初三数学旋转单元测试题和答案解析
- 格式:docx
- 大小:242.08 KB
- 文档页数:9
初三旋转试题及答案一、选择题1. 将一个图形绕着某一点旋转一定角度后,与原图形重合,这种图形称为()。
A. 轴对称图形B. 中心对称图形C. 旋转对称图形D. 相似图形答案:C2. 一个图形绕着某一点旋转180°后,与原图形重合,这种图形称为()。
A. 轴对称图形B. 中心对称图形C. 旋转对称图形答案:B3. 一个图形绕着某一条直线旋转180°后,与原图形重合,这种图形称为()。
A. 轴对称图形B. 中心对称图形C. 旋转对称图形D. 相似图形答案:A4. 一个图形绕着某一点旋转90°后,与原图形重合,这种图形称为()。
A. 轴对称图形B. 中心对称图形C. 旋转对称图形答案:C5. 一个图形绕着某一点旋转120°后,与原图形重合,这种图形称为()。
A. 轴对称图形B. 中心对称图形C. 旋转对称图形D. 相似图形答案:C二、填空题6. 一个图形绕着某一点旋转180°后,与原图形重合,这种图形称为中心对称图形,这个点称为____。
答案:对称中心7. 一个图形绕着某一条直线旋转180°后,与原图形重合,这种图形称为轴对称图形,这条直线称为____。
答案:对称轴8. 一个图形绕着某一点旋转一定角度后,与原图形重合,这种图形称为旋转对称图形,这个角度称为____。
答案:旋转角9. 一个图形绕着某一点旋转360°后,与原图形重合,这种图形称为____。
答案:旋转对称图形10. 一个图形绕着某一点旋转360°/n后,与原图形重合,这种图形称为n次旋转对称图形,这个点称为____。
答案:旋转中心三、解答题11. 已知一个图形绕着某一点旋转90°后,与原图形重合,求这个图形的旋转角。
答案:旋转角为90°。
12. 已知一个图形绕着某一条直线旋转180°后,与原图形重合,求这个图形的对称轴。
答案:对称轴为该直线。
人教版数学九年级上学期《旋转》单元测试(满分120分,考试用时120分钟)一、选择题(共14 小题,每小题 3 分,共42 分)1.…依次观察左边的三个图形,并判断照此规律从左向右的第四个图形是( )A...B...C...D.2.在下列四个图案中既是轴对称图形,又是中心对称图形的是( )A...B...C...D.3.已知平面直角坐标系中的三个点,,,将绕点按顺时针方向旋转度,则点的对应点的坐标为( )A...B...C...D.4.在平面直角坐标系中,点绕原点顺时针旋转后得到点( )A...B...C...D.5.如图,在中,,,,由绕点顺时针旋转得到,其中点与点、点与点是对应点,连接,且、、在同一条直线上,则的长为( )A...B...C...D.6.已知点是点关于原点的对称点,则的值为( )A...B.-..C...D.±67.如图,已知与关于点成中心对称图形,则下列判断不正确的是( )A.∠ABC=∠A'B'C..B.∠BOC=∠B'A'C.. C.AB=A'B..D.OA=OA'8.在如图的正方形网格上画有两条线段. 现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有( )A.2..B.3..C.4..D.5条9.观察下列四个图案,它们分别绕中心旋转一定的角度后,都能和原来的图形重合,其中旋转的角度最大的是( )A...B...C...D.10.如图,在的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形). 若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有( )A.2..B.3..C.4..D.5种11.下列所给的正方体的展开图中,是中心对称图形的是图( )A.①②..B.①②..C.②③..D.①②③④12.如图,矩形的边,分别在坐标轴上,且点的坐标为,将矩形沿轴正方向平移个单位,得到矩形,再以点为旋转中心,把矩形顺时针方向旋转,得到矩形″″″″″,″,″,″,则点所经过的路线为″的长为( )A.1..B.1..C.4+5..D.4+13.如图,三个顶点的坐标分别为,,,将绕点按顺时针方向旋转,得到,则点的坐标为( )A.(1, 2..B.(2, 1..C.(1, 1..D.(2, 2)14.下面、、、四个图形中的哪个图案可以通过旋转图案①得到( )A...B...C...D.二、填空题(共6 小题,每小题 3 分,共18 分)15.一个图形绕某一点旋转后与另一个图形重合,则这两个图形成________,这个点叫________.16.如图,在网格中有一个四边形和两个三角形.①请你画出这三个图形关于点成中心对称的图形;②将原图和画出后的图形看成一个整体图形,它有________条对称轴;它至少旋转________度后与自身重合.17.在平面直角坐标系中,若与点关于原点对称,则点在第________象限.18.对于平面图形上的任意两点, ,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点, ,保持,我们把这种对应点连线相等的变换称为“同步变换”. 对于三种变换:①平移、②旋转、③轴对称,其中一定是“同步变换”的有________(填序号).19.在图中,是由基本图案多边形旋转而成的,它的旋转角为________.20.如图,将绕点逆时针方向旋转,得到,看点的坐标为,则点坐标为________.三、解答题(共4 小题,每小题10 分,共40 分)21.如图所示,是一块边长为的正方形瓷砖,其中瓷砖的阴影部分是半径为的扇形. 请你用这种瓷砖拼出三种不同的图案. 使拼成的图案既是轴对称图形又是中心对称图形,把它们分别画在下面边长为的正方形中(要求用圆规画图).22.如图所示,每个小正方形的边长为个单位长度,作出关于原点对称的并写出、、的坐标.23.如图,已知, 绕点逆时针旋转得到,恰好在上,连接.(1) 与有何关系?并说明理由;线段与在位置上有何关系?为什么?24.如图所示的网格中,每个小方格都是边长为的小正方形,,把绕点按顺时针旋转后得到,请画出这个三角形并写出点的坐标;以点为位似中心放大,得到,使放大前后的面积之比为,请在下面网格内出.参考答案一、选择题(共14 小题,每小题 3 分,共42 分)1.…依次观察左边的三个图形,并判断照此规律从左向右的第四个图形是()A...B...C...D.【答案】D【解析】试题分析: 根据图形,由规律可循. 从左到右是顺时针方向可得到第四个图形是D.故选D.考点: 生活中的旋转现象.2.在下列四个图案中既是轴对称图形,又是中心对称图形的是()A...B...C...D.【答案】B【解析】试题分析: 根据轴对称图形和中心对称图形的定义可得选项B正确.故选B.考点: 1.轴对称图形;2.中心对称图形.3.已知平面直角坐标系中的三个点,,,将绕点按顺时针方向旋转度,则点的对应点的坐标为()A...B...C...D.【答案】D【解析】【分析】把△ABO绕点O按顺时针方向旋转45°,就是把它上面的各个点按顺时针方向旋转45度. 点A 在第二象限的角平分线上,且OA= ,正好旋转到y轴正半轴. 则A点的对应点A1的坐标是(0, ).【详解】∵A的坐标是(-1,1),∴OA= ,且A1在y轴正半轴上,∴A1点的坐标是(0, ).【点睛】考查了坐标与图形变化-旋转,解答本题要能确定A的位置,只有这样才能确定点A的对应点A1的位置,求出坐标.4.在平面直角坐标系中,点绕原点顺时针旋转后得到点()A...B...C...D.【答案】A【解析】【分析】设A( ,1),过A作AB⊥x轴于B,于是得到AB=1,OB= ,根据边角关系得到∠AOB=30°,由于点( ,1)绕原点顺时针旋转60°,于是得到∠AOA′=60°,得到∠A′OB=30°,于是结论即可求出.【详解】设A( ,1),过A作AB⊥x轴于B,则AB=1,OB= ,∴tan∠AOB= == ,∴∠AOB=30°,∵点( ,1)绕原点顺时针旋转60°,∴∠AOA′=60°,∴∠A′OB=30°,∴点( ,1)绕原点顺时针旋转60°后得到点是( ,-1),故选: A.【点睛】考查了坐标与图形的变换-旋转,特殊角的三角函数,正确的画出图形是解题的关键.5.如图,在中,,,,由绕点顺时针旋转得到,其中点与点、点与点是对应点,连接,且、、在同一条直线上,则的长为()A...B...C...D.【答案】A【分析】先利用互余计算出∠BAC=30°,再根据含30度的直角三角形三边的关系得到AB=2BC=2,接着根据旋转的性质得A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,于是可判断△CAA′为等腰三角形,所以∠CAA′=∠A′=30°,再利用三角形外角性质计算出∠B′CA=30°,可得B′A=B′C=1,然后利用AA′=AB′+A′B′进行计算.【详解】∵∠ACB=90°,∠B=60°,∴∠BAC=30°,∴AB=2BC=2×1=2,∵△ABC绕点C顺时针旋转得到△A′B′C′,∴A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,∴△CAA′为等腰三角形,∴∠CAA′=∠A′=30°,∵A.B′、A′在同一条直线上,∴∠A′B′C=∠B′AC+∠B′CA,∴∠B′CA=60°-30°=30°,∴B′A=B′C=1,∴AA′=AB′+A′B′=2+1=3.故选: A.【点睛】考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等. 也考查了含30度的直角三角形三边的关系.6.已知点是点关于原点的对称点,则的值为()A...B.-..C...D.±6【答案】C【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数,结合题意可得ab的值,代入a+b可得答案.【详解】根据题意,有点A(a,-3)是点B(-2,b)关于原点O的对称点,则a=-(-2)=2,b=-(-3)=3,则a+b=3+2=5.【点睛】考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.7.如图,已知与关于点成中心对称图形,则下列判断不正确的是()A.∠ABC=∠A'B'C..B.∠BOC=∠B'A'C.. C.AB=A'B..D.OA=OA'【答案】B【解析】【分析】根据中心对称的定义: 把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,来求解即可.【详解】因为△ABC与△A′B′C′关于点O成中心对称图形,所以可得∠ABC=∠A′B′C′,AB=A′B′,OA=OA',故选: B.【点睛】考查了中心对称的定义,解题的关键是熟记中心对称的定义. 也可用三角形全等来求解.8.在如图的正方形网格上画有两条线段. 现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有( )A.2..B.3..C.4..D.5条【答案】C【解析】试题分析: 直接利用轴对称图形的性质分别得出符合题意的答案.解: 如图所示: 能满足条件的线段有4条.故选:C.考点: 利用轴对称设计图案.9.观察下列四个图案,它们分别绕中心旋转一定的角度后,都能和原来的图形重合,其中旋转的角度最大的是()A...B...C...D.【答案】A【解析】【分析】求出各旋转对称图形的最小旋转角度,再比较即可.【详解】A选项: 最小旋转角度= =120°;B.最小旋转角度= =90°;C.最小旋转角度= =72°;D.最小旋转角度= =60°;综上可得: 旋转的角度最大的是A.故选: A.【点睛】考查了旋转对称图形中旋转角度的确定,求各图形的最小旋转角度时,关键要看各图形可以被平分成几部分,被平分成n部分,旋转的最小角度就是.10.如图,在的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形). 若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有( )A.2..B.3..C.4..D.5种【答案】C【解析】试题分析: 利用轴对称图形的性质以及中心对称图形的性质分析得出符合题意的图形即可.解: 如图所示: 组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.故选:C.点评: 此题主要考查了利用轴对称以及旋转设计图案,正确把握相关定义是解题关键.【此处有视频,请去附件查看】11.下列所给的正方体的展开图中,是中心对称图形的是图()A.①②..B.①②..C.②③..D.①②③④【答案】B【解析】【分析】根据中心对称图形的概念(在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,这个旋转点就叫做中心对称点)求解.【详解】根据中心对称图形的概念可是: ①②④是中心对称图形;而③不是中心对称图形.故选: B.【点睛】考查了中心对称图形的概念. 在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,这个旋转点就叫做中心对称点.12.如图,矩形的边,分别在坐标轴上,且点的坐标为,将矩形沿轴正方向平移个单位,得到矩形,再以点为旋转中心,把矩形顺时针方向旋转,得到矩形″″″″″,″,″,″,则点所经过的路线为″的长为()A.1..B.1..C.4+5..D.4+【答案】D【解析】【分析】利用平移变换和弧长公式计算.【详解】此题平移规律是(x+4,y),照此规律计算可知点B平移的距离是5个单位长度.把矩形O′A′B′C′顺时针方向旋转90°,点B′走过的路程是半径为5,圆心角是90度的弧长为,所以点B所经过的路线为B⇒B′⇒B″的长为4+.故选: D.【点睛】考查图形的平移变换和弧长公式的运用. 在平面直角坐标系中,图形的平移与图形上某点的平移相同. 平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.13.如图,三个顶点的坐标分别为,,,将绕点按顺时针方向旋转,得到,则点的坐标为()A.(1, 2..B.(2, 1..C.(1, 1..D.(2, 2)【答案】B【解析】【分析】直接利用旋转的性质得出对应点位置进而得出答案;【详解】∵A(-2,5),B(-5,1),C(-2,1),∴AC=4,AC∥y轴,∵△ABC绕点C按顺时针方向旋转90°,得到△DEC,∴∠DCE=∠ACB=90°,CD=AC=4,∴B,C,D三点在一条直线上,∴D(2,1),故选: B.