聚乳酸_纤维素简介
- 格式:ppt
- 大小:607.00 KB
- 文档页数:17
聚乳酸-纳米纤维素复合薄膜的制备及应用研究进展张萌;冀嘉钰;樊丽;刘鹏涛【摘要】聚乳酸(PLA)是一种绿色高分子材料,原料来源充足、无污染且可被生物降解.同时,PLA还具有良好的机械性能和物理性能,易被加工制作成膜.纳米纤维素(NC)也是一种天然的可再生资源,来源广泛、机械强度好且刚度高.将NC加入到PLA中制备复合薄膜可大幅提高复合薄膜的机械性能;但两者的界面相容性差,从而影响PLA-NC复合薄膜的机械性能.根据近几年国内外的研究文献,本文综述了PLA-NC复合薄膜的制备工艺、界面相容性的改善方法及其应用.【期刊名称】《中国造纸学报》【年(卷),期】2019(034)003【总页数】6页(P71-76)【关键词】聚乳酸;纳米纤维素;复合薄膜【作者】张萌;冀嘉钰;樊丽;刘鹏涛【作者单位】天津科技大学,天津市制浆造纸重点实验室,天津,300457;天津科技大学,天津市制浆造纸重点实验室,天津,300457;天津科技大学,天津市制浆造纸重点实验室,天津,300457;天津科技大学,天津市制浆造纸重点实验室,天津,300457【正文语种】中文【中图分类】O636;TS7211 聚乳酸(PLA)随着人们环保意识的不断提高和国家对各行业环保方面法律法规力度的加强,人们越来越关注环境友好型材料的开发与应用。
聚乳酸(PLA)是一种无毒且具有优良生物可降解性的聚合物,可由乳酸缩聚而成,也可由丙交酯开环聚合而成,故又称作聚丙交酯[1]。
PLA在光或者微生物的作用下可分解成水和二氧化碳,两种产物均不会对环境造成二次污染,被广泛应用于各个领域,尤其是包装、生物医学、建筑、纺织、农业和林业等领域,因此,其也被称为“第四类新材料”。
但PLA也存在一定的缺点,例如,PLA的降解速度过快,水、酸、碱、醇、胺等物质均会引起其降解;PLA对于温度等环境条件也有严格的要求,使它的应用局限在制备使用周期较短的塑料制品上,不能用作长时间储存的容器材料[2-3];PLA分子链堆积松散,导致PLA薄膜柔性差、质脆且硬;且PLA制备成本高、加工难度大、对生产设备要求高;这些缺点限制了PLA的广泛应用。
聚乳酸纤维聚乳酸纤维聚乳酸纤维是一种可完全生物降解的合成纤维,它可从谷物中取得。
其制品废弃后在土壤或海水中经微生物作用可分解为二氧化碳和水,燃烧时,不会散发毒气,不会造成污染。
是一种可持续发展的生态纤维。
目录化学定义如何聚合聚乳酸的原料生产聚乳酸的合成聚乳酸纤维的制备聚乳酸纤维的定性鉴别分析研究化学定义如何聚合聚乳酸的原料生产聚乳酸的合成聚乳酸纤维的制备聚乳酸纤维的定性鉴别分析研究化学定义聚乳酸纤维聚乳酸(PLA)是一种聚羟基酸。
乳酸是乳酸杆菌产生的一种碳水化合物,是生物体(包括人体)中常见的天然化合物。
通过乳酸环化二聚物的化学聚合或乳酸的直接聚合可以得到高分子量的聚乳酸。
以聚乳酸为原料得到的制品,具有良好的生物相容性和生物可吸收性,以及很好的生物降解性,并且在可降解热塑性高分子材料中PLA具有最好的抗热性。
如何聚合聚乳酸的聚合方法有两种,一种是减压在溶剂中由乳酸直接聚合的方法,即:乳酸→预聚体→聚乳酸;另一种方法是常压下以环状二聚乳酸为原料聚合得到,即:乳酸→预聚体→环状二聚体→聚乳酸。
聚乳酸纤维是一种新型的可完全生物降解的合成纤维,系从谷物中取得,其制品废弃后在土壤或海水中经微生物作用可分解为二氧化碳和水,燃烧时不会散发毒气,不会造成污染。
目前,学术界对聚乳酸纤维的研究很多,主要以日本钟纺公司为代表。
