数理统计典型例题分析
- 格式:doc
- 大小:1.37 MB
- 文档页数:23
数理统计习题及答案数理统计习题及答案数理统计是一门研究数据收集、分析和解释的学科,是现代社会中不可或缺的一部分。
在学习数理统计的过程中,习题是不可或缺的一部分。
通过解答习题,我们可以更好地理解和掌握数理统计的概念和方法。
本文将介绍一些常见的数理统计习题,并给出详细的解答。
1. 某班级有40名学生,他们的身高数据如下:160、165、170、165、168、172、178、175、170、165、160、163、168、172、175、170、165、160、163、168、172、175、170、165、160、163、168、172、175、170、165、160、163、168、172、175、170、165、160、163、168。
请计算这组数据的平均身高、中位数和众数。
解答:首先,将这组数据按照从小到大的顺序排列:160、160、160、160、160、160、160、160、163、163、163、163、165、165、165、165、165、165、165、165、168、168、168、168、168、168、170、170、170、170、170、170、172、172、172、172、172、175、175、175、175、175、178。
平均身高 =(160+160+160+160+160+160+160+160+163+163+163+163+165+165+165+1 65+165+165+165+168+168+168+168+168+168+170+170+170+170+170+170+172+172+172+172+172+175+175+175+175+175+178)/40 = 166.7中位数 = 排列后的第20个数据 = 165众数 = 出现次数最多的数据 = 1602. 某汽车厂家生产了1000辆汽车,其中200辆为红色,300辆为蓝色,400辆为黑色。
5.6 设 i i i i x x y εβββ+-++=)23(2210,i ε~),0(2σN ,3,2,1=i ,321,,εεε 相互独立,11-=x ,02=x ,13=x 。
(1)写出矩阵 X ,X X T和 1)(-X X T ; (2)求 210,,βββ 的最小二乘估计; (3)证明 02=β 时,10,ββ 的最小二乘估计与02≠β 时的最小二乘估计相同。
解 (1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=111201111X ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=600020003X X T ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-610002100031)(1X X T 。
(2) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=210ˆˆˆˆββββY X X X T T 1)(-= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=311121101111610002100031y y y ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+-+-++=622332131321y y y y y y y y 。
即有3ˆ3210y y y ++=β ,2ˆ311y y +-=β ,62ˆ3210y y y +-=β 。
(3)(证法一)02=β 时,模型成为 i i i x y εββ++=10,i ε~),0(2σN ,3,2,1=i ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=110111X ,⎥⎦⎤⎢⎣⎡=2003X X T ,⎥⎦⎤⎢⎣⎡=-210031)(1X X T , ⎥⎦⎤⎢⎣⎡10ˆˆββY X X X T T 1)(-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=321101*********y y y ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-++=2331321y y y y y ,即有3ˆ3210y y y ++=β ,2ˆ311y y +-=β , 10,ββ 的最小二乘估计与02≠β 时的最小二乘估计相同。