【点睛】考查了旋转变换以及扇形面积求法,正确得出对应点位置是解题关键.14.下面、、、四个图形中的哪个图案可以通过旋转图案①得到()A...B...C...D.【答案】B【解析】【分析】根据旋转的性质旋转变化前后,图形的相对位置不变,注意时针与分针的位置关系,分析选项.【详解】根据旋转的性质(旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等)可得: 图案①顺时针旋转90°得到B.故选B.【点睛】考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等. 要注意旋转的三要素: ①定点为旋转中心;②旋转方向;③旋转角度.二、填空题(共6 小题,每小题 3 分,共18 分)15.一个图形绕某一点旋转后与另一个图形重合,则这两个图形成________,这个点叫________.【答案.. (1).中心对.. (2).对称中心【解析】【分析】根据中心对称图形的概念求解.【详解】一个图形绕某一点旋转180°后与另一个图形重合,则这两个图形成中心对称,这个点叫对称中心. 故答案是: 中心对称,对称中心.【点睛】考查了中心对称图形的概念: 把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.16.如图,在网格中有一个四边形和两个三角形.①请你画出这三个图形关于点成中心对称的图形;②将原图和画出后的图形看成一个整体图形,它有________条对称轴;它至少旋转________度后与自身重合.【答案】(1)详见解析,(2)4,90【解析】【分析】(1)将图形的各顶点与点O连线并延长相同长度找对应点,然后顺次连接得中心对称图形;(2)根据轴对称的性质,找对称轴,只要连接两组对应点,作出对应点所连线段的两条垂直平分线.【详解】(1)如图所示,共有4条对称轴;(2)4条对称轴,这个整体图形至少旋转90度.故答案为: 4,90.【点睛】考查了轴对称图形和旋转变换图形的方法,注意,做这类题时,掌握旋转与轴对称的性质是解决问题的关键.17.在平面直角坐标系中,若与点关于原点对称,则点在第________象限.【答案】四【解析】【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数求出点P的坐标,再根据各象限内点的坐标特征解答.【详解】∵P(m,n)与点Q(-2,3)关于原点对称,∴m=2,n=-3,∴点P的坐标为(2,-3),∴点P在第四象限.故答案是: 四.【点睛】考查了关于原点对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.18.对于平面图形上的任意两点, ,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点, ,保持,我们把这种对应点连线相等的变换称为“同步变换”. 对于三种变换:①平移、②旋转、③轴对称,其中一定是“同步变换”的有________(填序号).【答案】①【解析】【分析】根据平移变换、旋转变换和轴对称变换的性质,依据“同步变换”的定义判断可得.【详解】平移的性质是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的所有点平移的方向和距离都相等,故平移变换一定是“同步变换”;若将线段PQ绕点P旋转,则PP′=0,而QQ′≠0,故旋转变换不一定是“同步变换”;将相对于直线倾斜的线段PQ经过该直线的轴对称变换,所得PP′≠QQ′,故轴对称变换不一定是“同步变换”,故答案是: ①.【点睛】考查几何变换的类型,熟练掌握平移变换、旋转变换和轴对称变换的性质是解题的关键.19.在图中,是由基本图案多边形旋转而成的,它的旋转角为________.【答案】【解析】【分析】由于图形是基本图案多边形ABCDE旋转而成的,根据图形可以得到旋转形成的图形是一个正六边形,由此即可确定旋转角的度数.【详解】∵图形是基本图案多边形ABCDE旋转而成的,而根据图形知道旋转形成的图形是一个正六边形,∴它的旋转角是: 60°.【点睛】考查了旋转的性质,主要利用了旋转角的定义和正六边形的性质解决问题.20.如图,将绕点逆时针方向旋转,得到,看点的坐标为,则点坐标为________.【答案】【解析】【分析】利用旋转的性质得OB′=OB=2,A′B′=AB=1,∠BOB′=90°,∠OB′A′=∠OBA=90°,然后利用第二象限内点的坐标特征写出点A′坐标.【详解】∵A(2,1),∴AB=1,OB=2,∵△AOB绕点O逆时针方向旋转90°,得到△A′OB′,∴OB′=OB=2,A′B′=AB=1,∠BOB′=90°,∠OB′A′=∠OBA=90°,∴点A′坐标为(-1,2).故答案是: (-1,2).【点睛】考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标. 常见的是旋转特殊角度如:30°,45°,60°,90°,180°.三、解答题(共4 小题,每小题10 分,共40 分)21.如图所示,是一块边长为的正方形瓷砖,其中瓷砖的阴影部分是半径为的扇形. 请你用这种瓷砖拼出三种不同的图案. 使拼成的图案既是轴对称图形又是中心对称图形,把它们分别画在下面边长为的正方形中(要求用圆规画图).【答案】见解析.【解析】图形(1)既轴对称(对称轴为正方形对角线所在的直线),又中心对称(对称中心为正方形的中心),根据小正方形的对称性,将小正方形换动不同方向,得出既轴对称图形又中心对称的图形.【详解】既轴对称图形又中心对称的图形如图所示. 答案不唯一.【点睛】考查了运用旋转,轴对称方法设计图案的问题. 关键是熟悉有关图形的对称性,利用中心对称性拼图.22.如图所示,每个小正方形的边长为个单位长度,作出关于原点对称的并写出、、的坐标.【答案】见解析.【解析】【分析】根据直角坐标系中,关于原点对称的两个点的坐标特点是: 横坐标,纵坐标都互为相反数,根据点的坐标就确定原图形的顶点的对应点,进而即可作出所求图形.【详解】解: 根据图形可知: , , ,各点关于原点对称的点的坐标分别是: , , ,然后连接点再依次连接可得所求图形.【点睛】考查了关于原点对称的知识,要求学生会画图,会表示点的坐标. 关键是掌握关于原点对称的两个点的坐标特点是: 横坐标,纵坐标都互为相反数,根据点的坐标就可以画出对称图形.23.如图,已知, 绕点逆时针旋转得到,恰好在上,连接.(1) 与有何关系?并说明理由;线段与在位置上有何关系?为什么?【答案】(1)互补;(2) .【解析】(1)根据旋转的性质可得∠BAC=∠DAE=90°,然后表示出∠CAE,再根据∠BAE=∠BAC+∠CAE列式整理即可得解;(2)根据旋转的性质可得∠BAD=∠CAE,AB=AD,AC=AE,再利用等腰三角形两底角相等表示出∠B.∠ACE,然后求出∠BCE=90°,根据垂直的定义即可得解.【详解】解:与互补. 理由如下:由旋转的性质知: ,∴,∵,∴,因此与互补;线段. 理由如下:由旋转知: , , ,∴,,∴,∵,∴,∴,∴.【点睛】考查了旋转的性质,等腰三角形两底角相等的性质,垂直的定义,熟练掌握旋转的性质是解题的关键.24.如图所示的网格中,每个小方格都是边长为的小正方形,,把绕点按顺时针旋转后得到,请画出这个三角形并写出点的坐标;以点为位似中心放大,得到,使放大前后的面积之比为,请在下面网格内出.【答案】见解析.【分析】(1)直接利用旋转的性质得出对应点位置进而得出答案;(2)利用位似图形的性质进而得出对应点位置即可得出答案.【详解】如图所示: ,即为所求,点的坐标为: ;如图所示:.【点睛】考查了位似变换和旋转变换,解题关键是正确得出对应点位置.。
第23章 旋转单元测试(附解析)学校:___________姓名:___________班级:___________考号:___________总分120分,考试时间120分钟一、单选题(共10个小题,每小题3分,共30分)1.下列与杭州亚运会有关的图案中,中心对称图形是( )A .B .C .D . 2.2022年冬奥会将在我国北京市和张家口市联合举行,下列历届冬奥会会徽的部分图案中,是中心对称图形的是( )A .B .C .D . 3.平面直角坐标系内一点P (-2,3)关于原点对称的点的坐标是( )A .(3,2)B .(-2,-3)C .(2,-3)D .(2,3)4.如图,矩形ABCD 的顶点1,0A ,()0,2D ,()5,2B ,将矩形以原点为旋转中心,顺时针旋转75°之后点C 的坐标为( )A .()4,2-B .()42,22-C .()42,2-D .()26,22- 5.如图,在钝角△ABC 中,35BAC ∠=︒,将ABC 绕点A 顺时针旋转70︒得到ADE ,点B ,C 的对应点分别为D ,E ,连接BE .则下列结论一定正确的是( )A .ABC AED ∠=∠B .AC DE = C .AD BE AC += D .AE 平分BED ∠ 6.平面直角坐标系中,O 为坐标原点,点A 的坐标为()5,1-,将OA 绕原点按逆时针方向旋转90︒得OB ,则点B 的坐标为( )A .()5,1-B .()1,5--C .()5,1--D .()1,5-7.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,直角MDN ∠绕点D 旋转,DM ,DN 分别与边AB ,AC 交于E ,F 两点,下列结论:①DEF 是等腰直角三角形;②AE CF =;③12ABC AEDF S S =△四边形;④BE CF EF +=,其中正确结论的个数是( )A .1B .2C .3D .48.在矩形ABCD 中,AB =4,BC =3,CE =2BE ,EF =2,连按AF ,将线段AF 绕着点A 顺时针旋转90°得到AP ,则线段PE 的最小值为( )A .25B .342-C .4D .341+9.如图,在Rt △ABC 中,∠ACB =90°,2AC BC ==将△ABC 绕点A 逆时针旋转60°,得到△ADE ,连接BE ,则12BE AB +的值为( )A 6B .22C 3D 210.如图,P 是正三角形ABC 内的一点,且6PA =,8PB =,10PC =.若将PAC △绕点A 逆时针旋转后,得到MAB △,则APB ∠等于( ).A .120°B .135°C .150°D .160°二、填空题(共10个小题,每小题3分,共30分)11.如图所示,P 是正方形ABCD 内一点,将△ABP 绕点B 按顺时针方向旋转能与△CBP '重合,若PB =3,则PP '=__________12.若点P (a -1,5)与点Q (5,1-b )关于原点成中心对称,则a +b =_________. 13.对于下列图形:①等边三角形; ②矩形; ③平行四边形; ④菱形; ⑤正八边形;⑥圆.其中既是轴对称图形,又是中心对称图形的是_________________.(填写图形的相应编号) 14.若点P (a ,2)点Q (﹣4,b )关于原点对称,则点M (a ,b )在第___象限.15.如图,△ABC 为等边三角形,D 是△ABC 内一点,若将△ABD 经过旋转后到△ACP 位置,则旋转角等于___________度.16.如图,在矩形ABCD 中,23AB =6BC =,点E 是直线BC 上的一个动点,连接DE ,将线段DE 绕着点D 顺时针旋转120︒得到线段DG ,连接AG ,则线段AG 的最小值为_________.17.如图,△ABC 边长为1的正三角形,BDC 是顶角120BDC ∠=︒的等腰三角形,以D 为顶点作一个60度角,角的两边分别交AB 于M ,交AC 于N ,连结MN ,则AMN 的周长为__________.18.如图,在Rt △ABC 中,90ACB ∠=,30BAC ∠=,BC =2,线段BC 绕点B 旋转到BD ,连AD ,E 为AD 的中点,连接CE ,则CE 的最大值是___.19.如图,在△ABC 中,3AB =,2AC =,60BAC ∠=︒,P 为ABC 内一点,则PA PB PC ++的最小值为__________.20.如图,点P 是等边三角形ABC 内一点,且6PA 2PB =22=PC ABC 的边长为________.三、解答题(共6个小题,每小题10分,共60分)21.如图,在△ABC 中,∠ACB =90°,∠B =60°,以C 为旋转中心,旋转一定角度后成△A ′B ′C ,此时B ′落在斜边AB 上,试确定∠ACA ′,∠BB ′C 的度数.22.四边形ABCD 各顶点坐标分别为(5,0)A ,(2,3)B -,(1,0)C -,(1,5)D --,作出与四边形ABCD 关于原点对称的图形.23.如图,在同一平面内,△BEC绕点B逆时针旋转60°得到△BAD,且AB⊥BC,BE=CE.连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.24.正方形ABCD中,点F为正方形ABCD内的点,BFC△绕着点B按逆时针方向旋转90︒后与△重合.BEA(1)如图①,若正方形ABCD的边长为2,1BE=,3FC=AE∥BF.(2)如图②,若点F为正方形ABCD对角线AC上的点(点F不与点A、C重合),试探究AE、AF、BF之间的数量关系并加以证明.。
初三数学旋转单元测试题和答案解析(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初三数学旋转单元测试题和答案解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初三数学旋转单元测试题和答案解析(word版可编辑修改)的全部内容。
第23章旋转单元测试题一、用心填一填,你一定能填对!1。
如图1,△ABC 是等腰直角三角形,D 是AB 上一点,△CBD 经旋转后到达△ACE 的位置,则旋转中心是________;旋转角度是______; 点B 的对应点是_______;点D 的对应点是_______;线段CB 的对应点是_____;∠B 的对应角是___________;如果点M 是CB 的31,那么经过上述旋转后,点M 移到了_________.2。
3点12分和3点40分时,时针与分针构成的角各是_______度和_______度. 3.请你写出5个成中心对称的汉字,填在下面的横线上__________________________。
