a>-1,b<0 D.a>-1,b>02010-2018 年一、选择题1.(2018 全国卷Ⅰ)已知函数f (x) x e ,x≤0,g(x) f (x) x a .若g(x) 存在2 个ln x,x 0,零点,则a 的取值范围是1A.[1, 0) B.[0,) C.[1,) D.[1,) 2.(2017 新课标Ⅲ)已知函数f (x ) x 2x a(e x e x) 有唯一零点,则a =2 1 1A.1B.213C.12D.13.(2017 山东)已知当x[0,1]时,函数y (mx 1)2 的图象与y x m的图象有且只有一个交点,则正实数m 的取值范围是A .0,1U2 3, B.0,1U 3,C .0, 2U 2 3,D .0, 2U 3,4.(2016 年天津)已知函数f (x) = x 2 (4a 3)x 3a, x 0,(a 0 ,且a 1)在R上单log (x 1) 1, xa调递减,且关于x 的方程| f (x ) |2 x 恰好有两个不相等的实数解,则a 的取值范围是A .( 0,23]B.[23,34]C.[13,23] U{34}D.[135.(2015 安徽)下列函数中,既是偶函数又存在零点的是A.y cos x B.y sin x C.y ln x D.y x 2 1 6.(2015 福建)若a,b 是函数f x x 2 px q p 0,q 0 的两个不同的零点,且a,b ,2 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q 的值等于A.6 B.7 C.8 D.97.(2015 天津)已知函数f x 2 x , x 22x 2 , x 2函数g x b f 2 x,其中b R ,若函数y f x g x恰有4 个零点,则b 的取值范围是7 C.(0, 7)B.( , 7)A.( , )7 D.( ,2)44 4 48.(2015 陕西)对二次函数f(x) ax bx c (a 为非零整数),四位同学分别给出下列2结论,其中有且仅有一个结论是错误的,则错误的结论是2A.-1 是f (x) 的零点B.1 是f (x) 的极值点C.3 是f (x) 的极值D.点(2,8) 在曲线y f (x) 上9.(2014 山东)已知函数f x x 2 1,g x kx .若方程f x g x有两个不相等的实根,则实数k 的取值范围是1 1A.(0,)B.(,1)2 2C.(1,2)D.(2,)610.(2014 北京)已知函数,在下列区间中,包含f x零点的区间是f x log x2xA .0,1B .1, 2C .2, 4D .4,11.(2014 重庆)已知函数13, x ( 1, 0]f (x) x 1, 且g(x ) f (x ) mx m 在(1, 1] x, x (0,1]内有且仅有两个不同的零点,则实数m 的取值范围是9 1 11 1A.(,2](0, ] B.(,2](0, ]4 2 4 29 2 11 2C.(,2](0, ] D.(,2](0, ]4 3 4 312.(2014 湖北)已知f (x) 是定义在R上的奇函数,当x 0 时,f (x) = x 2 3x .则函数g(x ) f (x ) x + 3 的零点的集合为A.{1, 3} B.{3,1,1, 3} C.{2 7 ,1, 3} D.{ 2 7 , 1, 3}13.(2013 安徽)已知函数f(x ) x ax bx c 有两个极值点3 2 x x ,若1, 2f (x ) x x ,则关于x 的方程3( f (x))2 2af (x ) b 0的不同实根个数为1 1 2A.3 B.4 C.5 D.614.(2013 重庆)若a b c ,则函数f x x a x b x b x c x c x a 的两个零点分别位于区间A .a,b 和b,c内B .,a 和a,b内C .b,c 和c ,内D .,a 和c ,内15.(2013 湖南)函数f x2ln x 的图像与函数g x x2 4x 5的图象的交点个数为3A .3B .2C .1D .016.(2013 天津)函数 f (x ) 2x | log x | 1的零点个数为0.5A .1B .2C .3D .417.(2012 北京)函数1 21f (x ) x ( ) 的零点个数为x2A .0B .1C .2D .318.(2012 湖北)函数 f (x ) x cos x 2 在区间[0, 4] 上的零点个数为A .4B .5C .6D .719.(2012 辽宁)设函数 f (x ) x R满足 f (x ) f (x ) ,f (x ) f (2 x ) ,且当 x0,1 1 3时, f xx .又函数 g x = x cos x ,则函数 h (x ) g (x ) f (x ) 在=[ , ]上 32 2的零点个数为 A .5B .6C .7D .8a , ab 1, 20.(2011 天津)对实数 a 与b ,定义新运算“ ”:a bb , a b1.设函数f (x ) x 2x x , x R .若函数 y f (x ) c 的图像与 x 轴恰有两个公共点,22则实数 c 的取值范围是3 A ., 2 1, 23B ., 21,41 1 C ., ,443 1D .1, , 4 421.(2011 福建)若关于 x 的方程 x 2 mx 1 0有两个不相等的实数根,则实数 m 的取值范围是 A .