(证法二)02=β 时,模型成为 i i i x y εββ++=10,i ε~),0(2σN ,3,2,1=i , 按照一元线性回归的计算公式,有03101=++-=x ,2)01()00()01(222=-+-+--=xx L , 3321y y y y ++= ,y x n y x L i i i xy -=∑=313132110)1(y y y y y +-=⋅+⋅+⋅-= ,xxxy L L =1ˆβ231y y +-=,3ˆˆ32110y y y y x y ++==-=ββ 。
第五章 数理统计初步例1.若总体2~(,)X N µσ,其中2σ已知,但µ未知,而为来自总体的一个简单随机样本,试指出下列样本函数中 12,,n X X X …是统计量, 不是统计量:(1)11n i i X n =∑; (2)211(n i i X n )µ=−∑; (3)211()1n i i X X n =−−∑;;X 。
分析:利用统计量的定义即可辨别,特别注意不能含有未知参数。
解:由统计量的定义:设为总体12,,n X X X …X 的一个样本,为连续函数,如果不包含任何未知参数,则称其为一个统计量。
12(,,)n g x x x …12(,,)n g X X X …显然,(1),(3),(4),(6)给出的是统计量;而(2),(5)给出的量因含有未知参数µ,所以不是统计量。
注:统计量不包含任何未知参数,它具有两重性。
统计量是样本的一个函数,所以是一个随机变量。
若是的一组观察值,则统计量12,,nX X X …12(,,)n g X X X …12,,n x x x …12,,n X X X …12(,,)n g x x x …又是一个确定的数。
例2.设随机变量X 和Y 都服从标准正态分布,则 。
(A ) X Y +服从正态分布。
(B ) 22X Y +服从2χ分布。
(C ) 2X 和都服从2Y 2χ分布。
() D 22X 服从F 分布。
分析:考察统计中三种常见分布的构成,注意正态分布的性质。
解:由于的联合分布是否为二维正态分布未知,不能确定(,)X Y X Y +服从正态分布,又因X 与Y 是否独立未知,因而不能确定X Y +服从正态分布,也不能确定22X Y +服从2χ分布,也不能确定22X Y 服从F 分布,因而选。
C 注:本例重在强调各分布的构成中,都有独立性的要求。
另外,正态分布的性质中也同样要求独立性。
例3.设2~(,)X N µσ,则样本均值X 与总体期望µ的偏差不超过(n 为样本容量)的概率为 。
高中数学涉及的统计学知识典型例题分析一、基础知识:(一)随机抽样:1、抽签法:把总体中的N 个个体编号,把号码写在号签上,将号签放在一个容器中搅拌均匀后,每次从中抽取一个号签,连续抽取n 次,就得到容量为n 的样本2、系统抽样:也称为等间隔抽样,大致分为以下几个步骤:(1)先将总体的N 个个体编号(2)确定分段间隔k ,设样本容量为n ,若N n 为整数,则N k n= (3)在第一段中用简单随机抽样确定第一个个体编号l ,则后面每段所确定的个体编号与前一段确定的个体编号差距为k ,例如:第2段所确定的个体编号为l k +,第m 段所确定的个体编号为()1l m k +−,直至完成样本注:(1)若N n不是整数,则先用简单随机抽样剔除若干个个体,使得剩下的个体数能被n 整除,再进行系统抽样。
例如501名学生所抽取的样本容量为10,则先随机抽去1个,剩下的500个个体参加系统抽样(2)利用系统抽样所抽出的个体编号排成等差数列,其公差为k3、分层抽样:也称为按比例抽样,是指在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本。