4.如图2所示的四个图形中,图形(1)与图形________成轴对称;图形(1)与图形______成中心对称.(填写符合要求的图形所对应的符号)5.如图3所示,△ABC 绕点A 逆时针旋转某一角度得到△ADE,若∠1=∠2=∠3=20°,则旋转角为________度。
6.如图4所示,线段AB=4cm,且CD ⊥AB 于O ,则阴影部分的面积是________.7.如图5①,将字母“V"沿_______平移________格会得到字母“W ”。
人教版九年级数学上册旋转几何综合单元测试卷(含答案解析)一、初三数学旋转易错题压轴题(难)1.探究:如图①和②,在四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在BC、CD 上,∠EAF=45°.(1)如图①,若∠B、∠ADC都是直角,把ABE△绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能得EF=BE+DF,请写出推理过程;(2)如图②,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系时,仍有EF=BE+DF;(3)拓展:如图③,在ABC中,∠BAC=90°,AB=AC=22,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE的长.【答案】(1)见解析;(2)∠B+∠D=180°;(3)5 3【解析】【分析】(1)根据已知条件证明△EAF≌△GAF,进而得到EF=FG,即可得到答案;(2)先作辅助线,把△ABE绕A点旋转到△ADG,使AB和AD重合,根据(1),要使EF=BE+DF,需证明△EAF≌△GAF,因此需证明F、D、G在一条直线上,即180ADG ADF∠+∠=︒,即180B D∠+∠=︒;(3)先作辅助线,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,根据已知条件证明△FAD≌△EAD,设DE=x,则DF=x,BF=CE=3﹣x,然后再Rt BDF中根据勾股定理即可求出x的值,即DE的长.【详解】(1)解:如图,∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF和△GAF中AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;(2)解:∠B+∠D=180°,理由是:如图,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴F、D、G在一条直线上,和(1)类似,∠EAF=∠GAF=45°,在△EAF和△GAF中AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;故答案为:∠B+∠D=180°;(3)解:∵△ABC中,2BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:22AB AC+,如图,把△AEC 绕A 点旋转到△AFB ,使AB 和AC 重合,连接DF .则AF=AE ,∠FBA=∠C=45°,∠BAF=∠CAE ,∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC ﹣∠DAE=90°﹣45°=45°,∴∠FAD=∠DAE=45°,在△FAD 和△EAD 中AD AD FAD EAD AF AE =⎧⎪∠=∠⎨⎪=⎩∴△FAD ≌△EAD ,∴DF=DE ,设DE=x ,则DF=x ,∵BD=1,∴BF=CE=4﹣1﹣x=3﹣x ,∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,由勾股定理得:222DF BF BD =+,22(3)1x x =-+, 解得:x=53, 即DE=53. 【点睛】本题综合考查三角形的性质和判定、正方形的性质应用、全等三角形的性质和判定、勾股定理等知识,解题关键在于正确做出辅助线得出全等三角形.2.我们定义:如图1,在△ABC 看,把AB 点绕点A 顺时针旋转α(0°<α<180°)得到AB',把AC 绕点A 逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC 的“旋补三角形”,△AB'C'边B'C'上的中线AD 叫做△ABC 的“旋补中线”,点A 叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC 的“旋补三角形”,AD 是△ABC 的“旋补中线”. ①如图2,当△ABC 为等边三角形时,AD 与BC 的数量关系为AD= BC ;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,CD=23,DA=6.在四边形内部是否存在点P,使△PDC是△PAB的“旋补三角形”?若存在,给予证明,并求△PAB的“旋补中线”长;若不存在,说明理由.【答案】(1)①12;②4;(2)AD=12BC,证明见解析;(3)存在,证明见解析,39.【解析】【分析】(1)①首先证明△ADB′是含有30°是直角三角形,可得AD=12AB′即可解决问题;②首先证明△BAC≌△B′AC′,根据直角三角形斜边中线定理即可解决问题;(2)结论:AD=12BC.如图1中,延长AD到M,使得AD=DM,连接E′M,C′M,首先证明四边形AC′MB′是平行四边形,再证明△BAC≌△AB′M,即可解决问题;(3)存在.如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN.连接DF交PC于O.想办法证明PA=PD,PB=PC,再证明∠APD+∠BPC=180°,即可;【详解】解:(1)①如图2中,∵△ABC是等边三角形,∴AB=BC=AB=AB′=AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=12AB′=12BC,故答案为12.②如图3中,∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,∵AB=AB′,AC=AC′,∴△BAC≌△B′AC′,∴BC=B′C′,∵B′D=DC′,∴AD=12B′C′=12BC=4,故答案为4.(2)结论:AD=12 BC.理由:如图1中,延长AD到M,使得AD=DM,连接E′M,C′M∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴AC′=B′M=AC,∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,∴∠BAC=∠MB′A,∵AB=AB′,∴△BAC≌△AB′M,∴BC=AM,∴AD=1BC.2(3)存在.理由:如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN.连接DF交PC于O.∵∠ADC=150°,∴∠MDC=30°,在Rt△DCM中,∵3,∠DCM=90°,∠MDC=30°,∴CM=2,DM=4,∠M=60°,在Rt△BEM中,∵∠BEM=90°,BM=14,∠MBE=30°,∴EM=1BM=7,2∴DE=EM﹣DM=3,∵AD=6,∴AE=DE,∵BE⊥AD,∴PA=PD,PB=PC,在Rt△CDF中,∵3CF=6,∴tan∠3∴∠CDF=60°=∠CPF,易证△FCP≌△CFD,∴CD=PF,∵CD∥PF,∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC﹣∠CDP=60°,∴△ADP是等边三角形,∴∠ADP=60°,∵∠BPF=∠CPF=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC是△PAB的“旋补三角形”,在Rt△PDN中,∵∠PDN=90°,PD=AD=6,3,∴2222++39.=(3)6DN PD【点睛】本题考查四边形综合题.3.小明研究了这样一道几何题:如图1,在△ABC中,把AB点A顺时针旋转α (0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,请问△AB′C′边B′C′上的中线AD与BC的数量关系是什么?以下是他的研究过程:特例验证:(1)①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠A+∠B=120°,BC=12,CD=6,DA=63,在四边形内部是否存在点P,使△PDC与△PAB之间满足小明探究的问题中的边角关系?若存在,请画出点P的位置(保留作图痕迹,不需要说明)并直接写出△PDC的边DC上的中线PQ的长度;若不存在,说明理由.【答案】(1)①12;②4(2) AD=12BC,理由见解析(3)存在,13【解析】【分析】(1)①由已知条件可得AD⊥B′C′,由α+β=180°可得∠BAC+∠B′AC′=180°,已知∠BAC=60°,可求得∠B′AC′=120°继而∠B′=∠C′=30°,可得AD=12AB′=12BC②当∠BAC=90°时,可得∠B′AC′=∠BAC=90°,△B′AC′是直角三角形,可证得△BAC≌△B′AC′,推出对应边相等,已知BC=8求出AD的长.(2)先做辅助线,延长AD到M,使得AD=DM,连接B′M、C′M,如图1所示:因为B′D=DC′,AD=DM,对角线相互平分,可得四边形AC′MB′是平行四边形,得出对应边相等,由∠BAB′+∠CAC′=180°推得∠BAC=∠AB′M,可证明△BAC≌△AB′M,所以BC=AM,AD=12 BC;(3)先做辅助线,作线段BC的垂直平分线交BE于P,即为点P的位置;延长AD交BC的延长线于M,线段BC的垂直平分线交BC于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O假设P点存在,再证明理由.根据已知角可得出△DCM是直角三角形,∠MDC=30°,可得出CM3DM3在;∵CD=6,∠DCM=90°,∠MDC=30°,∠M=90°﹣∠MDC=60°,可求得EM=12BM3DE=EM﹣DM3﹣33由已知DA3AE=DE且BE⊥AD,可得PF是线段BC的垂直平分线,证得PA=PD因为PB=PC,PF∥CD,可求得CF=12BC3,利用线段长度可求得∠CDF=60°利用全等三角形判定定理可证得△FCP≌△CFD(AAS),进而证得四边形CDPF是矩形,得∠CDP=90°,∠ADP =60°,可得△ADP是等边三角形,求出DQ、DP,在Rt△PDQ中可求得PQ长度.【详解】(1)①∵△ABC是等边三角形∴AB=BC=AC=AB′=AC′,∠BAC=60°∵DB′=DC′∴AD⊥B′C′∵∠BAB′+∠CAC′=180°∴∠BAC+∠B′AC′=180°∴∠B′AC′=180°﹣∠BAC=180°﹣60°=120°∴∠B′=∠C′=30°∴AD=12AB′=12BC故答案:1 2②∵∠BAB′+∠CAC′=180°∴∠BAC+∠B′AC′=180°∵∠BAC=90°∴∠B′AC′=∠BAC=90°在△BAC和△B′AC′中,''"90"AB ABBAC B ACAC AC=⎧⎪∠=∠=︒⎨⎪=⎩∴△BAC≌△B′AC′(SAS)∴BC=B′C′∵B′D=DC′∴AD=12B′C′=12BC=4故答案:4(2)AD与BC的数量关系:AD=12BC;理由如下:延长AD到M,使得AD=DM,连接B′M、C′M,如图1所示:∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴∠B′AC′+∠AB′M=180°,AC′=B′M=AC,∵∠BAB′+∠CAC′=180°,∴∠BAC+∠B′AC′=180°,∴∠BAC=∠AB′M,在△BAC和△AB′M中,'''AC B MBAC AB MAB AB=⎧⎪∠=∠⎨⎪=⎩,∴△BAC≌△AB′M(SAS),∴BC=AM,∴AD=12 BC;(3)存在;作BE⊥AD于E,作线段BC的垂直平分线交BE于P,即为点P的位置;理由如下:延长AD交BC的延长线于M,线段BC的垂直平分线交BC于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O,如图4所示:∵∠A+∠B=120°,∴∠ADC=150°,∴∠MDC=30°,在Rt△DCM中,∵CD=6,∠DCM=90°,∠MDC=30°,∴CMDM,∠M=90°﹣∠MDC=60°,在Rt△BEM中,∵∠BEM=90°,BM=BC+CM,∠MBE=90°﹣∠M=30°,∴EM=12 BM∴DE=EM﹣DM∵DA∴AE=DE,∵BE⊥AD,∴PA=PD,∵PF是线段BC的垂直平分线,∴PB=PC,PF∥CD,在Rt△CDF中,∵CD=6,CF=12 BC∴tan∠CDF=CFCD,∴∠CDF=60°,∴∠MDF=∠MDC+∠CDF=30°+60°=90°,∴∠ADF=90°=∠AEB,∴∠CBE=∠CFD,∵∠CBE=∠PCF,∴∠CFD=∠PCF=30°,∵∠CFD+∠CDF=90°,∠PCF+∠CPF=90°,∴∠CPF=∠CDF=60°,在△FCP和△CFD中,CPF CDFPCF CFD CF CF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△FCP≌△CFD(AAS),∴CD=PF,∵CD∥PF,∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC﹣∠CDP=60°,∴△ADP是等边三角形,∴∠APD=60°,∵∠BPF=∠CPF=90°﹣30°=60°,∴∠BPC=120°,∴∠APD +∠BPC =180°,∴△PDC 与△PAB 之间满足小明探究的问题中的边角关系;在Rt △PDQ 中,∵∠PDQ =90°,PD =DA =63,DN =12CD =3, ∴PQ =22DQ DP +=223(63)+=313. 【点睛】本题考查了三角形的边旋转的问题,旋转前后边长不变,根据已知角度变化,求得线段之间关系.在证明某点知否存在时,先假设这点存在,能求出相关线段或坐标,即证实存在性.4.