( 1,1) B .( 2,2) C .(∞,2)∪(2,+∞) D .(∞,1)∪(1,+∞)22.(2011 全国新课标)函数y1x 1的图像与函数y 2sin x(2≤x ≤4) 的图像所有交点的横坐标之和等于A.2 B.4 C.6 D.8423.(2011 山东)已知f (x) 是R 上最小正周期为2 的周期函数,且当0≤x 2 时,f x x x ,则函数y f (x) 的图象在区间[0,6]上与x 轴的交点的个数为( )3A.6 B.7 C.8 D.924.(2010 年福建)函数f (x) 2 2 3, 0x x x ≤2 ln x, x 0,的零点个数为A.0 B.1 C.2 D.325.(2010 天津)函数f (x ) 2x 3x 的零点所在的一个区间是A.(2,1)B.(1,0)C.(0,1)D.(1,2)1m ”是“一元二次方程x 2 x m 0 有实数解”的26.(2010 广东)“4A.充分非必要条件B.充分必要条件C.必要非充分条件D.非充分非必要条件27.(2010 浙江)设函数f (x ) 4sin(2x 1) x ,则在下列区间中函数f (x) 不.存在零点的是A .4,2B .2, 0C .0, 2D .2, 4二、填空题28.(2018 全国卷Ⅲ)函数f (x ) cos(3x ) 在[0,]的零点个数为________.629.(2018 天津)已知a 0 ,函数f (x) 2x 2ax a, x ≤0,x 2ax 2a, x 0.2若关于x 的方程f (x ) ax恰有2 个互异的实数解,则a 的取值范围是.30.(2018江苏)若函数( ) 2 1( )f x x 3 ax 2 a R在(0,)内有且只有一个零点,则f (x)在[1,1]上的最大值与最小值的和为.31.(2018 浙江)已知R,函数f (x) x x4, ≥x,当 2 时,不等式f (x ) 0xx 4x 3, x2的解集是_____.若函数f (x) 恰有2 个零点,则的取值范围是______.32.(2018 浙江)我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设5x y z100鸡翁,鸡母,鸡雏个数分别为 x ,y ,z ,则15x 3y z 100 3,当 z 81时,x ,y .33.(2017 江苏)设 f (x ) 是定义在 R 且周期为 1 的函数,在区间[0,1) 上,f (x )x 2 , x Dx , x D其中集合n 1D {x | x ,n N *},则方程 f (x ) lg x 0的解的个数是 .n 34.(2016 年山东)已知函数 f (x ) | x |, x m ≤x 2mx 4m , x m2其中 m 0 ,若存在实数b ,使得关于 x 的方程 f (x ) b 有三个不同的根,则 m 的取值范围是_________. 35.(2015 湖北)函数 ( ) 4 cos 2 cos(π) 2 s in | ln( 1) | f xx x x 的零点个数为.x2236.(2015 北京)设函数 f xx a x2 ‚ 1‚‚4 x a x 2a x 1.①若 a 1,则 f x 的最小值为;②若 f x 恰有 2 个零点,则实数 a 的取值范围是 .37.(2015 湖南)已知函数f (x )3x , x ≤ ax , x a2,若存在实数b ,使函数 g (x ) f (x ) b 有两个零点,则 a 的取值范围是.38.(2014 江苏)已知 f (x ) 是定义在 R 上且周期为 3 的函数,当 x [0,3) 时,1f (x x 2 x .若函数y f (x ) a 在区间[3,4]上有10 个零点(互不相同),则实) | 2 |2数a 的取值范围是.2x 2, x 0f x 的零点个数是_________.39.(2014 福建)函数2x 6 ln x, x40.(2014 天津)已知函数f(x ) | x 3x |,x R.若方程f (x ) a | x 1 |0 恰有4 个2互异的实数根,则实数a 的取值范围为__________.41.(2012 福建)对于实数a 和b ,定义运算“*”:a ab,a …b,22a ab,a …b,a bb ab,a b,2设6f x = (2x 1)(x 1) ,且关于x 的方程为f (x) m (m ∈R)恰有三个互不相等的( )实数根x x x ,则1, 2 , 3x x x 的取值范围是____________.1 2 342.(2011 北京)已知函数2, x 2f (x) x ,若关于x 的方程f (x) = k 有两个不同的(x 1) , x 23实根,则数k 的取值范围是_______.43.(2011 辽宁)已知函数f (x) e x 2x a 有零点,则a 的取值范围是_____.7。