分层抽样后样本中各层的比例与总体中各个层次的比例相等,这条结论会经常用到(二)频率分布直方图:1、频数与频率(1)频数:指一组数据中个别数据重复出现的次数或一组数据在某个确定的范围内出现的数据的个数.(2)频率:是频数与数据组中所含数据的个数的比,即频率=频数/总数(3)各试验结果的频率之和等于12、频率分布直方图:若要统计每个小组数据在样本容量所占比例大小,则可通过频率分布表(表格形式)和频率分布直方图(图像形式)直观的列出(1)极差:一组数据中最大值与最小值的差(2)组距:将一组数据平均分成若干组(通常5-12组),则组内数据的极差称为组距,所以有组距=极差/组数(3)统计每组的频数,计算出每组的频率,便可根据频率作出频率分布直方图(4)在频率分布直方图中:横轴按组距分段,纵轴为“频率/组距”(5)频率分布直方图的特点:②因为各试验结果的频率之和等于1,所以可得在频率分布直方图中,各个矩形的面积和为1 (三)茎叶图:通常可用于统计和比较两组数据,其中茎是指中间的一列数,通常体现数据中除了末位数前面的其他数位,叶通常代表每个数据的末位数。
概率论与数理统计案例分析概率论与数理统计作为数学的一个重要分支,广泛应用于各个领域。
本文将通过一些具体案例来分析概率论和数理统计在实际中的应用。
案例一:市场营销中的A/B测试在市场营销领域,A/B测试是一种常见的实验设计方法,用于比较两种不同的营销策略、广告设计或产品设计等。
假设某电商公司希望提高其网站用户的转化率,他们可以设计一个A/B测试来比较两种不同的促销活动对用户购买行为的影响。
首先,将用户随机分为两组,一组接受A方案,另一组接受B方案。
然后通过收集和分析用户的购买数据,可以利用概率论和数理统计方法来评估两种方案的效果。
通过统计显著性检验和置信区间分析,可以得出结论,哪种方案对用户购买行为影响更大,从而指导公司的营销策略。
案例二:医学研究中的双盲试验在医学研究领域,双盲试验是一种常用的研究设计,用于评估新药物的疗效。
在一次双盲试验中,研究者和参与者都不知道哪些人接受了治疗,哪些人接受了安慰剂。
通过随机分组和盲法设计,可以最大程度地减少实验结果的偏倚。
利用概率论和数理统计方法,研究人员可以对试验数据进行分析,来评估新药物的疗效是否显著,以及是否出现不良反应等情况。
通过以上案例分析,可以看出概率论和数理统计在实际中的重要性和应用价值。
无论是市场营销领域还是医学研究领域,都离不开对数据的收集、分析和解释。
掌握好概率论和数理统计知识,对于提高决策的科学性和准确性有着重要的意义。
希望本文的案例分析能够让读者更深入地理解概率论和数理统计的实际应用,为他们在相关领域的工作和研究提供一定的启发和帮助。
概率论与数理统计重点总结及例题解析一:全概率公式和贝叶斯公式例:某厂由甲、乙、丙三个车间生产同一种产品,它们的产量之比为3:2:1,各车间产品的不合格率依次为8%,9%, 12% 。
现从该厂产品中任意抽取一件,求:(1)取到不合格产品的概率;(2)若取到的是不合格品,求它是由甲车间生产的概率。
(同步45页三、1)解:设A1,A2,A3分别表示产品由甲、乙、丙车间生产,B表示产品不合格,则A1,A2,A3为一个完备事件组。
P(A1)=1/2, P(A2)=1/3, P(A3)=1/6,P(B| A1)=0。
08,P(B| A2)=0。
09,P(B| A3)=0。
12.由全概率公式P(B) = P(A1)P(B| A1)+ P(A2)P(B| A2)+ P(A3)P(B| A3) = 0.09由贝叶斯公式:P(A1| B)=P(A1B)/P(B) = 4/9练习:市场上出售的某种商品由三个厂家同时供货,其供应量第一厂家为第二厂家的2倍,第二、三两厂家相等,而且第一、二、三厂家的次品率依次为2%,2%,4%。
若在市场上随机购买一件商品为次品,问该件商品是第一厂家生产的概率是多少?(同步49页三、1)【0.4 】练习:设两箱内装有同种零件,第一箱装50件,有10件一等品,第二箱装30件,有18件一等品,先从两箱中任挑一箱,再从此箱中前后不放回地任取2个零件,求:(同步29页三、5)(1)取出的零件是一等品的概率;(2)在先取的是一等品的条件下,后取的仍是一等品的条件概率. 