(1)观察猜想如图(1),在△ABC 中,∠BAC=90°,AB=AC,点D 是BC 的中点.以点D 为顶点作正方形DEFG ,使点A ,C 分别在DG 和DE 上,连接AE ,BG ,则线段BG 和AE 的数量关系是_____;(2)拓展探究将正方形DEFG 绕点D 逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图2,则(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.(3)解决问题若BC=DE=2,在(2)的旋转过程中,当AE 为最大值时,直接写出AF 的值.【答案】(1)BG =AE .(2)成立.如图②,连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.∴△BDG≌△ADE,∴BG=AE.…………………………………………7分(3)由(2)知,BG=AE,故当BG最大时,AE也最大.正方形DEFG绕点D逆时针方向旋转270°时,BG最大,如图③.若BC=DE=2,则AD=1,EF=2.在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.∴AF=【解析】解:(1)BG=AE.(2)成立.如图②,连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.∴△BDG≌△ADE,∴BG=AE.(3)由(2)知,BG=AE,故当BG最大时,AE也最大.Z+X+X+K]因为正方形DEFG在绕点D旋转的过程中,G点运动的图形是以点D为圆心,DG为半径的圆,故当正方形DEFG旋转到G点位于BC的延长线上(即正方形DEFG绕点D逆时针方向旋转270°)时,BG最大,如图③.若BC=DE=2,则AD=1,EF=2.在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.∴AF=.即在正方形DEFG旋转过程中,当AE为最大值时,AF=.5.如图,在直角坐标系中,已知点A(-1,0)、B(0,2),将线段AB绕点A按逆时针方向旋转90°至AC.(1)点C的坐标为(,);(2)若二次函数的图象经过点C.①求二次函数的关系式;②当-1≤x≤4时,直接写出函数值y对应的取值范围;Z_X_X_K]③在此二次函数的图象上是否存在点P(点C除外),使△ABP是以AB为直角边的等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.【答案】(1) ∴点C的坐标为(-3,1) .(2)①∵二次函数的图象经过点C(-3,1),∴.解得∴二次函数的关系式为②当-1≤x≤4时,≤y≤8;③过点C作CD⊥x轴,垂足为D,i) 当A为直角顶点时,延长CA至点,使,则△是以AB为直角边的等腰直角三角形,过点作⊥轴,∵=,∠=∠,∠=∠=90°,∴△≌△,∴AE=AD=2,=CD=1,∴可求得的坐标为(1,-1),经检验点在二次函数的图象上;ii)当B点为直角顶点时,过点B作直线L⊥BA,在直线L上分别取,得到以AB为直角边的等腰直角△和等腰直角△,作⊥y轴,同理可证△≌△∴BF=OA=1,可得点的坐标为(2, 1),经检验点在二次函数的图象上.同理可得点的坐标为(-2, 3),经检验点不在二次函数的图象上综上:二次函数的图象上存在点(1,-1),(2,1)两点,使得△和△是以AB为直角边的等腰直角三角形.【解析】(1)根据旋转的性质得出C点坐标;(2)①把C点代入求得二次函数的解析式;②利用二次函数的图象得出y的取值范围;③分二种情况进行讨论.6.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:操作发现(1)某小组做了有一个角是120︒的等腰三角形DAC和等边三角形GEB纸片,DA DC=,让两个三角形如图①放置,点C和点G重合,点D,点E在AB的同侧,AC 和GB在同一条直线上,点F为AB的中点,连接DF,EF,则DF和EF的数量关系与位置关系为:________;数学思考(2)在图①的基础上,将GEB绕着C点按顺时针方向旋转90︒,如图②,试判断DF和EF的数量关系和位置关系,并说明理由;类比探索 (3)①将GEB 绕着点C 任意方向旋转,如图③或图④,请问DF 和EF 的数量关系和位置关系改变了吗?无论改变与否,选择图③或图④进行证明;②GEB 绕着点C 旋转的过程中,猜想DF 与EF 的数量关系和位置关系,用一句话表述:________.【答案】(1)3EF DF =,DFEF ; (2)3EF DF =,DFEF ,理由见解析; (3)①3EF DF =,DFEF ;②旋转过程中3EF DF =,DF EF 始终成立.【解析】【分析】 (1)由题意过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,利用等边三角形和中点性质设DM a =,2GB b =,结合相似三角形判定和性质进行综合分析求解; (2)根据题意要求判断DF 和EF 的数量关系和位置关系,连接CF ,OB 与AE 交于点M ,并综合利用垂直平分线定理以及矩形和等边三角形性质与三角函数进行综合分析;(3)①根据题意延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,并利用全等三角形判定和性质以及三角函数进行分析证明;②由题意可知结合①猜想可知旋转过程中3EF DF =,DFEF 始终成立. 【详解】解:(1)3EF DF =,DF EF ;如解图,过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,AD CD =,EGB 为等边三角形.AM MC ∴=,GN BN =.又点F 为AB 的中点, AF BF ∴=. ()12MF CF NC NB AC AM CB MC NC +=++=+=+∴. MF NC NB ∴==,CF CN FN AM +==. 设DM a =,2GB b =,120ADC ∠=︒,DA DC =,3AM a ∴=,3FN a =,MF NC NB b ===.tan 33EGB NE GN GN b =⋅==∠.在DMF 和FNE 中,333DM FN a==, 333MF NE b ==, 又90DMF FNE ∠=∠=︒,DMF FNE ∴∽. MDF NFE ∴∠=∠,33DF DM FE FN ==,即3EF DF =. 90MDF DFM ∠+∠=︒,90DFM NFE ∴∠+∠=︒.90DFE ∴∠=︒.3EF DF ∴=且DFEF . (2)3EF DF =,DF EF . 理由如下:如解图,连接CF ,OB 与AE 交于点M ,当旋转角是90︒时,则90ACB ∠=︒,在Rt ACB △中,点F 是AB 的中点,CF BF ∴=.又CE EB =,EF ∴垂直平分BC.同理,DF 垂直平分AC ,∴四边形LCMF 为矩形,90DFE ∴∠=︒.DF EF ∴⊥,//AC EF .DA DC =,120ADC =∠︒,30DCA ∴∠=︒.GEB为等边三角形,60ECB ∴∠=︒.∴∠DCA+∠ACB+∠ECB=180^∘∴D ,C ,E 三点共线.30DCA DEF ∴∠=∠=︒.∴在Rt DEF △中,3tan 3DE DF F F E DF ===∠; (3)①3EF DF =,DFEF .选择题图进行证明: 如解图,延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,在ADF 和BNF 中,AF BF AFD BFN DF NF =⎧⎪∠=∠⎨⎪=⎩,()SAS ADF BNF ∴≅.AD NB ∴=,ADF BNF ∠=∠.//AD NB ∴.18060O ADC ∴∠=︒-∠=︒.又CPO BPE ∠=∠,60O CEB ∠=∠=︒,OCP OBE ∴∠=∠.DCE NBE ∴∠=∠.又GEB 是等边三角形,GE BE ∴=,又AD BN CD ==,()SAS DCE NBE ∴≅.DE NE ∴=,BEN CED ∠=∠.BEN BED CED BED ∴∠+∠=∠+∠,即60NED BEC ∠=∠=︒.DEN ∴是等边三角形.又DF FN=,DF EF∴⊥,60FDE∠=︒.tan3E EF DF DFFD∴∠=⋅=.或选择图进行证明,证明如下:如解图,延长DF并延长到点N,使得FN DF=,连接NB,DE,NE,NB与CD 交于点O,EB与CD相交于点J,在ADF和BNF中,AF BFAFD BFNDF NF=⎧⎪∠=∠⎨⎪=⎩,()SASADF BNF∴≅.AD NB∴=,ADF BNF∠=∠.//AD NB∴.120NOC ADC∴∠=∠=︒.60BOJ∴∠=︒,60JEC∠=︒.又OJB EJC∠=∠,OBE ECJ∴∠=∠.AD CD=,AD NB=,CD NB∴=.又GEB是等边三角形,CE BE∴=.()SASDCE NBE∴≅.DE NE∴=,BEN CED∠=∠.BEN BED CED BED∴∠-∠=∠-∠,即60NED BEC∠=∠=︒.DEN∴是等边三角形.又DF FN=,DF EF∴⊥,60FDE∠=︒.tan3E EF DF DFFD∴∠=⋅=.②旋转过程中3EF DF=,DF EF始终成立.【点睛】本题考查几何图形的综合探究题,难度大,运用数形结合思维分析以及掌握并灵活利用全等三角形判定和性质以及三角函数、相似三角形判定和性质等是解题关键.错因分析:①未掌握旋转的性质,即旋转前后线段、角度均不变;②不能合理利用类比关系,由浅到深解决问题.7.阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE,(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).【答案】(1)证明见解析;(2)证明见解析;(3)∠EAF =12 m°.【解析】分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题;(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=12 m°.详(1)证明:如图1中,∵∠BAC=∠DAE,∴∠DAB=∠EAC,在△DAB和△EAC中,AD AEDAB EACAB AC⎧⎪∠∠⎨⎪⎩===,∴△DAB≌△EAC,∴BD=EC.(2)证明:如图2中,延长DC到E,使得DB=DE.∵DB=DE,∠BDC=60°,∴△BDE是等边三角形,∴∠BD=BE,∠DBE=∠ABC=60°,∴∠ABD=∠CBE,∵AB=BC,∴△ABD≌△CBE,∴AD=EC,∴BD=DE=DC+CE=DC+AD.∴AD+CD=BD.(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.由(1)可知△EAB≌△GAC,∴∠1=∠2,BE=CG,∵BD=DC,∠BDE=∠CDM,DE=DM,∴△EDB≌△MDC,∴EM=CM=CG ,∠EBC=∠MCD ,∵∠EBC=∠ACF ,∴∠MCD=∠ACF ,∴∠FCM=∠ACB=∠ABC ,∴∠1=3=∠2, ∴∠FCG=∠ACB=∠MCF ,∵CF=CF ,CG=CM ,∴△CFG ≌△CFM , ∴FG=FM ,∵ED=DM ,DF ⊥EM , ∴FE=FM=FG ,∵AE=AG ,AF=AF ,∴△AFE ≌△AFG ,∴∠EAF=∠FAG=12m°. 点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.8.请认真阅读下面的数学小探究系列,完成所提出的问题:()1探究1:如图1,在等腰直角三角形ABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 求证:BCD 的面积为21.(2a 提示:过点D 作BC 边上的高DE ,可证ABC ≌)BDE ()2探究2:如图2,在一般的Rt ABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 请用含a 的式子表示BCD 的面积,并说明理由. ()3探究3:如图3,在等腰三角形ABC 中,AB AC =,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 试探究用含a 的式子表示BCD 的面积,要有探究过程.【答案】(1)详见解析;(2)BCD 的面积为212a ,理由详见解析;(3)BCD 的面积为214a.【解析】【分析】()1如图1,过点D作BC的垂线,与BC的延长线交于点E,由垂直的性质就可以得出ABC≌BDE,就有DE BC a.==进而由三角形的面积公式得出结论;()2如图2,过点D作BC的垂线,与BC的延长线交于点E,由垂直的性质就可以得出ABC≌BDE,就有DE BC a.==进而由三角形的面积公式得出结论;()3如图3,过点A作AF BC⊥与F,过点D作DE BC⊥的延长线于点E,由等腰三角形的性质可以得出1BF BC2=,由条件可以得出AFB≌BED就可以得出BF DE=,由三角形的面积公式就可以得出结论.【详解】()1如图1,过点D作DE CB⊥交CB 的延长线于E,BED ACB90∠∠∴==,由旋转知,AB AD=,ABD90∠=,ABC DBE90∠∠∴+=,A ABC90∠∠+=,A DBE∠∠∴=,在ABC和BDE中,ACB BEDA DBEAB BD∠=∠⎧⎪∠=∠⎨⎪=⎩,ABC∴≌()BDE AASBC DE a∴==,BCD1S BC DE2=⋅,2BCD1S a2∴=;()2BCD的面积为21a2,理由:如图2,过点D作BC的垂线,与BC的延长线交于点E,BED ACB90∠∠∴==,线段AB绕点B顺时针旋转90得到线段BE,AB BD∴=,ABD90∠=,ABC DBE90∠∠∴+=,A ABC90∠∠+=,A DBE∠∠∴=,在ABC和BDE中,ACB BEDA DBEAB BD∠=∠⎧⎪∠=∠⎨⎪=⎩,ABC∴≌()BDE AAS,BC DE a∴==,BCD1S BC DE2=⋅,2BCD1S a2∴=;()3如图3,过点A作AF BC⊥与F,过点D作DE BC⊥的延长线于点E,AFB E90∠∠∴==,11BF BC a22==,FAB ABF90∠∠∴+=,ABD90∠=,ABF DBE90∠∠∴+=,FAB EBD∠∠∴=,线段BD是由线段AB旋转得到的,AB BD∴=,在AFB和BED中,AFB E FAB EBDAB BD∠=∠⎧⎪∠=∠⎨⎪=⎩,AFB∴≌()BED AAS,1BF DE a2∴==,2BCD1111S BC DE a a a2224=⋅=⋅⋅=,BCD∴的面积为21a4.