由玉米、甘蔗或甜菜通过发酵和蒸馏的方法提取乳酸,聚合成聚乳酸,通过溶液纺丝方法得到聚乳酸纤维,日本钟纺公司的聚乳酸纤维的商品名为Lactron,其性能见表1,从表中数据可以看出,聚乳酸纤维具有与聚酯几乎同等强度和伸长,杨氏模量较低,其织物比较柔软,是一种优良的面料原料。
Lactron可以加工成短纤维、复丝和单丝形式,与棉、羊毛或粘胶等可分解性纤维混纺,可制得类似丝的织物,制成内衣和衬衫等服装,不但耐用、吸湿性好,而且通过加工形成优良的形态稳定性和抗皱性能。
聚乳酸的原料生产聚乳酸的原料是乳酸,即-羟基丙酸、2-羟基丙酸。
新型环保生物可降解材料PLA纤维发展情况聚乳酸(PolylacticAcid,PLA)纤维,是由碳水化合物富集的物质(如长米、甜菜、木薯等农作物及有机废料)与一定菌种发酵成乳酸,再经单体乳酸环化二聚或乳酸的直接聚合制得高性能乳酸聚合物,最后采取一定纺丝方式制成PLA纤维。
由于多用玉米等谷物为原料,所以又称为“玉米纤维”。
PLA纤维原料来源于自然,制品废弃物可被完全降解为自然所需的H2O 和CO2,实现了完全自然循环,是21世纪极其发展前景的纤维材料。
一、聚乳酸纤维国内外的发展1.国内的PLA纤维国内主要的聚乳酸(PLA)树脂生产企业为浙江海正生物材料股份及同杰良生物材料。
海正生物现有PLA切片产能5000t/a,同杰良生物的万吨级PLA项目于2014年通过验收。
此外,安徽丰原生物化学股份正在筹建10万t/a的聚乳酸生产线。
PLA纤维生产方面,恒天长江生物材料从2007年开始建设万吨级PLA熔体直纺项目,目前已基本建成。
浙江嘉兴普利莱新材料于2008年建成1000t/a的PLA长丝生产线;后与河南南乐县政府合作成立了河南龙都生物科技,其2万t/aPLA纤维(8000t/a长丝和12000t/a短纤)项目于2014年7月试车成功,主要使用进口PLA切片。
此外,安徽马鞍山同杰良生物材料年产千吨级纺丝生产线于2014年建成、安徽丰原生化2000t/a纺丝生产线于2018年建成。
整体而言,我国PLA纤维产业正进入蓬勃发展时期,但当前存在规模不大,应用尚未完全开发等问题。
2.国外的PLA纤维国外PLA纤维研发起步较早。
1962年美国Cyanamid公司纺制出了可生物吸收的PLA医用缝合线,但由于当时PLA的合成方法还相当落后,难以进行批量生产。
1991年,美国Cargill公司开展了以玉米为原料制备乳酸(LA)及PLA的合成技术研究,并进行了PLA纤维中试生产技术的研发,随后PLA纤维工业才逐渐发展起来。
1997年Cargill公司与美国DowChemical公司合资组建了聚焦PLA开发的NatureWorks公司。
聚乳酸纤维素反应聚乳酸(Poly lactic acid,PLA)和纤维素是两种常见的生物可降解材料,它们在许多领域都有广泛的应用。
本文将探讨聚乳酸和纤维素之间的反应及其应用。
聚乳酸是一种由乳酸分子通过聚合反应形成的高分子化合物。
它具有良好的生物可降解性和生物相容性,被广泛应用于医疗领域,如可降解缝线、骨修复材料等。
然而,聚乳酸的机械性能较差,导致其在一些领域的应用受到限制。
纤维素是植物细胞壁中最主要的组成成分之一,是一种由葡萄糖分子通过β-1,4-糖苷键连接而成的多糖。
纤维素具有极高的可再生性和可降解性,被广泛应用于纸张、纺织品、食品等领域。
然而,纤维素的溶解性较差,使其在一些应用中受到限制。
聚乳酸和纤维素之间的反应可以通过酯化反应来实现。
酯化反应是一种将羧酸与醇或酚反应生成酯键的化学反应。
在聚乳酸和纤维素的反应中,聚乳酸中的羧酸基团与纤维素中的羟基发生酯化反应,形成聚乳酸纤维素酯化产物。
聚乳酸纤维素酯化产物具有较好的力学性能和可降解性能。