解:设事件i A ={从第i 箱取的零件},i B ={第i 次取的零件是一等品} (1)P (1B )=P(1A )P (1B |1A )+P (2A )P(1B |2A )=52301821501021=+(2)P (1B 2B )=194.02121230218250210=+C C C C ,则P (2B |1B )=)()(121B P B B P = 0.485二、连续型随机变量的综合题 例:设随机变量X 的概率密度函数为⎩⎨⎧<<=others x x x f 020)(λ 求:(1)常数λ;(2)EX ;(3)P{1〈X<3};(4)X 的分布函数F (x)(同步47页三、2)解:(1)由⎰⎰==∞+∞-201)(xdx dx x f λ得到λ=1/2 (2)3421)(22===⎰⎰∞+∞-dx x dx x xf EX (3)⎰⎰===<<31214321)(}31{xdx dx x f x P (4)当x<0时,⎰∞-==xdt x F 00)(当0≤x<2时,⎰⎰⎰∞-∞-=+==xxx tdt dx dt t f x F 00241210)()(当x ≥2时,F(x )=1故201()02412x F x x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩练习:已知随机变量X 的密度函数为⎩⎨⎧≤≤+=others x b ax x f 010)(且E (X)=7/12。
《概率论与数理统计》典型例题第一章 随机事件与概率例1.已知事件,A B 满足,A B 与同时发生的概率与两事件同时不发生的概率相等,且()P A p =,则()P B = 。
分析:此问题是考察事件的关系与概率的性质。
解:由题设知,()(P AB P A B =∩),则有()()()1()1()()()P AB P A B P A B P A B P A P B P AB ===−=−−+∩∪∪而,故可得。
()P A p =()P B =1p −注:此题具体考察学生对事件关系中对偶原理,以及概率加法公式的掌握情况,但首先要求学生应正确的表示出事件概率间的关系,这三点都是容易犯错的地方。
例2.从10个编号为1至10的球中任取1个,则取得的号码能被2或3整除的概率为 。
分析:这是古典概型的问题。
另外,问题中的一个“或”字提示学生这应该是求两个事件至少发生一个的概率,即和事件的概率,所以应考虑使用加法公式。
解:设A :“号码能被2整除”,B :“号码能被3整除”,则53(),()1010P A P B ==。
只有号码6能同时被2和3整除,所以1()10P AB =,故所求概率为 5317()()()()10101010P A B P A P B P AB =+−=+−=∪。
注:这是加法公式的一个应用。
本例可做多种推广,例如有60只球,又如能被2或3或5整除。
再如直述从10个数中任取一个,取得的数能被2或3整除的概率为多少等等。
例3.对于任意两事件,若,则 A B 和()0,()0P A P B >>不正确。
(A )若AB φ=,则A 、B 一定不相容。
(B )若AB φ=,则A 、B 一定独立。
()若C AB φ≠,则A 、B 有可能独立。
()若D AB φ=,则A 、B 一定不独立。
分析:此问题是考察事件关系中的相容性与事件的独立性的区别,从定义出发。
解:由事件关系中相容性的定义知选项A 正确。
典型例题分析例1.分别从方差为20和35的正态总抽取容量为8和10的两个样本,求第一个样本方差是第二个样本方差两倍的概率的范围。
解 以21S 和22S 分别表示两个(修正)样本方差。
由222212σσy x S S F =知统计量2221222175.13520S S S S F ==服从F 分布,自由度为(7,9)。
1) 事件{}22212S S =的概率 {}{}05.320352352022222122212221===⎭⎬⎫⎩⎨⎧⨯==⎭⎬⎫⎩⎨⎧===F P S S P S S P S S P因为F 是连续型随机变量,而任何连续型随机变量取任一给定值的概率都等于0。
2) 现在我们求事件{}二样本方差两倍第一样本方差不小于第=A 的概率:{}{}5.322221≥=≥=F P S S P p 。
由附表可见,自由度9,721==f f 的F 分布水平α上侧分位数),(21f f F α有如下数值:)9,7(20.45.329.3)9,7(025.005.0F F =<<=。
由此可见,事件A 的概率p 介于0.025与0.05之间;05.0025.0<<p 。
例2.设n X X X ,,, 21是取自正态总体),(2σμN 的一个样本,2s 为样本方差,求满足不等式95.05.122≥⎭⎬⎫⎩⎨⎧≤σS P 的最小n 值。
解 由随机变量2χ分布知,随机变量σ/12S n )(-服从2χ分布,自由度1-=n v ,于是,有{}{}95.0)1(5.1)1(5.1)1(2,05.02222=≤≥-≤=⎭⎬⎫⎩⎨⎧-≤-=v v v P n P n S n P χχχσ 其中2v χ表示自由度1-=n v 的2χ分布随机变量,2,05.0v χ是自由度为1-=n v 的水平05.0=α的2χ分布上侧分位数(见附表)。