【点睛】本题考查了旋转的性质、直角三角形的性质、等腰三角形的性质、全等三角形的判定与性质、三角形的面积等,综合性较强,有一定的难度,正确添加辅助线、熟练掌握和灵活运用相关的性质与定理是解题的关键.9.如图,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接CF,DF.(1)如图1,当点D在AB上,点E在AC上时①证明:△BFC是等腰三角形;②请判断线段CF,DF的关系?并说明理由;(2)如图2,将图1中的△ADE绕点A旋转到图2位置时,请判断(1)中②的结论是否仍然成立?并证明你的判断.【答案】(1)①证明见解析;②结论:CF=DF且CF⊥DF.理由见解析;(2)(1)中的结论仍然成立.理由见解析.【解析】【详解】分析:(1)、根据“直角三角形斜边上的中线等于斜边的一半”可知CF=BF=EF,根据∠CFD=2∠ABC,∠ACB=90°,∠ABC=45°得出∠CFD=90°,从而得出答案;(2)、延长DF至G使FG=DF,连接BG,CG,DC,首先证明△BFG和△EFD全等,然后再证明△BCG和△ACD全等,从而得出GC=DC,∠BCG=∠ACD,∠DCG=∠ACB=90°,最后根据直角三角形斜中线的性质得出答案.详解:(1)①证明:∵∠BCE=90°.EF=FB,∴CF=BF=EF,∴△BFC是等腰三角形.②解:结论:CF=DF且CF⊥DF.理由如下:∵∠ADE=90°,∴∠BDE=90°,又∵∠BCE=90°,点F是BE的中点,∴CF=DF=12BE=BF,∴∠1=∠3,∠2=∠4,∴∠5=∠1+∠3=2∠1,∠6=∠2+∠4=2∠2,∴∠CFD=∠5+∠6=2(∠1+∠2)=2∠ABC,又∵△ABC是等腰直角三角形,且∠ACB=90°,∴∠ABC=45°,∴∠CFD=90°,∴CF=DF且CF⊥DF.(2)(1)中的结论仍然成立.理由如下:如图,延长DF至G使FG=DF,连接BG,CG,DC,∵F是BE的中点,∴BF=EF,又∵∠BFG=∠EFD,GF=DF,∴△BFG≌△EFD(SAS),∴∠FBG=∠FED,BG=ED,∴BG∥DE,∵△ADE和△ACB都是等腰直角三角形,∴DE=DA,∠DAE=∠DEA=45°,AC=BC,∠CAB=∠CBA=45°,又∵∠CBG=∠EBG﹣∠EBA﹣∠ABC=∠DEF﹣(180°﹣∠AEB﹣∠EAB)﹣45°=∠DEF﹣180°+∠AEB+∠EAB﹣45°=(∠DEF+∠AEB)+∠EAB﹣225°=360°﹣∠DEA+∠EAB﹣225°=360°﹣45°+∠EAB﹣225°=90°+∠EAB,而∠DAC=∠DAE+∠EAB+∠CAB=45°+∠EAB+45°=90°+∠EAB,∴∠CBG=∠DAC,又∵BG=ED,DE=DA,∴BG=AD,又∵BC=AC,∴△BCG≌△ACD(SAS),∴GC=DC,∠BCG=∠ACD,∴∠DCG=∠DCB+∠BCG=∠DCB+∠ACD=∠ACB=90°,∴△DCG是等腰直角三角形,又∵F是DG的中点,∴CF⊥DF且CF=DF.点睛:主要考查了旋转的性质,等腰三角形和全等三角形的判定,及勾股定理的运用.要掌握等腰三角形和全等三角形的性质及其判定定理并会灵活应用是解题的关键.10.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)如图1,求证:△CDE是等边三角形.(2)设OD=t,①当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.②求t为何值时,△DEB是直角三角形(直接写出结果即可).【答案】(1)见解析;(2)①见解析;②t=2或14.【解析】【分析】(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)①当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;②存在,当点D与点B重合时,D,B,E不能构成三角形;当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2=t;当6<t<10时,此时不存在;当t>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14.【详解】(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)①存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=3,∴△BDE的最小周长=CD+4=3;②存在,∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2;当6<t<10时,由∠DBE=120°>90°,∴此时不存在;当t>10时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14,∴t=14,综上所述:当t=2或14时,以D、E、B为顶点的三角形是直角三角形.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,直角三角形的判定,熟练掌握旋转的性质是解题的关键.。
九年级上册数学《旋转》单元测试卷(满分120分,考试用时120分钟)一、选择题1.时钟上的分针匀速旋转一周需要 60min,则经过 5min,分针旋转了( )A . 10°B . 20°C . 30°D . 60°2.如图,在△A B C 中,∠C A B =65°,将△A B C 在平面内绕点A 旋转到△A B 'C '的位置.若∠C A B '=25°则∠AC C ''的度数为()A . 25°B . 40°C . 65°D . 70°3.如图,香港特别行政区区徽中的紫荆花图案,该图案绕中心旋转n°后能与原来的图案互相重合,则n的最小值为( )A . 45°B . 60°C . 72°D . 108°4.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△A B C 经过平移后得到△A 1B 1C 1,若A C 上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为( )A . (2.8,3.6)B . (﹣2.8,﹣3.6)C . (3.8,2.6)D . (﹣3.8,﹣2.6)5.已知下列命题,其中正确的个数是( )(1)关于中心对称的两个图形一定不全等;(2)关于中心对称的两个图形是全等形;(3)两个全等的图形一定关于中心对称.A . 0个B . l个C . 2个D . 3个6.在下列图案中,既是轴对称又是中心对称图形的是( )A .B .C .D .7.已知点A (1,2),点A 关于原点的对称点是A 1,则点A 1的坐标是( )A . (-1,-2)B . (-2,1)C . (2,-1)D . (-1,2)8.如图,若将直角坐标系中“鱼“形图案的每个“顶点”的纵坐标保持不变,横坐标都乘以﹣1,得到一组新的点,再依次连接这些点,所得图案与原图案的关系为( )A . 重合B . 关于x轴对称C . 关于y轴对称D . 宽度不变,高度变为原来的一半9.观察下面图案,在(A )(B )(C )(D )四幅图案中,能通过图案(1)平移得到的是( )A .B .C .D .10.将绕点旋转得到,则下列作图正确的是( )A .B .C .D .二、填空题11.如图,已知△A B C ,D 是A B 上一点,E是B C 延长线上一点,将△A B C 绕点C 顺时针方向旋转,恰好能与△ED C 重合.若∠A =33°,则旋转角为_____°.12.在平面直角坐标系中,已知点P0的坐标为(2,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是_____.13.若点A (1,2)与点B (m,﹣2)关于原点对称,则m=_____.14.若点P(﹣m,3﹣m)关于原点的对称点在第四象限,则m满足_____.15.如图,在的正方形格纸中,有一个以格点为顶点的,请你找出格纸中所有与成轴对称且也以格点为顶点的三角形,这样的三角形共有个.16.如图,已知∠MON=30°,B 为OM上一点,B A ⊥ON于A ,四边形A B C D 为正方形,P为射线B M上一动点,连结C P,将C P绕点C 顺时针方向旋转90°得C E,连结B E,若A B =4,则B E的最小值为_____.17.如图,▱A B C D 绕点A 逆时针旋转32°,得到▱A B ′C ′D ′,若点B ′与点B 是对应点,若点B ′恰好落在B C 边上,则∠C =_____.18.如图,正方形A EFG与正方形A B C D 的边长都为1,正方形A EFG绕正方形A B C D 的顶点A 旋转一周,在此旋转过程中,线段D F的长取值范围为_____.三、解答题19.如图,将△A B C 绕顶点C 逆时针旋转得到△A ′B ′C ,且点B 刚好落在A ′B ′上,若∠A =25°,∠BC A ′=45°,求∠A ′B A 的度数.20.如图所示:已知∠A B C =120°,作等边△A C D ,将△A C D 旋转60°,得到△C D E,A B =3,B C =2,求B D 和∠A B D .21.有一块方角形钢板如图所示,如何用一条直线将其分为面积相等的两部分.22.(1)指出下列旋转对称图形的最小旋转角,并在图中标明它的旋转中心O.(2)在上述几个图形中有没有中心对称图形?具体指明是哪几个?解:图形A 的最小旋转角是度,它中心对称图形.图形B 的最小旋转角是度,它中心对称图形.图形C 的最小旋转角是度,它中心对称图形.图形D 的最小旋转角是度,它中心对称图形.图形E的最小旋转角是度,它中心对称图形.23.如图,将△OA B 绕点O逆时针旋转80°得到△OC D ,点A 与点C 是对应点.(1)画出△OA B 关于点O对称的图形(保留画图痕迹,不写画法);(2)若∠A =110°,∠D =40°,求∠A OD 的度数.24.在Rt△A B C 中,∠A C B =90°,A C =B C =3,点D 是斜边A B 上一动点(点D 与点A 、B 不重合),连接CD ,将C D 绕点C 顺时针旋转90°得到C E,连接A E,D E.(1)求△A D E的周长的最小值;(2)若C D =4,求A E的长度.25.如图,Rt△A B C 中,∠C = 90°,把Rt△A B C 绕着B 点逆时针旋转,得到Rt△D B E,点E在A B 上.(1)若∠B D A = 70°,求∠B A C 的度数.(2)若B C = 8,A C = 6,求△A B D 中A D 边上的高.参考答案一、选择题1.时钟上的分针匀速旋转一周需要 60min,则经过 5min,分针旋转了( )A . 10°B . 20°C . 30°D . 60°[答案]C[解析][分析]钟表的分针匀速旋转一周需要60分,分针旋转了360°;求经过6分,分针的旋转度数,列出算式,解答出即可.[详解]根据题意知,分针旋转一周(360°)需要60min,则分针每分钟旋转=6°,∴经过5min,分针旋转了5×6=30°,故选:C .[点睛]本题考查了生活中的旋转现象,明确分针旋转一周,分针旋转了360°是解答本题的关键.2.如图,在△A B C 中,∠C A B =65°,将△A B C 在平面内绕点A 旋转到△A B 'C '的位置.若∠C A B '=25°则∠AC C ''的度数为()A . 25°B . 40°C . 65°D . 70°[答案]D[解析]分析:由旋转的性质结合已知易得∠C A C ′=∠B A B ′=∠C A B -∠C A B ′=65°-25°=40°,A C =A C ′,由此可得∠A C C ′=∠A C ′C =70°.详解:∵△A B ′C ′是由△A B C 绕点A 旋转得到的,∴∠C A C ′=∠B A B ′,A C =A C ′,∵∠B A B ′=∠B A C -∠C A B ′=65°-25°=40°,∴∠C A C ′=40°,∴∠A C C ′=∠A C ′C =(180°-40°)=70°.故选D .点睛:熟悉“旋转的性质,并能结合已知条件得到A C =A C ′,∠C A C ′=∠B A B ′=40°”是解答本题的关键.3.如图,香港特别行政区区徽中的紫荆花图案,该图案绕中心旋转n°后能与原来的图案互相重合,则n的最小值为( )A . 45°B . 60°C . 72°D . 108°[答案]C[解析]由题意得360º÷5=72º.故选C .4.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△A B C 经过平移后得到△A 1B 1C 1,若A C 上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为( )A . (2.8,3.6)B . (﹣2.8,﹣3.6)C . (3.8,2.6)D . (﹣3.8,﹣2.6)[解析][分析]根据平移的性质得出,△A B C 的平移方向以及平移距离,即可得出P1坐标,进而利用中心对称图形的性质得出P2点的坐标.[详解]∵A 点坐标为:(1,1),A 1(-3,-4),∴△A B C 向左平移了4个单位,向下平移了5个单位,∴点P(1.2,1.4)平移后的对应点P1为:(-2.8,-3.6),∵点P1绕点O逆时针旋转180°,得到对应点P2,∴P2点的坐标为:(2.8,3.6).故选A .[点睛]此题主要考查了旋转的性质以及平移的性质,根据已知得出平移的方式是解题关键.关于原点对称的两个点横纵坐标均为互为相反数的关系.5.已知下列命题,其中正确的个数是( )(1)关于中心对称的两个图形一定不全等;(2)关于中心对称的两个图形是全等形;(3)两个全等的图形一定关于中心对称.A . 0个B . l个C . 2个D . 3个[答案]B[解析]试题解析:关于中心对称的两个图形一定是全等形,所以(1)错误,(2)正确;(3)两个全等的图形位置可以是任意的,不一定是中心对称的,所以真命题只有一个.