专题二 函数概念与基本初等函数Ⅰ第五讲 函数与方程一、选择题1.(2018全国卷Ⅰ)已知函数0()ln 0⎧=⎨>⎩,≤,,,x e x f x x x ()()=++g x f x x a .若()g x 存在2个零点,则a 的取值范围是A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞2.(2017新课标Ⅲ)已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a = A .12- B .13 C .12D .1 3.(2017山东)已知当[0,1]x ∈时,函数2(1)y mx =-的图象与y x m =的图象有且只有一个交点,则正实数m 的取值范围是 A .(])0,123,⎡+∞⎣B .(][)0,13,+∞C .()223,⎡+∞⎣D .([)23,+∞ 4.(2016年天津)已知函数()f x =2(4,0,log (1)13,03)a x a x a x x x ⎧+<⎨++≥-+⎩(0a >,且1a ≠)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是A .(0,23]B .[23,34]C .[13,23]{34}D .[13,23){34} 5.(2015安徽)下列函数中,既是偶函数又存在零点的是A .y cos x =B .y sin x =C .y ln x =D .21y x =+6.(2015福建)若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于A .6B .7C .8D .97.(2015天津)已知函数()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中 b R ∈ ,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是A .7(,)4+∞B .7(,)4-∞C .7(0,)4D .7(,2)48.(2015陕西)对二次函数2()f x ax bx c =++(a 为非零整数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是A .-1是()f x 的零点B .1是()f x 的极值点C .3是()f x 的极值D .点(2,8)在曲线()y f x =上 9.(2014山东)已知函数()12+-=x x f ,()kx x g =.若方程()()f x g x =有两个不相等的实根,则实数k 的取值范围是 A .),(210 B .),(121C .),(21D .),(∞+2 10.(2014北京)已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是 A .()0,1 B .()1,2 C .()2,4 D .()4,+∞11.(2014重庆)已知函数13,(1,0]()1,(0,1]x f x x x x ⎧-∈-⎪=+⎨⎪∈⎩, 且()()g x f x mx m =--在(1,1]-内有且仅有两个不同的零点,则实数m 的取值范围是A .]21,0(]2,49(⋃--B .]21,0(]2,411(⋃-- C .]32,0(]2,49(⋃-- D .]32,0(]2,411(⋃-- 12.(2014湖北)已知()f x 是定义在R 上的奇函数,当0x ≥时,2()=3f x x x -.则函数()()+3g x f x x =-的零点的集合为A .{1,3}B .{3,1,1,3}--C .{273}D .{271,3}-13.(2013安徽)已知函数32()f x x ax bx c =+++有两个极值点12,x x ,若 112()f x x x =<,则关于x 的方程23(())2()0f x af x b ++=的不同实根个数为A .3B .4C .5D .614.(2013重庆)若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间A .(),a b 和(),b c 内B .(),a -∞和(),a b 内C .(),b c 和(),c +∞内D .(),a -∞和(),c +∞内15.(2013湖南)函数()2ln f x x =的图像与函数()245g x x x =-+的图象的交点个数为A .3B .2C .1D .016.(2013天津)函数0.5()2|log |1x f x x =-的零点个数为A .1B .2C .3D .417.(2012北京)函数121()()2x f x x =-的零点个数为A .0B .1C .2D .318.(2012湖北)函数2()cos f x x x =在区间[0,4]上的零点个数为A .4B .5C .6D .719.(2012辽宁)设函数)(x f ()x R ∈满足()()f x f x -=,()(2)f x f x =-,且当[]0,1x ∈时,()3=f x x .又函数()()=cos g x x x π,则函数()()()h x g x f x =-在13[,]22-上的零点个数为A .5B .6C .7D .820.(2011天津)对实数a 与b ,定义新运算“⊗”:,1,, 1.a a b a b b a b -≤⎧⊗=⎨->⎩设函数 ()()22()2,.f x x x x x R =-⊗-∈若函数()y f x c =-的图像与x 轴恰有两个公共点,则实数c 的取值范围是A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭ B .(]3,21,4⎛⎫-∞-⋃-- ⎪⎝⎭C .11,,44⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭ D .311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭21.(2011福建)若关于x 的方程210x mx ++=有两个不相等的实数根,则实数m 的取值范围是A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)22.(2011全国新课标)函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于 A .2 B .4 C .6 D .823.(2011山东)已知()f x 是R 上最小正周期为2的周期函数,且当02x <≤时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为A .6B .7C .8D .924.(2010年福建)函数223,0()2ln ,0x x x f x x x ⎧+-=⎨-+>⎩≤,的零点个数为A .0B .1C .2D .325.(2010天津)函数()23x f x x =+的零点所在的一个区间是A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)26.(2010广东)“14m <”是“一元二次方程20x x m ++=有实数解”的 A .充分非必要条件 B .充分必要条件C .必要非充分条件D .非充分非必要条件27.(2010浙江)设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是A .[]4,2--B .[]2,0-C .[]0,2D .[]2,4 二、填空题28.(2018全国卷Ⅲ)函数()cos(3)6f x x π=+在[0,]π的零点个数为________.29.(2018天津)已知0a >,函数222,0,()22,0.x ax a x f x x ax a x ⎧++=⎨-+->⎩≤若关于x 的方程()f x ax =恰有2个互异的实数解,则a 的取值范围是 .30.(2018江苏)若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x在[1,1]-上的最大值与最小值的和为 .31.(2018浙江)已知λ∈R ,函数24,()43,x x f x x x x λλ-⎧=⎨-+<⎩≥,当2λ=时,不等式()0f x <的解集是_____.若函数()f x 恰有2个零点,则λ的取值范围是______.32.(2018浙江)我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x ,y ,z ,则1001531003x y z x y z ++=⎧⎪⎨++=⎪⎩,当81z =时,x = ,y = .33.(2017江苏)设()f x 是定义在R 且周期为1的函数,在区间[0,1)上,2,(),x x D f x x x D⎧∈=⎨∉⎩其中集合1{|,}n D x x n n-==∈*N ,则方程()lg 0f x x -=的解的个数是 . 34.(2016年山东)已知函数2||,()24,x x m f x x mx m x m⎧=⎨-+>⎩≤ 其中0m >,若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值范围是_________.35.(2015湖北)函数2π()4cos cos()2sin |ln(1)|22x f x x x x =---+的零点个数为 . 36.(2015北京)设函数()()()2142 1.x a x f x x a x a x ⎧-<⎪=⎨--⎪⎩≥‚‚‚ ①若1a =,则()f x 的最小值为 ;②若()f x 恰有2个零点,则实数a 的取值范围是. 37.(2015湖南)已知函数32,(),x x a f x x x a⎧=⎨>⎩≤,若存在实数b ,使函数()()g x f x b =-有两个零点,则a 的取值范围是 .38.(2014江苏)已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 .39.(2014福建)函数()⎩⎨⎧>+-≤-=0,ln 620,22x x x x x x f 的零点个数是_________.40.(2014天津)已知函数2()|3|f x x x =+,x ∈R .若方程()|1|0f x a x --=恰有4个互异的实数根,则实数a 的取值范围为__________. 41.(2012福建)对于实数a 和b ,定义运算“*”:22,,,,a ab a b a b b ab a b ⎧-*=⎨->⎩ 设 ()f x =(21)(1)x x -*-,且关于x 的方程为()f x m =(m ∈R )恰有三个互不相等的实数根123,,x x x ,则123x x x 的取值范围是____________.42.(2011北京)已知函数32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x =k 有两个不同的实根,则数k 的取值范围是_______.43.(2011辽宁)已知函数a x e x f x +-=2)(有零点,则a 的取值范围是_____.。