运放的单电源供电与双电源供电的区别
- 格式:doc
- 大小:35.00 KB
- 文档页数:3
运算放大器基本电路大全我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。
在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。
1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。
这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。
但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。
在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。
绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。
一般是正负15V,正负12V和正负5V也是经常使用的。
输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。
单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。
正电源引脚接到VCC+,地或者VCC-引脚连接到GND。
将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。
有一些新的运放有两个不同的最高输出电压和最低输出电压。
这种运放的数据手册中会特别分别指明Voh 和Vol 。
需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。
(参见1.3节)图一通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。
另外现在运放的供电电压也可以是3V 也或者会更低。
运放的单电源和双电源供电
——单电源供电的条件介绍
大部分运算放大器要求双电源(正负电源)供电,只有少部分运算放大器可以在单电源供电状态下工作,如LM358(双运放)、LM324(四运放)、CA3140(单运放)等。
需要说明的是,单电源供电的运算放大器不仅可以在单电源条件下工作,也可在双电源供电状态下工作。
但是双电源供电的运放只能在双电源下工作,例如,LM324可以在+5~+12V单电源供电状态下工作,也可以在+5~±12V双电源供电状态下工作。
双电源是由一个正电源和一个相等的负电源组成,一般是正负15伏,正负12伏,正负5伏,输入和输出电压都是参考地给出的,一般教课书中的涉及到的运放都采用的是这种双电源的供电方法,但是在一些实际生产设计中没有或者只能采用单电源的供电的方法时,就有必要采取相应的解决方法。
单电源供电时正电源接Vcc,电源地接公共地,并需要将正电压Vcc的一般电压Vcc/2作为虚地接到运放的同相输入端,如下图所示,一般也会在中间加个电阻
VC C
VC C/2
在此基础上,我们再按照要求设计出相应的运放电路,接通电源后,单电源供电就会正常工作
Vcc/2 可以通过电阻分压的形式从正电压Vcc出得到,但是这个可能会降低运放的低频特性,。
单电源运放和双电源运放详解我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。
在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。
1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。
这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。
但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。
在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。
绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。
一般是正负15V,正负12V和正负5V也是经常使用的。
输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。
单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。
正电源引脚接到VCC+,地或者VCC-引脚连接到GND。
将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。
有一些新的运放有两个不同的最高输出电压和最低输出电压。
这种运放的数据手册中会特别分别指明Voh 和Vol 。
需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。
(参见1.3节)通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。
另外现在运放的供电电压也可以是3V 也或者会更低。
(b) V INV OUT = V ING =–V S = 15V+V S = 30V(a) V ING = +1V OUT = V IN+V S = 15V运算放大器的单电源供电双电源供电详解单电源电压供电是运算放大器最常见的应用问题之一。
当问及“型号为OPAxyz,能否采用单电源供电?”,答案通常是肯定的。
在不启用负相电源电压时,采用单电源电压驱动运算放大器是可行的。
并且,对使用高电压及大电流运算放大器的特定应用而言,采用单电源供电将使其切实的获益。
考虑如图1a 所示的基本运算放大器连线图。
运算放大器采用了双电源供电(也称平衡[balanced]电源或分离[split]电源)。
注意到此处运算放大器无接地。
而事实上,可以说运算并不会确认地电位的所在。
地电位介于正相电压及负相电压之间,但运算放大器并不具有电气接线端以确定其确切的位置。
图1. 简易单位增益缓冲器的运算放大器连线示意图,举例说明了分离电源供电(a)与单电源供电(b)的相似性。
图 1 所示电路连接为电压跟随器,因此输出电压与输入电压相等。
当然,输出跟随输入的能力是有限的。
随着输入电压正相摆幅的增大,在某些接近正相电源的电位点上,输出将无法跟随输入。
类似的,负相输出摆幅也限制在靠近–Vs 的某电位点上。
典型的运算放大器允许输出摆幅在电源轨的 2 V 以内,使得±15V 的电源可支持–13V 至+13V 的输出。
图1b 展示了同样的单位增益跟随器,采用30 V 单电源支持供电。