故选B .6.在下列图案中,既是轴对称又是中心对称图形的是( )A .B .C .D .[答案]C[解析]根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.[详解]A 、既不是轴对称图形又不是中心对称图形,故不符合题意;B 、是轴对称图形,不是中心对称图形,故不符合题意;C 、既是轴对称图形又是中心对称图形,符合题意;D 、是中心对称图形,不是轴对称图形,故不符合题意,故选C .[点睛]本题考查了中心对称图形与轴对称图形的概念.熟练掌握相关定义是解题的关键.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.已知点A (1,2),点A 关于原点的对称点是A 1,则点A 1的坐标是( )A . (-1,-2)B . (-2,1)C . (2,-1)D . (-1,2)[答案]A[解析]根据关于原点的对称点,横坐标互为相反数、纵坐标互为相反数,知点 A (1, 2)关于原点对称点的坐标是(−1,-2),故选A .8.如图,若将直角坐标系中“鱼“形图案的每个“顶点”的纵坐标保持不变,横坐标都乘以﹣1,得到一组新的点,再依次连接这些点,所得图案与原图案的关系为( )A . 重合B . 关于x轴对称C . 关于y轴对称D . 宽度不变,高度变为原来的一半[答案]C[解析]根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.[详解]解:图案的每个“顶点”的纵坐标保持不变,横坐标分别乘-1,则对应点的横坐标互为相反数,纵坐标相同,所以,所得图案与原图案关于y轴对称.故选:C .[点睛]本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律.9.观察下面图案,在(A )(B )(C )(D )四幅图案中,能通过图案(1)平移得到的是( )A .B .C .D .[答案]C[解析][分析]把一个图形整体沿某一直线方向移动,得到的新图形与原图形的形状和大小完全相同.[详解]解:因为平移不改变图形的形状和大小,只改变图形的位置,所以在(A )(B )(C )(D )四幅图案中,能通过图案(1)平移得到的是C 选项的图案.故选:C .[点睛]本题考查平移的性质,把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.10.将绕点旋转得到,则下列作图正确的是( )A .B .C .D .[答案]D[解析][分析]把一个图形绕某一点O转动一个角度的图形变换叫做旋转.[详解]解:观察选项中的图形,只有D 选项为△A B O绕O点旋转了180°.[点睛]本题考察了旋转的定义.二、填空题11.如图,已知△A B C ,D 是A B 上一点,E是B C 延长线上一点,将△A B C 绕点C 顺时针方向旋转,恰好能与△ED C 重合.若∠A =33°,则旋转角为_____°.[答案]82°[解析][分析]设∠B =x,根据旋转的旋转得C B =C D ,∠C D E=∠B =x,∠A =∠E=33°,∠B C D 的度数等于旋转角的度数,再利用三角形外角性质得∠B C D =x+33°,接着证明∠C D B =∠B =x,则利用三角形内角和得到x+x+33°+x=180°,然后求出x后计算x+33°即可得到旋转角的度数.[详解]解:设∠B =x,∵△A B C 绕点C 顺时针方向旋转,恰好能与△ED C 重合,∴C B =C D ,∠C D E=∠B =x,∠A =∠E=33°,∠B C D 的度数等于旋转角的度数,∴∠B C D =∠C D E+∠E=x+33°,在△B C D 中,∵C B =C D ,∴∠C D B =x,∴x+x+33°+x=180°,解得x=49°,∴旋转角的度数为49°+33°=82°.故答案为82°.[点睛]本题考查旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.12.在平面直角坐标系中,已知点P0的坐标为(2,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是_____.[答案](﹣2,2).[解析][分析]利用旋转的性质得到OP2=2OP1=OP3=4,∠xOP2=∠P2OP3=60°,作P3H⊥x轴于H,利用含30度的直角三角形求出OH、P3H,从而得到P3点坐标.[详解]解:如图,∵点P0的坐标为(2,0),∴OP0=OP1=2,∵将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O 按逆时针方向旋转60°得点P3,∴OP2=2OP1=OP3=4,∠xOP2=∠P2OP3=60°,作P3H⊥x轴于H,OH=OP3=2,P3H=OH=2,∴P3(-2,2).故答案为(-2,2).[点睛]本题考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.13.若点A (1,2)与点B (m,﹣2)关于原点对称,则m=_____.[答案]-1[解析][分析]根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.[详解]根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.[解答]∵点A (1,2)与点B (m,-2)关于原点对称,∴m=-1.故答案为:-1.[点睛]本题考查的是关于原点对称,熟练掌握关于原点对称的点的坐标是解题的关键.14.若点P(﹣m,3﹣m)关于原点的对称点在第四象限,则m满足_____.[答案]0<m<3[解析][分析]根据题意判断出点P在第二象限,再根据第二象限内点的坐标特点可得关于m的不等式组,再解不等式组即可.[详解]解:∵点P(﹣m,3﹣m)关于原点的对称点在第四象限,∴点P在第二象限,∴,解得:0<m<3,故答案为:0<m<3.[点睛]本题考查关于原点对称的点的坐标,以及平面直角坐标系中各象限内点的坐标符号,关键是掌握四个象限内点的坐标符号.15.如图,在的正方形格纸中,有一个以格点为顶点的,请你找出格纸中所有与成轴对称且也以格点为顶点的三角形,这样的三角形共有个.[答案]5[解析]与△A B C 成轴对称且也以格点为顶点的三角形有5个,分别为△B C D ,△B FH,△A D C ,△A EF,△C GH.16.如图,已知∠MON=30°,B 为OM上一点,B A ⊥ON于A ,四边形A B C D 为正方形,P为射线B M上一动点,连结C P,将C P绕点C 顺时针方向旋转90°得C E,连结B E,若A B =4,则B E的最小值为_____.[答案]2+2[解析]如图所示,将B C 绕着点C 顺时针旋转90°得FC ,作直线FE交OM于H,则∠B C F=90°,B C =FC , ∵将C P绕点C 按顺时针方向旋转90°得C E,∴∠PC E=90°,PC =EC ,∴∠B C P=∠FC E,在△B C P和△FC E中,B C =FC ,∠B C P=∠FC E,PC =EC ,∴△B C P≌△FC E(SA S),∴∠C B P=∠C FE,又∵∠B C F=90°,∴∠B HF=90°,∴点E在直线FH上,即点E的轨迹为直线FH,∵B H⊥EF,∴当点E与点H重合时,B E=B H最短,∵当C P⊥OM时,Rt△B C P中,∠C B P=30°,∴C P=B C =2,B P= C P=2,又∵∠PC E=∠C PH=∠PHE=90°,C P=C E,∴正方形C PHE中,PH=C P=2,∴B H=B H+PH=2+2,即B E的最小值为2+2,故答案为:2+2.点睛:本题主要考查了正方形的性质,勾股定理,全等三角形的判定与性质以及垂线段最短的综合运用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等以及垂线段最短进行判断.17.如图,▱A B C D 绕点A 逆时针旋转32°,得到▱A B ′C ′D ′,若点B ′与点B 是对应点,若点B ′恰好落在B C 边上,则∠C =_____.[答案]106°[解析][分析]根据旋转的性质得出A B =A B ′,∠B A B ′=32°,进而得出∠B 的度数,再利用平行四边形的性质得出∠C 的度数.[详解]解:∵平行四边形A B C D 绕点A 逆时针旋转30°,得到平行四边形A B ′C ′D ′(点B ′与点B 是对应点,点C ′与点C 是对应点,点D ′与点D 是对应点),∴A B =A B ′,∠B A B ′=32°,∴∠B =∠A B ′B =(180°﹣32°)÷2=74°,∴∠C =180°﹣74°=106°.故答案为:106°.[点睛]本题考查旋转的性质以及平行四边形的性质,根据已知得出∠B =∠A B ′B =74°是解题关键.18.如图,正方形A EFG与正方形A B C D 的边长都为1,正方形A EFG绕正方形A B C D 的顶点A 旋转一周,在此旋转过程中,线段D F的长取值范围为_____.[答案]≤D F≤+1[解析][分析]由题意可求A F=,且点F是以A 为圆心,为半径的圆上一点,即可求D F的取值范围.[详解]解:∵正方形A EFG与正方形A B C D 的边长都为1∴A F=∴点F是以A 为圆心,为半径的圆上一点∴当F,D ,A 三点共线且D 在线段A F之间时,D F最短为﹣1当F,D ,A 三点共线且A 在线段D F之间时,D F最长为+1∴-1≤D F≤+1故答案为-1≤D F≤+1[点睛]本题考查旋转的性质,正方形的性质,解题关键是利用点F的轨迹求D F的取值范围.三、解答题19.如图,将△A B C 绕顶点C 逆时针旋转得到△A ′B ′C ,且点B 刚好落在A ′B ′上,若∠A =25°,∠BC A ′=45°,求∠A ′B A 的度数.[答案]40°[解析][分析]先利用旋转的性质得∠A ′=∠A =25°,∠A B C =∠B ′,C B =C B ′,再利用等腰三角形的性质得∠B ′=∠C B B ′,则根据三角形外角性质得∠C B B ′=70°,所以∠B ′=∠A B C =70°,然后利用平角定义计算∠A ′B A 的度数.[详解]∵△A B C 绕顶点C 逆时针旋转得到△A ′B ′C ,且点B 刚好落在A ′B ′上,∴∠A ′=∠A =25°,∠A B C =∠B ′,C B =C B ′,∴∠B ′=∠C B B ′,∵∠C B B ′=∠A ′+∠B C A ′=25°+45°=70°,∴∠B ′=70°,∴∠A B C =70°,∴∠A ′B A =180°﹣70°﹣70°=40°.[点睛]本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.20.如图所示:已知∠A B C =120°,作等边△A C D ,将△A C D 旋转60°,得到△C D E,A B =3,B C =2,求B D 和∠A B D .[答案]B D =5.∠B A D =60°[解析][分析]先根据等边三角形的性质得∠A D C =∠A C D =60°,由于∠A B C =120°,根据四边形内角和得到∠B A D +∠B C D =180°,则∠B A D +∠B C A =120°,再根据旋转的性质得∠B A D =∠EC D ,D B =D E,∠B D E=60°,A B =C E,于是有∠B C A +∠EC D +∠A C D =180°,得到B 、C 、E在同一条直线上,接着证明△B D E为等边三角形得到∠D B E=60°,所以∠B A D =∠A B C ﹣∠D B E=60°,B D =B E=B C +C E=B C +A B =5.[详解]∵△A C D 是等边三角形,∴∠A D C =∠A C D =60°,∵∠A B C =120°,∴∠B A D +∠B C D =180°,∴∠B A D +∠B C A =120°,∵△A B D 绕点D 按顺时针方向旋转60°后到△EC D 的位置,∴∠B A D =∠EC D ,D B =D E,∠B D E=60°,A B =C E,∴∠B C A +∠EC D =120°,∴∠B C A +∠EC D +∠A C D =180°,∴B 、C 、E在同一条直线上.∵D B =D E,∠B D E=60°,∴△B D E为等边三角形,∴∠D B E=60°,∴∠B A D =∠A B C ﹣∠D B E=60°,∴B D =B E=B C +C E=B C +A B =3+2=5.[点睛]本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质.21.有一块方角形钢板如图所示,如何用一条直线将其分为面积相等的两部分.[答案]答案见解析[解析][分析]思路1:先将图形分割成两个矩形,找出各自的对称中心,过两个对称中心做直线即可;思路2:先将图形补充成一个大矩形,分别找出图中两个矩形各自的对称中心,过两个对称中心做直线即可.[详解]如图所示,有三种思路:[点睛]本题需利用矩形的中心对称性解决问题.22.(1)指出下列旋转对称图形的最小旋转角,并在图中标明它的旋转中心O.(2)在上述几个图形中有没有中心对称图形?具体指明是哪几个?解:图形A 的最小旋转角是度,它中心对称图形.图形B 的最小旋转角是度,它中心对称图形.图形C 的最小旋转角是度,它中心对称图形.图形D 的最小旋转角是度,它中心对称图形.图形E的最小旋转角是度,它中心对称图形.[答案](1)详见解析;(2)60,是;72,不是;72,不是;120,不是;90,是.[解析][分析](1)一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.(2)一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.[详解]解:(1)如图所示,(2)图形A 的最小旋转角是60°,它是中心对称图形.图形B 的最小旋转角是72°,它不是中心对称图形.图形C 的最小旋转角是72°,它不是中心对称图形.图形D 的最小旋转角是120°,它不是中心对称图形.图形E的最小旋转角是90°,它是中心对称图形.故答案为:60,是;72,不是;72,不是;120,不是;90,是.[点睛]本题考查中心对称图形以及旋转对称图形,常见的中心对称图形有平行四边形、圆形、正方形、长方形等等.23.