金融工程导论 第十章 期权定价
- 格式:ppt
- 大小:1.97 MB
- 文档页数:66
金融工程中的期权定价模型一、期权定义期权是金融工具中的一种,是指在未来某个时间,按照约定的价格、数量和期限,有权买入或者卖出某种标的资产的一种金融合约。
通过买入期权,持有人可以在未来某个时间以约定的价格买进标的资产;通过卖出期权,交易人可以获得期权费用,承担未来某个时间按照约定价格进行买卖的义务。
期权的本质是对未来的权利,是一种寄予了未来的期望和信心。
二、期权定价方法期权定价是指通过计算期权价格,来实现期权交易的方法或模型。
期权定价的理论基础主要包括两个主流模型:布莱克-斯科尔斯模型和考克斯-鲁宾斯坦模型。
下面我们分别来介绍一下这两种期权定价模型。
1. 布莱克-斯科尔斯模型布莱克-斯科尔斯模型,是由弗兰克-布莱克和梅伦-斯科尔斯在1973年提出的一种期权定价模型。
这个模型的核心思想是将期权看作是一种债券和股票组成的投资组合,通过对这个投资组合的定价,来推导出期权的价格。
布莱克-斯科尔斯模型的核心公式如下:C = SN(d1) - Xe^(-rt)N(d2)P = Xe^(-rt)N(-d2) - SN(-d1)其中,C表示看涨期权的价格,P表示看跌期权的价格;S表示标的资产的价格,X表示行权价格;N()表示标准正态分布函数的值,其中d1和d2分别表示如下:d1 = [ln(S/X) + (r + σ^2/2)t] / σ√td2 = d1 - σ√t这个模型中,需要考虑的参数有标的资产的价格S、行权价格X、波动率σ、存续期t、无风险利率r。
其中,波动率是最重要的参数,它的大小决定了标的资产的风险水平,因此,布莱克-斯科尔斯模型中的波动率是需要通过历史数据或者其他方法进行计算和估算的。
2. 考克斯-鲁宾斯坦模型考克斯-鲁宾斯坦模型,是由约翰-考克斯和斯蒂芬-鲁宾斯坦在1979年提出的一种期权定价模型。
这个模型的最大特点是引入了离散时间的概念,将连续时间的布莱克-斯科尔斯模型离散化,以适应实际的市场需求。
第一章 金融工程概述学习指南1. 主要内容 金融工程是一门融现代金融学、工程方法与信息技术于一体的新兴交叉性学科。
无套利定价与风险中性定价是金融工程具有标志性的分析方法。
尽管历史不长,但金融工程的发展在把金融科学的研究推进到一个新阶段的同时,对金融产业乃至整个经济领域都产生了极其深远的影响.本章主要对金融工程的定义,发展历史以及基本方法进行了介绍2. 学习目标掌握金融工程的定义、根本目的和主要内容;熟悉金融工程产生和发展的背景、金融产品定价的基本分析方法和运用的工具;了解金融工程的主要技术手段、金融工程与风险管理之间的关系3。
本章重点(1)金融工程的定义及主要内容(2) 掌握金融工程的定价原理(绝对定价法和相对定价法,无套利定价原理,风险中性定价法,状态价格定价法)(3) 衍生证券定价的假设4。
本章难点(1) 用积木分析法给金融工程定价(2) 三种定价方法的内在一致性5。
知识结构图6. 学习安排建议本章是整个课程的概论,介绍了有关金融工程的定义、发展历史和背景、基本原理等内容,是今后本课程学习的基础,希望同学们能多花一些时间理解和学习,为后续的学习打好基础。
● 预习教材第一章内容;● 观看视频讲解;● 阅读文字教材;● 完成学习活动和练习,并检查是否掌握相关知识点,否则重新学习相关内容。
● 了解感兴趣的拓展资源。
第二章 远期与期货概述学习指南 1。
主要内容远期是最基本、最古老的衍生产品。
期货则是远期的标准化.在这一章里,我们将了解远期和期货的基础知识,包括定义、主要类型和市场制度等,最后将讨论两者的异同点2. 学习目标掌握远期、期货合约的定义、主要种类;熟悉远期和期货的区别;了解远期和期货的产生和发展、交易机制3。
本章重点(1) 远期、期货的定义和操作(2) 远期、期货的区别4. 本章难点远期和期货的产生和发展、交易机制5. 知识结构图6. 学习安排建议本章主要对远期和期货的基础知识进行介绍,是之后进行定价、套期保值等操作的基础,建议安排1课时的时间进行学习。
期权定价理论知识期权定价理论是金融市场中重要的工具,它用于确定期权的合理价格。
期权是一种金融衍生品,它赋予持有者在未来某个时间点购买或卖出标的资产的权利,但并不强制执行。
期权的价格由多种因素决定,包括标的资产价格、行权价格、期权到期时间、标的资产的波动性以及无风险利率等。
在期权定价理论中,最著名的模型是布莱克-斯科尔斯期权定价模型(Black-Scholes Option Pricing Model)。
该模型是由费希尔·布莱克和米伦·斯科尔斯于1973年提出的,并且因此获得了诺贝尔经济学奖。
该模型基于一些假设,如市场是完全有效、无风险利率是恒定的等。
根据布莱克-斯科尔斯期权定价模型,期权的价格可以通过以下公式计算:C = S * N(d1) - X * e^(-rt) * N(d2)其中,C表示看涨期权价格,S表示标的资产价格,N(d1)和N(d2)分别是标准正态分布函数,X表示行权价格,r表示无风险利率,t表示期权到期时间。