聚乳酸的可降解性能使得聚乳酸纤维素酯化产物可以在环境中迅速降解,减少对环境的污染。
同时,纤维素的可再生性使得聚乳酸纤维素酯化产物具有良好的可持续性和可循环利用性。
聚乳酸纤维素酯化产物在纺织品领域有着广泛的应用前景。
由于聚乳酸和纤维素的结合,聚乳酸纤维素酯化产物具有较好的吸湿性和透气性,可以增加纺织品的舒适性。
同时,聚乳酸纤维素酯化产物还具有较好的耐热性和耐候性,使得其在户外用品和汽车内饰等领域有着广泛的应用前景。
除了纺织品领域,聚乳酸纤维素酯化产物还可以应用于包装材料、农业膜、药物传递系统等领域。
聚乳酸纤维素酯化产物具有良好的可塑性和可加工性,可以通过注塑、吹塑等方法制备各种形状的制品。
聚乳酸和纤维素之间的反应为我们提供了一种制备具有良好力学性能和可降解性能的材料的方法。
聚乳酸纤维素酯化产物具有广泛的应用前景,在纺织品、包装材料、农业膜等领域有着重要的应用。
合成纤维SFC2008No.7聚乳酸纤维———环境和谐型新一代合成纤维本文将聚乳酸(PLA)纤维与石油系合成纤维及再生纤维素纤维进行了比较,并介绍Unitika公司生产的聚乳酸纤维テラマツク*(TERRAMAC*)的特征及应用方面的趋势以及今后的技术课题。
1环境负荷低的聚乳酸纤维1.1聚乳酸纤维的环境低负荷特征聚乳酸是从玉米、甜菜、甘蔗等可持续再生的植物资源取得的糖质原料,经发酵法制得L-乳酸、进而成为环状二聚体(丙交酯),再经开环聚合而制成。
聚乳酸经堆肥化或生物气体化等,在自然环境中最终经微生物分解成二氧化碳,二氧化碳再用作植物光合成的碳源。
因而聚乳酸与自然界的碳循环有关,基本上不存在资源枯竭及废弃物问题。
石油类合成纤维燃烧后生成二氧化碳,与生态外进入的原油的燃烧物相同,使生态内的二氧化碳增加。
而聚乳酸纤维是从植物来的合纤,是生态内的二氧化碳固定化后制得的纤维,因此经燃烧或经微生物生物降解所产生的二氧化碳,只是原来生态内的物质复原,与地球上的二氧化碳增加无关。
然而由植物制成的有生物降解性的纤维,并不能说就是环保型的。
它只是具备必要的条件,但不符合充分条件。
如,粘胶人造纤维在制造工程中大量使用能源,排出的二氧化碳超过合成纤维,就不能说是环保型的。
1.2关于聚乳酸纤维的生命周期评估考察(LCA)近年来,作为客观定量表示环境负荷的方法,生命周期的评估(LCA)开始倍受关注。
LCA是从制品原料的采集,经过制造加工,到用后废弃物处理,定量评价其能源使用量(以石油换算)、二氧化碳发生量、有害废弃物的发生量等的方法。
根据调查,在现有的塑料中,聚乳酸的二氧化碳发生量最低,为1820kg/t。
而合成纤维聚酯的CO2发生量为4143kg/t,尼龙66CO2发生量为6870kg/t,粘胶纤维CO2发生量为6000kg/t。
关于废弃时或再资源化时的二氧化碳发生量,理论上从化学反应可预测,即涤纶CO2发生量为2300kg/t,粘胶为1650kg/t,聚乳酸为1830kg/t。
新型聚乳酸纤维材料简介及应用内容摘要近年来,随着以石油为原料的塑料、橡胶及纤维工业的迅速发展,地球上能源存储量日趋减少、环境污染问题愈来愈严重,各国都在考虑可持续发展和环境保护问题。
如何解决这些污染并开发出可自然降解的新型材料已经成为近年来世界各国的重要研究目标。
目前环保行业的明星是利用乳酸生产的新型聚酯材料——聚乳酸(PLA)。
其中,以聚乳酸为原料加工而成的可降解纤维材料尤其引人关注。
本文主要讲诉聚乳酸纤维的性能,合成及研究现状。
关键词:聚乳酸纤维,聚乳酸纤维研究现状,聚乳酸纤维性能。
新型聚乳酸纤维材料简介及应用一、聚乳酸纤维简介(一)聚乳酸纤维简介聚乳酸纤维又称玉米纤维,它是由玉米等谷物原料经过发酵、聚合、纺丝制成的。