如图,将△OA B 绕点O逆时针旋转80°得到△OC D ,点A 与点C 是对应点.(1)画出△OA B 关于点O对称的图形(保留画图痕迹,不写画法);(2)若∠A =110°,∠D =40°,求∠A OD 的度数.[答案](1)详见解析;(2)50°[解析][分析](1)延长A O到A ′,使OA ′=O A ,延长B O到B ′,使OB ′=O B ,则△OA ′B ′满足条件;(2)根据旋转的性质得∠A OC =80°,∠C =∠A =110°,再利用三角形内角和计算出∠C OD ,然后计算∠A OC ﹣∠C OD 即可.[详解]解:(1)如图,△OA ′B ′为所作.(2)∵△OA B 绕点O逆时针旋转80°得到△OC D ,∴∠A OC =80°,∠C =∠A =110°,∴∠C OD =180°﹣110°﹣40°=30°,∴∠A OD =∠A OC ﹣∠C OD =80°﹣30°=50°.[点睛]本题考查作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.24.在Rt△A B C 中,∠A C B =90°,A C =B C =3,点D 是斜边A B 上一动点(点D 与点A 、B 不重合),连接CD ,将C D 绕点C 顺时针旋转90°得到C E,连接A E,D E.(1)求△A D E的周长的最小值;(2)若C D =4,求A E的长度.[答案](1)6+;(2)3﹣或3+[解析][分析](1)根据勾股定理得到A B = A C =6,根据全等三角形的性质得到A E=B D ,当D E最小时,△A D E的周长最小,过点C 作C F⊥A B 于点F,于是得到结论;(2)当点D 在C F的右侧,当点D 在C F的左侧,根据勾股定理即可得到结论[详解]解:(1)∵在Rt△A B C 中,∠A C B =90°,A C =B C =3∴A B = A C =6,∵∠EC D =∠A C B =90°,∴∠A C E=∠B C D ,在△A C E与△B C D 中,,∴△A C E≌△B C D (SA S),∴A E=B D ,∴△A D E的周长=A E+A D +D E=A B +D E,∴当D E最小时,△A D E的周长最小,过点C 作C F⊥A B 于点F,当C D ⊥A B 时,C D 最短,等于3,此时D E=3,∴△A D E的周长的最小值是6+3;(2)当点D 在C F的右侧,∵C F=A B =3,C D =4,∴D F=,∴A E=B D =B F﹣D F=3﹣;当点D 在C F的左侧,同理可得A E=B D =3+,综上所述:A E的长度为3﹣或3+.[点睛]本题考查旋转的性质,全等三角形的判定与性质,勾股定理,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质.25.如图,Rt△A B C 中,∠C = 90°,把Rt△A B C 绕着B 点逆时针旋转,得到Rt△D B E,点E在A B 上.(1)若∠B D A = 70°,求∠B A C 的度数.(2)若B C = 8,A C = 6,求△A B D 中A D 边上的高.[答案](1)∠B A C =50°;(2)[解析]解:(1) 由旋转得△A C B ≌△D EB∴B D = B A∴∠B A D =∠B D A =∴∠A B D =∴∠A B C =∠A B D =∵∠C =∴∠B A C =·········································································· 5分(2) ∵B C = 8,A C = 6,∠C =∴∵∠D EB =∠C =且B E=B C = 8,D E ="A C " = 6∴A E =" A B " – B E = 2在Rt△D EA 中,设A D 边上的高为h∴∴······················································· 10分。
人教版数学九年级上学期《旋转》单元测试(满分120分,考试用时120分钟)一、选择题1.将下面图按顺时针方向旋转90°后得到的是()A. B. C. D.2.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种方案,你认为符合条件的是()A. 等腰三角形B. 正三角形C. 等腰梯形D. 菱形3.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A. 点AB. 点BC. 点CD. 点D4.如图,把矩形OABC放在直角坐标系中,OC在x轴上,OA在y轴上,且OC=2,OA=4,把矩形OABC 绕着原点顺时针旋转90°得到矩形OA′B′C′,则B′的坐标为()A. (2,4)B. (-2,4)C. (4,2)D. (2,-4)5.将点P(-2,3)向右平移3个单位得到点P1,点P2与点P1关于原点对称,则P2的坐标是()A. (-5,-3)B. (1,-3)C. (-1,-3)D. (5,-3)6.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是【】A. ①B. ②C. ③D. ④7.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C′使得点A′恰好落在AB上,则旋转角度为()A. 30°B. 60°C. 90°D. 150°8.如图,在矩形ABCD中,AD=4,DC=3,将△ADC按逆时针绕点A旋转到△AEF(A、B、E在同一直线上),连接CF,则CF的长为()A. B. 5 C. 7 D.9.如图,将△ABC绕点C(0,-1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为()A. (-a,-b)B. (-a,-b-1)C. (-a,-b+1)D. (-a,-b-2)10.如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,那么∠BAB′的度数为()A. 30°B. 35°C. 40°D. 50°二、填空题11.如图,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过____次旋转而得到的,每一次旋转____度.12.如图,点A、B、C、D、O都在方格纸的格点上,若是由绕点O按顺时针方向旋转而得到的,则旋转的角度为__.13.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AC=2cm.现在将△ABC绕点C逆时针旋转至△A′B′C′,使得点A′恰好落在AB上,连接BB′,则BB′的长度为_____.14.如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠的度数是_______15.已知点P(a,-3)和Q(4,b)关于原点对称,则=_____.16.如图,直线与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是________.17.如图,在等边△ABC中,D是AC边上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=10,BD=9,则△AED的周长是______.18.如图所示,两个边长都为4cm的正方形ABCD和正方形OEFG,O是正方形ABCD的对称中心,则图中阴影部分的面积为_______cm2.三、解答题19. 如图所示,正方形ABCD中,E是CD上一点,F在CB的延长线上,且DE=BF.(1)求证:△ADE≌△ABF;(2)问:将△ADE顺时针旋转多少度后与△ABF重合,旋转中心是什么?20.如图,在△ABC中,AD是BC边上的中线.(1)画出与△ACD关于点D成中心对称的三角形;(2)找出与AC相等的线段;(3)探究:△ABC中AB与AC的和与中线AD之间有何大小关系?并说明理由.(4)若AB=5,AC=3,求线段AD的长度范围.21.如图,P是矩形ABCD下方一点,将△PCD绕点P顺时针旋转60°后,恰好点D与点A重合,得到△PEA,连接EB,问:△ABE是什么特殊三角形?请说明理由.22.如图,把一副三角板如图①放置,其中,∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图②).(1)求∠OFE1的度数;(2)求线段AD1的长.23.在△AOB中,C,D分别是OA、OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.如图,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点.求证:(1)AC′=BD′;(2)AC′⊥BD.24.平面内有一等腰直角三角板(∠ACB=90°)和一直线MN,过点C作CE⊥MN于点E,过点B作BF⊥MN 于点F.当点E与点A重合时(如图①),易证:AF+BF=2CE;当三角板绕点A顺时针旋转至图②、图③的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,请直接写出你的猜想,不需证明.参考答案一、选择题1.将下面图按顺时针方向旋转90°后得到的是()A. B. C. D.【答案】A【解析】【分析】根据旋转的意义,找出图中眼,眉毛,嘴5个关键处按顺时针方向旋转90°后的形状即可选择答案.【详解】根据旋转的意义,图片按顺时针方向旋转90度,即正立状态转为顺时针的横向状态,从而可确定为A图.故选A.【点睛】本题考查了图形的旋转变化,学生主要要看清是顺时针还是逆时针旋转,旋转多少度,难度不大,但易错.2.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种方案,你认为符合条件的是()A. 等腰三角形B. 正三角形C. 等腰梯形D. 菱形【答案】D【解析】等腰三角形是轴对称图形,正三角形是轴对称图形,等腰梯形是轴对称图形,菱形既是中心对称图形又是轴对称图形,故选D.3.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A. 点AB. 点BC. 点CD. 点D【答案】B【解析】试题分析:旋转对称图形是指:把一个图形绕着某一定点旋转一个角度360°/n(n为大于1的正整数)后,与初始的图形重合,这种图形就叫旋转对称图形,这个定点就叫做旋转对称中心,旋转的角度叫做旋转角。
第23章《旋转》单元测试卷一、选择题(共10小题,每小题3分,共30分)1.下列图形中,是中心对称图形的是()2.以下图的右边缘所在直线为轴将该图案向右翻折后,再绕中心旋转180°,所得到的图形是()3.用数学的方式理解“当窗理云鬓,对镜贴花黄”和“坐地日行八万里”(只考虑地球的自转),其中蕴含的图形运动是()A.平移和旋转B.对称和旋转 C.对称和平移 D.旋转和平移4.已知点A(a,2013)与点A′(﹣2014,b)是关于原点O的对称点,则a+b 的值为()A.1 B.5 C.6 D.45.在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限6.如图是一个标准的五角星,若将它绕旋转中心旋转一定角度后能与自身重合,则至少应将它旋转的度数是()A.60°B.72°C.90°D.144°7.如图,将△OAB 绕点O 逆时针旋转80°,得到△OCD ,若∠A=2∠D=100°,则∠α的度数是( )A .50°B .60°C .40°D .30°8.在平面直角坐标系xOy 中,A 点坐标为(3,4),将OA 绕原点O 顺时针旋转180°得到OA′,则点A′的坐标是( )A .(﹣4,3)B .(﹣3,﹣4)C .(﹣4,﹣3)D .(﹣3,4)9.如图,将Rt △ABC (其中∠B=30°,∠C=90°)绕点A 按顺时针方向旋转到△AB1C1的位置,使得点B 、A 、B1在同一条直线上,那么旋转角等于( )B 1C 1C BAA .30°B .60°C .90°D .180° 10.如图,在△ABC 中,∠AB=90°,将△ABC 绕点A 顺时针旋转90°,得到△ADE ,连接BD ,若AC=3,DE=1,则线段BD 的长为( )E DCB AA .5B .3C .4D .10二、填空题(共6小题,每小题3分,共18分)11.如图,△ABC 中,∠C =30°,将△ABC 绕点A 顺时针旋转60°得△ADE ,AE 与BC 交于F ,则∠AFB =_______°.12如图,把Rt △ABC 绕点A 逆时针旋转44°,得到Rt △AB′C′,点C′恰好落在边AB 上,连接BB′,则∠BB′C′=图11B'C'CBA图1213.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2016的坐标为.14.如图,直线y=﹣33x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是.15.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是.16.在等腰三角形ABC中,∠C=90°,BC=2cm,如果以AC的中点O为旋转中心,将△ABC旋转180°,点B落在B′处,则BB′的长度为.三、解答题(共8题,共72分)17.(本题8分)如图,说出这个图形的旋转中心,它绕旋转中心至少旋转多大角度才能与原来图形重合?18.(本题8分)将下图所示的图形面积分成相等的两部分.(图中圆圈为挖去部分)19.(本题8分)19.(8分)直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.20.(本题8分)如图,已知AD=AE,AB=AC.(1)求证:∠B=∠C;(2)若∠A=50°,问△ADC经过怎样的变换能与△AEB重合?21.(本题8分)如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴,垂足为A.(1)将点B绕原点逆时针方向旋转90°后记作点C,求点C的坐标;(2)△O′A′B′与△OAB关于原点对称,写出点B′、A′的坐标.22.(本题10分)当m为何值时(1)点A(2,3m)关于原点的对称点在第三象限;(2)点B(3m﹣1,0.5m+2)到x轴的距离等于它到y轴距离的一半?23.