运算放大器的两个电源接线端之间的总电压仍为30 V,但此时采用了单正相电源。
从另一角度考虑,其运行状态是不变的。
只要输入介于运算放大器电源接线端电压 2 V 以内,输入就能跟随输入。
电路可支持的输出范围从+2V 至+28V。
既然任意的运算放大器均能支持此类单电源供电(仅是摆幅限制稍有不同),为何某些运算放大器特别注明用于单电源应用呢?某些时候,输出摆幅在地电平(运算放大器的“ 负相”电源轨)附近受到了极大的限制。
介绍我们经常看到很多非常经典的运算放大器应用图集,但是他们都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。
在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。
1. 1电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC -,但是有些时候它们的标识是VCC+和GND。
这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。
但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。
在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。
绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。
一般是正负15V,正负12V和正负5V也是经常使用的。
输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限V om以及最大输出摆幅。
单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。
正电源引脚接到VCC+,地或者VCC-引脚连接到GND。
将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在V om之内。
有一些新的运放有两个不同的最高输出电压和最低输出电压。
这种运放的数据手册中会特别分别指明V oh和V ol。
需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。
(参见1.3节)图一通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。
另外现在运放的供电电压也可以是3V也或者会更低。
运放作为模拟电路的主要器件之一;在供电方式上有单电源和双电源两种;而选择何种供电方式;是初学者的困惑之处;本人也因此做了详细的实验;在此对这个问题作一些总结..首先;运放分为单电源运放和双电源运放;在运放的datasheet上;如果电源电压写的是+3V-+30V/±1.5V-±15V如324;则这个运放就是单电源运放;既能够单电源供电;也能够双电源供电;如果电源电压是±1.5V-±15V 如741;则这个运放就是双电源运放;仅能采用双电源供电..但是;在实际应用中;这两种运放都能采用单电源、双电源的供电模式..具体使用方式如下:1:在放大直流信号时;如果采用双电源运放;则最好选择正负双电源供电;否则输入信号幅度较小时;可能无法正常工作;如果采用单电源运放;则单电源供电或双电源供电都可以正常工作;2:在放大交流信号时;无论是单电源运放还是双电源运放;采用正负双电源供电都可以正常工作;3:在放大交流信号时;无论是单电源运放还是双电源运放;简单的采用单电源供电都无法正常工作;对于单电源运放;表现为无法对信号的负半周放大;而双电源运放无法正常工作..要采用单电源;就需要所谓的“偏置”..而偏置的结果是把供电所采用的单电源相对的变成“双电源”..具体电路如图:首先;采用耦合电容将运放电路和其他电路直流隔离;防止各部分直流电位的相互影响..然后在输入点上加上Vcc/2的直流电压;分析一下各点的电位;Vcc是Vcc;in是Vcc/2;-Vcc是GND;然后把各点的电位减去Vcc/2;便成了Vcc是Vcc/2;in是0;-Vcc是-Vcc/2;相当于是“双电源”在正式的双电源供电中;输入端的电位相对于输入信号电压是0;动态电压是Vcc是+Vcc;in是0+Vin;-Vcc是-VCC;而偏置后的单电源供电是Vcc是+Vcc;in是Vcc/2+Vin;-Vcc是GND;相当于Vcc是Vcc/2;in是0+Vin;-Vcc是-Vcc/2;与双电源供电相同;只是电压范围只有双电源的一半;输出电压幅度相应会比较小..当然;这里面之所以可以相对的分析电位;是因为有了耦合电容的隔直作用;而电位本身就是一个相对的概念..这里用的是反相放大电路;同相的原理类似;就是将输入端电位抬高到Vcc/2;同时注意隔直电容的应用..电路大家可以在网上找找;希望对大家有用;如有谬误;请批评指正..注:本人做实验用的是324和741..。
对运放单电源供电和双电源供电之间的区别作为一个电路设计的初学者,对运放单电源供电和双电源供电之间的区别,往往搞不清楚,下面是对该问题的讨论,我把大家的讨论整理了一下,希望对大家有所帮助。
举个例子,一般的音频功放为啥需要双电源?因为扬声器就是一个电感,两边不能有直流电平。
所以音频功放的输出共模电平只能是地电位。
当然你用一个电容耦合也可以不用双电源。
对于运放自身来说,它的性能只决定于正负端供电电压压差,至于你外部电平是双电源还是单电源,对它来说并无区别,所以如果非要说什么时候可以用双电源,什么时候用单电源供电,应该还是看外部应用环境。
据此而言,运放的供电方式不同,对运放的性能会有什么影响呢?就我了解,运放的供电电源越大,需要的供电电流也越大,运放的功耗就越大,温升也就越高。
运放的温升,对运放性能的影响是显而易见的。
另外,运放采用正负电源供电方式,正负电源的接入顺序,对运放的能耗应该也有影响。
马场清太郎的《运算放大器应用电路设计》这本书里有说明。
意思是:当运放用正负电源供电的时候,正负电源通常不是同时加上的,而是先加-Vcc,后加Vcc,这样一来,耗电会小些~至于原因,估计只有做IC的,才能了解其中详情~单电源供电的运放,如果想对交流信号放大,需要一个提供一个“虚地”。
这种说法,来自TI的一篇应用笔记《《A Single-Supply Op-Amp Circuit Collection》~运放的最大共模输入电压降低,输出摆幅也是降低了的吧?我觉得是有关系的。
最大共模输入电压降低了,可以认为是运放的参考地电位太高了。
而最大输出摆幅,跟这个参考地是有关系的。
最大输出摆幅和参考地没有关系吧~输出摆幅它只和VDD- VEE 相对值有关系。