在其生产过程中,首先将玉米中的淀粉提炼成植物糖,再将植物糖经过发酵形成乳酸,乳酸再经过聚合生成高性能的乳酸聚合物,最后将这种聚合物经过熔体纺丝等纺丝方法制成聚乳酸纤维。
聚乳酸( Polylactic Acid),简称PLA,化学结构式为:聚乳酸(PLA)它是一种以乳酸为主要原料的高分子聚合物。
聚乳酸由乳酸合成,而乳酸的原料是所有碳水化合物富集的物质,如粮食(玉米、甜菜、土豆、山芋等)以及有机废弃物(玉米芯或其他农作物的根、茎、叶、皮、城市有机废物和工业下脚料等)。
以涤纶为代表的合成纤维自问世以来,得到了快速的发展。
然而,随着以石油为原料的合成纤维产量的快速增长,石油过度开采引起的能源枯竭,以及石油制品废弃物的不可自然降解性对环境造成了极大的威胁。
从环保的观点出发,对生物可降解材料的研究和开发己变得非常迫切。
聚乳酸纤维是一种性能较好的可生物降解纤维。
在微生物的作用下,其废弃物会分解生成碳酸气体和水,它们在阳光下通过光合作用又会生成起始原料淀粉,而淀粉又是聚乳酸的原料(如图2-10),这实现了资源的可持续利用。
用玉米等谷物原料加工聚乳酸产品对综合利用资源,减少环境污染具有重要的意义和价值。
生物降解原材料
生物降解原材料是指在自然环境中可以被微生物分解为无害物质
的材料。
这些原材料通常来自于可再生资源,如植物、动物或微生物,而且在使用过程中不会对环境造成污染。
常见的生物降解原材料包括:
1. 聚乳酸(PLA):聚乳酸是一种由玉米淀粉或其他植物淀粉制成的生物塑料,可在自然环境中被微生物分解为二氧化碳和水。
2. 聚羟基丁酸酯(PHB):聚羟基丁酸酯是一种由细菌发酵产生
的生物塑料,可在自然环境中被微生物分解为二氧化碳和水。
3. 纤维素:纤维素是一种由植物细胞壁制成的天然材料,可在自
然环境中被微生物分解为二氧化碳和水。
4. 淀粉:淀粉是一种由植物制成的天然材料,可在自然环境中被
微生物分解为二氧化碳和水。
5. 生物聚酯:生物聚酯是一种由可再生资源制成的生物塑料,可
在自然环境中被微生物分解为二氧化碳和水。
这些生物降解原材料通常用于生产一次性餐具、包装材料、垃圾袋等产品,以减少对环境的污染。
聚乳酸纤维
聚乳酸纤维是一种生物降解性塑料,由聚乳酸分子构成。
它具有优良的生物相
容性和可降解性,可以替代传统塑料在一些领域的应用。
聚乳酸纤维被广泛应用于医疗、纺织和包装等领域。
制备过程
聚乳酸纤维的制备主要有两种方法:溶液旋转成型法和熔融纺丝法。
溶液旋转成型法 1. 将聚乳酸溶解在有机溶剂中,形成聚合物溶液。
2. 将聚合
物溶液注入旋转模具中,经过旋转成型,使其形成纤维状结构。
3. 将形成的聚乳
酸纤维进行干燥和固化处理,最终得到产品。
熔融纺丝法 1. 将聚乳酸颗粒在高温条件下熔化,形成聚合物熔融。
2. 将熔化
的聚乳酸通过喷丝孔拉伸成纤维。
3. 纤维冷却凝固后进行卷绕,最终得到聚乳酸
纤维产品。
特性与应用
聚乳酸纤维具有以下特性:
•生物相容性:聚乳酸纤维对人体无害,可在医疗领域用于缝合线等应用。
•可降解性:聚乳酸纤维在一定条件下可被微生物降解,减少环境污染。
•良好的强度:聚乳酸纤维具有较高的强度,可用于纺织品和工程材料制备。
•可染性:聚乳酸纤维可通过染色处理获得丰富多彩的颜色。
聚乳酸纤维在医疗、纺织和包装等领域得到广泛应用:
•医疗领域:用于制备缝合线、缓释药物载体等医疗器械。
•纺织领域:制备各种纺织品,如衣服、床上用品和家居用品。
•包装领域:用于生物降解包装材料,降低塑料污染对环境的影响。
聚乳酸纤维的可降解性和生物相容性使其在替代传统塑料方面具有广阔的应用
前景,未来随着技术的不断发展,聚乳酸纤维有望在更多领域得到应用和推广。