(本题10分)直角坐标系中,已知点P(﹣2,﹣1),点T(t,0)是x轴上的一个动点.(1)求点P关于原点的对称点P′的坐标;(2)当t取何值时,△P′TO是等腰三角形?24.(本题12分)等边△OAB在平面直角坐标系中,已知点A(2,0),将△OAB 绕点O顺时针方向旋转a°(0<a<360)得△OA1B1.(1)求出点B的坐标;(2)当A1与B1的纵坐标相同时,求出a的值;(3)在(2)的条件下直接写出点B1的坐标.第23章《旋转》单元测试卷解析一、选择题1.【答案】A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误;故选:C2.【答案】以图的右边缘所在的直线为轴将该图形向右翻转180°后,黑圆在右上角,再按顺时针方向旋转180°,黑圆在左下角.故选:A.3.【答案】根据对称和旋转定义可知:“当窗理云鬓,对镜贴花黄”是对称;“坐地日行八万里”是旋转.故选B.4.【答案】∵点A(a,2013)与点A′(﹣2014,b)是关于原点O的对称点,∴a=2014,b=﹣2013,则a+b的值为:2014﹣2013=1.故选:A.5.【答案】根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,∴m=2且m﹣n=﹣3,∴m=2,n=5,∴点M(m,n)在第一象限,故选A.6.【答案】如图,设O的是五角星的中心,∵五角星是正五角星,∴∠AOB=∠BOC=∠COD=∠DOE=∠AOE,∵它们都是旋转角,而它们的和为360°,∴至少将它绕中心顺时针旋转360÷5=72°,才能使正五角星旋转后与自身重合.故选:B.7.【答案】∵将△OAB绕点O逆时针旋转80°,∴∠A=∠C∠AOC=80°∴∠DOC=80°﹣α,∠D=100°∵∠A=2∠D=100°,∴∠D=50°∵∠C+∠D+∠DOC=180°,∴100°+50°+80°﹣α=180°解得α=50°,故选A8.【答案】根据题意得,点A关于原点的对称点是点A′,∵A点坐标为(3,4),∴点A′的坐标(﹣3,﹣4).故选B.9.【答案】∵B、A、B1在同一条直线上,∴∠BAB1=180°,∴旋转角等于180°.故选D.10.【答案】由旋转的性质可知:BC=DE=1,AB=AD,∵在RT△ABC中,AC=3,BC=1,∠ACB=90°,∴由勾股定理得:10又旋转角为90°,∴∠BAD=90°,∴在RT △ADB 中,即:BD 的长为故:选A二、填空题11.【答案】90º12.【答案】∵Rt △ABC 绕点A 逆时针旋转40°得到Rt △AB′C′,∴AB=AB′,∠BAB′=44°,在△ABB′中,∠ABB′=12(180°﹣∠BAB′)=12(180°﹣44°)=68°, ∵∠AC′B′=∠C=90°,∴B′C′⊥AB ,∴∠BB′C′=90°﹣∠ABB′=90°﹣68°=22°.故答案为:22°.13.【答案】∵AO=32,BO=2,∴AB=52,∴OA+AB1+B1C2=6,∴B2的横坐标为:6,且B2C2=2,∴B4的横坐标为:2×6=12,∴点B2016的横坐标为:2016÷2×6=6048.∴点B2016的纵坐标为:2. ∴点B2016的坐标为:(6048,2).故答案为:(6048,2).14.【答案】令y=0x+2=0,解得令x=0,则y=2,∴点A (0),B (0,2),∴OB=2,∴∠BAO=30°,∴AB=2OB=2×2=4,∵△AOB 绕点A 顺时针旋转60°后得到△AO′B′,∴∠BAB′=60°,∴∠OAB′=30°+60°=90°,∴AB′⊥x 轴,∴点B′(4).故答案为:(4).15.【答案】∵时针从上午的8时到11时共旋转了3个格,每相邻两个格之间的夹角是30°,∴时针旋转的旋转角=30°×3=90°.故答案为:90°.16.【答案】如图所示:在直角△OBC 中,OC=12AC=12BC=1cm ,则(cm ),则(cm ).故答案为:cm .三、解答题17.【答案】这个图形的旋转中心为圆心;∵360°÷6=60°,∴该图形绕中心至少旋转60度后能和原来的图案互相重合.18.【答案】如图:19.【答案】解:根据题意,得(x2+2x)+(x+2)=0,y=-3.∴x1=-1,x2=-2.∵点P在第二象限,∴x2+2x<0,∴x=-1,∴x+2y=-720.【答案】(1)证明:在△AEB与△ADC中,AB=AC,∠A=∠A,AE=AD;∴△AEB≌△ADC,∴∠B=∠C.(2)解:先将△ADC绕点A逆时针旋转50°,再将△ADC沿直线AE对折,即可得△ADC与△AEB重合.或先将△ADC绕点A顺时针旋转50°,再将△ADC沿直线AB对折,即可得△ADC与△AEB重合.21.【答案】(1)如图,点C的坐标为(﹣2,4);(2)点B′、A′的坐标分别为(﹣4,﹣2)、(﹣4,0).22.【答案】(1)∵点A(2,3m),∴关于原点的对称点坐标为(﹣2,﹣3m),∵在第三象限,∴﹣3m<0,∴m>0;(2)由题意得:①0.5m +2=12(3m ﹣1),解得:m=52;②0.5m +2=﹣12(3m ﹣1),解得:m=﹣34.23.【答案】(1)点P 关于原点的对称点P'的坐标为(2,1); (2)OP '=(a )动点T 在原点左侧,当1TO OP '=时,△P'TO 是等腰三角形,∴点1T,0),(b )动点T 在原点右侧,①当T2O=T2P'时,△P'TO 是等腰三角形,得:2T (54,0),②当T3O=P'O 时,△P'TO 是等腰三角形,得:3T,0),③当T4P'=P'O 时,△P'TO 是等腰三角形,得:点T4(4,0).综上所述,符合条件的t 的值为,54,4.24.【答案】(1)如图1所示过点B 作BC ⊥OA ,垂足为C .图1∵△OAB 为等边三角形,∴∠BOC=60°,OB=BA .∵OB=AB ,BC ⊥OA ,∴OC=CA=1.在Rt △OBC中,BCOC =,∴∴点B 的坐标为(1.(2)如图2所示:(A 1)图2yx O B 1CB A∵点B1与点A1的纵坐标相同,∴A1B1∥OA .①如图2所示:当a=300°时,点A1与点B1纵坐标相同.如图3所示:A 1图3yxO B 1CBA当a=120°时,点A1与点B1纵坐标相同.∴当a=120°或a=300°时,点A1与点B1纵坐标相同.(3)如图2所示:由旋转的性质可知A1B1=AB=2,点B 的坐标为(1,2), ∴点B1的坐标为(﹣1.如图3所示:由旋转的性质可知:点B1的坐标为(1.∴点B1的坐标为(﹣11.【素材积累】司马迁写《史记》汉朝司马迁继承父业,立志著述史书。
第23章旋转单元测试题
一、用心填一填,你一定能填对!
1. 如图1, △ ABC 是等腰直角三角形,D 是AB 上一点,
△ CBD 经旋转后到达△ ACE 的位置,则旋转中心是 ________ ;旋转角度是 _______ ; 点B 的对应点是 _______ ;点D 的对应点是 ________ ;线段CB 的对应点
1
是
;/ B 的对应角是
;如果点 M 是CB 的丄,
3
那么经过上述旋转后,点M 移到了 __________ .
2. 3点12分和3点40分时,时针与分针构成的角各是 ___________ 度和 ________ 度.
3. 请你写出5个成中心对称的汉字,填在下面的横线上 ______________________________ .
4. 如图2所示的四个图形中,图形(1)与图形 ________ 成轴对称;图形(1)与图形 ______ 成中心对称.(填写符合要求的图形所对应的符号
)
5. 如图3 所示,△ ABC 绕点A 逆时针旋转某一角度得到△ ADE 若/仁/ 2=7 3=20°,则 旋转角为 ________ 度.
7. ____________________________ 如图5①,将字母“V ”沿 平移 格会得到字母“ W ”如图5②,将字母
X.(图中E 、F 分别是其所在线段的中点)
6.如图4所示,线段AB=4cm 且CDL AB 于0,则阴影部分的面积是
A
B
图1
图2
图3
V ”绕点 ______ 旋转 ________ 度后得到字母 N,绕点 _________ 旋转 _______ 度后会得到字母
D
N C
C
图4
E
\
\
①
8. 如图6是由面积为1的单位正三角形经过平移旋转
,拼成由24个相同的三角形组成的
正六边形,我们把面积为4的正三角形称为“希望杯”,则图中可数出 ___________ 个不同的“希 望杯”.
9. 在直角坐标系中,点 A (2, -3 )关于原点对称的坐标是 __________________ .
10. 在下列图7的四个图案中,既是轴对称图形,又是中心对称图形的有 ______________ 个.
*建矗
图7
、精心选一选,你一定能选准!
11. 观察下列图形,其中是旋转对称图形的有
()
A.1 个
B.2
个''\.3
;个
12.
你玩过扑克牌吗?你仔细观
察过每张扑克牌中的图案吗
?请你指出图案是中心对称
图形的一组为()
A.黑桃6与黑桃9
B. 红桃6与红桃9
C.梅花6与梅花9
D.
方块6与方块9
13. 在平面直角坐标系中,点P (2,1)关于原点对称的点在() A.第一象限
B.
第二象限
C.第三象限
D.
第四象限
14. 下列图形中,是中心对称图形的为(
D.4
个
下列图形中是中心对称图形的是
A B
15.
16.
在下
列四个图案中,既是轴对称图形,又是中心对称图形的是
()
*虫峙"血
叶片图案
ooo
C D
、耐心探一探,你一定能清!
21.针表的时针匀速旋转一周需要
12小时,如图 9:
.专业.知识.分享.
图9
17.下列图案都是由宁母“
m ” 经过变形、 组
合而成的•其中不是中心对称图形的是
A B
19.数学课上,老师让同学们观察如图 8所示的图形,问:它绕着圆 心O 旋转多少度后和它自身重合?甲同学说:
45° ;乙同学说:60° ;
丙同学说:90°; 丁同学说:135°。
以上四位同学的回答中, 错误的是(
A 、甲
、乙
、丙
、丁
20.将叶片图案旋转
180° 后, 得到的图形是
18.将下面的直角梯形绕直线 可以得到右边立体图形的
(1) 指出它的旋转中心;
(2) 经过5小时整,时针旋转了多少度?
22.
如图10所示,△ ABC 是等边三角形,D 是BC 边上一点,△ CDE 也是等边三角形,试利
用旋转的思想说明线段 AD 与BE 的大小关系
23. 如图11,在00 正方形网格中,每个小正方形的边长均为 1个单位.将△ ABC 向下平移 4个单位,得到 △ ABC ,再把 △ ABC 绕点CJ 顺时针旋转 90,得到
△ ABC :请你画出 △ ABC ■和 △ ABC (不要求写画法)
•
A
/■ \
B
C
A
C
图10
图11
24. 以给出的图形“ 、 ”(两个相同的圆、三角
形、两
条平行线)为构件,各设计一个构思独特,且有意义的轴对称图形和中心对称图形
•如图12所
示, ------------------------ ---------------------------------------------------
只是轴对称图形
I —
25.
如图13是国际奥林匹克
运动会旗(五环旗)的标志图案
,它是有五个半径相同的
圆组成的,它象征着五大洲的体育健儿为发展奥林匹克精神而团结起来携手拼搏 .观察此图
案,结合我们所学习的图形变换知识
,完成下列题目:
(1) 整个图案可以看做是什么图形 ?
(2)
此图案可以看做是把一个圆经过多次什么变换得到的 或
旋转的中心和角度.
26. 如图14- 1, 一等腰直角三角尺 GEF 的两条直角边与正方形 ABCD 的两条边分别 重
合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD
doo |
图12
既是轴对称图形
|
=2z>
又是中心对称图形
只是中心对称图 形
中点)按顺时针方向旋转.
(1) 如图14-2,当EF 与AB 相交于点M , GF 与BD 相交于点N 时,通过观察或测 量
BM , FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想;
(2) 若三角尺GEF 旋转到如图14- 3所示的位置时,线段 FE 的延长线与AB 的延长 线相
交于点M ,线段BD 的延长线与GF 的延长线相交于点 N ,此时,(1)中的 猜想还成立吗?若成立,请证明;若不成立,请说明理由.
参考答案
1. 点 C ; 90° ;点A 点E ; CA / EAC 点N 处
2. 24; 130
3. 中;一;日 田;口
4. (4); (3)
5. 40
6. 2
刃cm
7. 水平方向; 2 个;
E ;
,180; A ; 180
& 12
9. (-2 , 3)
10
.1
11. C 12.D 13.C 14.AC 15.D 16.C 17.B 18.A 19.B 20.D 21. (1)钟表圆盘的中心位置 (2)150 °
22. AD=BE
图 14- 1
C
B
G
图 14-3
第23题
=ooX
O △ 1 V-O
o>=<o
25.(1)轴对称;(2)平移或旋转
(1) BM=FN .
证明:•••△ GEF 是等腰直角三角形,四边形 ABCD 是正方形,
••• / ABD =/ F =45 °, OB = OF . 又•••/ BOM=Z FON , • △ OBM ◎△ OFN .
• BM=FN .
(2) BM=FN 仍然成立.
证明:•••△ GEF 是等腰直角三角形,四边形 ABCD 是正方形, •••/ DBA= /
GFE=45 ° , OB=OF .
•••/ MBO= / NFO=135 ° .
又•••/ MOB = Z NOF , • BM=FN .
根据企业发展战略的要求,有计划地对人力、资源进行合理配置,通过对企业中员工的招聘、培训、使用、考核、评价、激励、调整等一系列过程,调动员工地积极性,发挥员工地潜能,为 企业创造价值,确保企业战略目标的实现。
读书是一种感悟人生的艺术读杜甫的诗使人感悟人生的辛酸, 读李白的诗使人领悟官场的腐败, 读鲁迅的文章使人认清社会的黑暗,
教会我们如何去看待人生读书是人生的一门最不缺少的功课,阅读书籍,感悟人生,助我们走好人生的每一步
24.
26.
△ OBM ◎△ OFN
读巴金的文章使人感到未来的希望每一本书都是一个朋友,
图 14- 1
C
B
G
图 14-3。