公式中的d1和d2可以通过以下公式计算:d1 = (ln(S/X) + (r + (σ^2)/2)*t) / (σ * √t)d2 = d1 - σ * √t该模型通过考虑标的资产价格、行权价格、期权到期时间、标的资产的波动性和无风险利率等因素,来确定一个看涨期权的合理价格。
类似地,可以用类似的方法计算看跌期权的价格。
虽然布莱克-斯科尔斯期权定价模型是一个重要的理论框架,但它在实际应用中存在一些限制。
例如,该模型假设市场是完全有效的,但实际市场存在各种交易成本、税收和限制等,这些因素都可能影响期权的价格。
此外,该模型假设无风险利率是恒定的,但实际上利率是变化的。
因此,在实际应用中,需要根据实际情况进行调整和修正。
总之,期权定价理论是金融市场中重要的理论工具,它为期权的定价和交易提供了基础。
布莱克-斯科尔斯期权定价模型是其中最著名的模型之一,它通过考虑标的资产价格、行权价格、期权到期时间、标的资产的波动性和无风险利率等因素来确定期权的合理价格。
一、大作业:本课程共包括3次大作业,旨在培养学生分析实际问题和解决实际问题能力。
要求学生自己实践与尝试,自己去调查、分析和计算,可以进行分组,进行学习小组交流、讨论,形成小组意见,课堂上安排小组代表作简要介绍,任课教师点评和总结。
1、设计“一个”新的金融产品。
2、计算一个具体的投资组合风险(例如VaR)以及解决风险的方法。
3、选择一个具体的金融产品定价(例如权证或者银行的理财产品)。
二、课后习题第1章金融工程概述1、请论述学习金融工程的三个基本目标,并举例说明。
2、根据已有的金融工程几个代表性定义,请阐述你对这几个定义的理解和看法。
3、请论述中国开展金融衍生产品交易的意义及其面临的问题。
第 2 章无套利定价原理1、假设市场的无风险借贷利率为 8 %,另外存在两种风险证券 A 和 B ,其价格变化情况如图 2-11,不考虑交易成本。
图 2-11 两种风险证券的价格变化情况问题:(1)证券 B 的合理价格为多少呢?(2)如果 B 的市场价格为110元,是否存在套利机会?如果有,如何套利?(3)如果存在交易成本,例如,每次卖或买费用均为1元,结论又如何?2、假设无风险借贷半年利率 r = 4 %(单时期),两种资产的两时期价格变动情况如图2-12 :图 2-12 两种资产的两时期价格变动情况问题:(1)利用动态组合复制定价技术给证券 B 定价;(2)如果证券 B 的市场价格为100元,是否存在套利机会?如果有,如何构造套利策略?3 、试分析金融市场套利与商业贸易中的价差盈利的关系?为何金融市场中套利概念如此重要?第 3 章金融产品创新原理1 、如何设计一个更加合理的全流通方案?2 、如何设计一个金融新产品?第 4 章金融风险管理原理1 、金融风险是怎样产生的?如何从理论上解释金融风险?2 、怎样理解长期资本管理公司破产是一个由制度性缺陷、市场风险和流动性风险所造成的经典案例?3 、在例 4-1 中,当欧洲国家相关企业提出中国绍兴纺织企业向他们购买纺织设备,将终止使用美元支付的惯例,转为以欧元计价结算时,能否估计出1年之内因汇率波动产生的最大损失,若能是多少?4 、在例 4-1 中,能否找到一种套期保值方法,来减少思考题 3 估计出1年之内因汇率波动产生的最大损失。
2023-11-04CATALOGUE目录•期权定价模型概述•经典期权定价模型•期权定价的随机过程基础•期权定价理论的扩展与应用•期权定价的风险与回报分析•期权定价理论的发展趋势与挑战01期权定价模型概述期权定义期权是一种合约,赋予其持有人在一定时期内以指定价格买卖标的资产的权利。
期权特性期权具有非线性收益特性,买方收益曲线为非线性,卖方收益曲线为线性。
期权定义与特性期权所涉及的资产,可以是股票、商品、外汇等。
标的资产期权的到期时间,一般为未来某一具体日期。
到期日期权的行权价格,即买卖标的资产的价格。
行权价期权的行权方式,包括美式和欧式两种。
行权方式期权定价模型的基本概念期权定价模型的种类与分类期权的持有者只能在到期日行权。
欧式期权美式期权看涨期权看跌期权期权的持有者可以在到期日及之前任何时间行权。
赋予持有者在未来某一时期以指定价格购买标的资产的权利。
赋予持有者在未来某一时期以指定价格出售标的资产的权利。
02经典期权定价模型Black-Scholes模型通过构造一个包含股票和债券的组合,推导出欧式期权价格所满足的微分方程。
利用已知的债券价格和股票价格,通过求解微分方程得到期权价格。
假设股票价格服从几何布朗运动,且无风险利率和波动率均为常数。
二叉树模型基于离散时间框架,模拟股票价格的变化过程。
假设股票价格只能向上或向下移动,且移动的幅度和概率均已知。
通过反向推导的方式,计算出期权的预期收益,并利用无风险利率折现得到期权的现值。
期权定价的数值方法有限差分法通过求解偏微分方程的数值近似解,得到期权价格。
网格法通过在期权收益函数中构造网格,计算网格点对应的期权价值,并利用无风险利率折现得到期权的现值。
蒙特卡洛模拟法通过模拟股票价格的随机过程,计算出期权的预期收益,并利用无风险利率折现得到期权的现值。
03期权定价的随机过程基础随机过程一组随机变量,每个变量对应一个时间点。
随机过程的分类根据性质不同,随机过程可分为平稳和非平稳、确定性和随机性等。