最大输出摆幅跟参考地,有没有关系,还要看输入信号范围。
比如供电VCC=1V,VEE=-19V,而输入信号,如果不是在-9V波动,而是接近1V波动,最大输出摆幅肯定是减小的,甚至会饱和。
运放的单电源供电与双电源供电的区别运放作为模拟电路的主要器件之一,在供电方式上有单电源和双电源两种,而选择何种供电方式,是初学者的困惑之处,本人也因此做了详细的实验,在此对这个问题作一些总结。
首先,运放分为单电源运放和双电源运放,在运放的datasheet上,如果电源电压写的是(+3V-+30V)/(±1.5V-±15V)如324,则这个运放就是单电源运放,既能够单电源供电,也能够双电源供电;如果电源电压是(±1.5V-±15V)如741,则这个运放就是双电源运放,仅能采用双电源供电。
但是,在实际应用中,这两种运放都能采用单电源、双电源的供电模式。
具体使用方式如下:1:在放大直流信号时,如果采用双电源运放,则最好选择正负双电源供电,否则输入信号幅度较小时,可能无法正常工作;如果采用单电源运放,则单电源供电或双电源供电都可以正常工作;2:在放大交流信号时,无论是单电源运放还是双电源运放,采用正负双电源供电都可以正常工作;3:在放大交流信号时,无论是单电源运放还是双电源运放,简单的采用单电源供电都无法正常工作,对于单电源运放,表现为无法对信号的负半周放大,而双电源运放无法正常工作。
要采用单电源,就需要所谓的“偏置”。
而偏置的结果是把供电所采用的单电源相对的变成“双电源”。
具体电路如图:首先,采用耦合电容将运放电路和其他电路直流隔离,防止各部分直流电位的相互影响。
然后在输入点上加上Vcc/2的直流电压,分析一下各点的电位,Vcc是Vcc,in是Vcc/2,-Vcc是GND,然后把各点的电位减去Vcc/2,便成了Vcc是Vcc/2,in 是0,-Vcc是-Vcc/2,相当于是“双电源”!!在正式的双电源供电中,输入端的电位相对于输入信号电压是0,动态电压是Vcc是+Vcc,in是0+Vin,-Vcc是-VCC,而偏置后的单电源供电是Vcc是+Vcc,in是Vcc/2+Vin,-Vcc是GND,相当于Vcc是Vcc/2,in是0+Vin,-Vcc是-Vcc/2,与双电源供电相同,只是电压范围只有双电源的一半,输出电压幅度相应会比较小。
运算放大器基本电路大全运算放大器电路大全我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。
在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。
1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。
这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。
但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。
在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。
绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。
一般是正负15V,正负12V和正负5V也是经常使用的。
输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom 以及最大输出摆幅。
单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。
正电源引脚接到VCC+,地或者VCC -引脚连接到GND。
将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。
有一些新的运放有两个不同的最高输出电压和最低输出电压。
这种运放的数据手册中会特别分别指明Voh 和Vol 。
需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。
(参见1.3节)图一通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。
运放作为模拟电路的主要器件之一,在供电方式上有单电源和双电源两种,而选择何种供电方式,是初学者的困惑之处,本人也因此做了详细的实验,在此对这个问题作一些总结。
首先,运放分为单电源运放和双电源运放,在运放的datasheet上,如果电源电压写的是(+3V-+30V)/(±1.5V-±15V)如324,则这个运放就是单电源运放,既能够单电源供电,也能够双电源供电;如果电源电压是(±1.5V-±15V)如741,则这个运放就是双电源运放,仅能采用双电源供电。
但是,在实际应用中,这两种运放都能采用单电源、双电源的供电模式。
具体使用方式如下:
1:在放大直流信号时,如果采用双电源运放,则最好选择正负双电源供电,否则输入信号幅度较小时,可能无法正常工作;如果采用单电源运放,则单电源供电或双电源供电都可以正常工作;
2:在放大交流信号时,无论是单电源运放还是双电源运放,采用正负双电源供电都可以正常工作;
3:在放大交流信号时,无论是单电源运放还是双电源运放,简单的采用单电源供电都无法正常工作,对于单电源运放,表现为无法对信号的负半周放大,而双电源运放无法正常工作。
要采用单电源,就需要所谓的“偏置”。
而偏置的结果是把供电所采用的单电源相对的变成“双电源”。
具体电路如图:首先,采用耦合电容将运放电路和其他电路直流隔离,防止各部分直流电位的相互影响。
然后在输入点上加上Vcc/2的直流电压,分析一下各点的电位,Vcc是Vcc,in是Vcc/2,-Vcc是GND,
然后把各点的电位减去Vcc/2,便成了Vcc是Vcc/2,in是0,-Vcc是-Vcc/2,相当于是“双电源”!!在正式的双电源供电中,输入端的电位相对于输入信号电压是0,动态电压是Vcc是+Vcc,in是0+Vin,-Vcc 是-VCC,而偏置后的单电源供电是Vcc是+Vcc,in是Vcc/2+Vin,-Vcc 是GND,相当于Vcc是Vcc/2,in是0+Vin,-Vcc是-Vcc/2,与双电源供电相同,只是电压范围只有双电源的一半,输出电压幅度相应会比较小。
当然,这里面之所以可以相对的分析电位,是因为有了耦合电容的隔直作用,而电位本身就是一个相对的概念。
这里用的是反相放大电路,同相的原理类似,就是将输入端电位抬高到Vcc/2,同时注意隔直电容的应用。
电路大家可以在网上找找,
希望对大家有用,如有谬误,请批评指正。
注:本人做实验用的是324和741。
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。