我们欲求满足2,05.015.1v n χ≥-)(的最小1+=v n 值,由附表可见226,05.0885.3839)127(5.1χ=>=-, 22505.0652.375.401265.1,)(χ=<=-。
概率论与数理统计 典型例题及其分析第三章 多维随机变量及其分布Y ⑴ 求,a b 应满足的条件; ⑵ 若X 与Y 相互独立 ,求 a,b 的值. 【思路】 先利用联合分布律的性质1ijijp=∑∑确定a,b 应满足的条件,再利用独立性的定义来求出a 与b. 【解】⑴ 因为1ij ijp =∑∑,所以11111,84248b a +++++= 因此 11.24a b += ⑵ 由于 X 与Y 相互独立,即对所有,i j x y 有 ()()(),,i j i j P X x Y y P X x Y y ===== 于是 ()()()112,121,46a P X Y P X Y a a ⎛⎫⎛⎫=======++⎪⎪⎝⎭⎝⎭解得 112a =或1.2a =同理 ()()()131,212,88b P X Y P X Y B b ⎛⎫⎛⎫=======++ ⎪⎪⎝⎭⎝⎭解得 18b =或3.8b = 再由11.24a b +=知 13,128a b == 【解毕】 【技巧】 由于X 与Y 的独立性,故对所有的,i j x y 应有()()(),,i j i j P X x Y y P X x Y y ===== 因此,我们可在联合分布律表中找到几个比较容易计算的值来分别确定分布律中的参数,例如()13,1,24P X Y ===而()()1131,66P X Y a ⎛⎫===∙+ ⎪⎝⎭可求得1;12a =又()13,2,8P X Y ===而18求得3.8b =这种参数的确定方式,需要读者熟练掌握. 例3.2.2 (1999年考研题)设随机变量X 与Y 相互独立 ,下表列出了二维随机变量(),X Y 的联合分布律及关于X 和关于Y 的边缘分布律中的部分数值,试将其余数值填入表中的空间处:- 62 -j【思路】 利用边缘分布律的求法及独立性来进行,例如,从11,86p +=求得11,24p =再利用独立性知1111.6p p =⨯从而知11,4p =等等. 【解】 利用;i ij jij jip p pp ==∑∑以及 1i jijp p==∑∑ 与独立性 ij i j p p p =. 求解空格内的数值,故11111111111,,68246p p p p p =-===⨯即11,4p =又由121,p p +=可得2131.44p =-= 反复运用上列公式,可求得 1322232313111,,,,.128423p p p p p ===== j例3.2.3 (1999年考研题)已知随机变量1X 和2X 的概率分布分别为 1x -1 0 1 2x 0 1 与 P111 424 P 1122, 而且()120 1.P X X ==求1X 和2X 的联合分布;问: ⑴ 1X 和2X 是否独立? ⑵ 为什么? 【思路】 已知1X 和2X 的边缘分布,一般是不能确定1X 和2X 的联合分布的,但题中给了一附加条件()120 1.P X X ==因此就要从条件入手加以分析,再利用边缘分布与联合分布的关系,就可求解此题了.独立性的判断是比较简单的.【解】⑴ 由()120 1.P X X ==知()1200,P X X ≠=即()()12121,11,10.P X X P X X =-===== 于是1X 和2X 的联合分布有如下结构:1j p 从而利用边缘分布律与联合分布律的关系知()()()1121211,01,1,P X P X X P X X =-==-=+==即 1110,4p +=从而得111.4p = 同理可知31222111,,0.p p p ===故1X 和2X 的联合分布律为1j p ⑵ 由以上结果知 ()120,00,P X X === 而 ()()12111000.224P X P X ===⨯=≠ 可见,1X 与2X 不独立. 【技巧】先.将边缘分布的数据以及由条件()1201P X X ==中对应数据填入表中,得到联合分布律表的基本结构,再来求其余ij p 的值,是对解离散型随机向量的基本技巧.按独立性的要求,可以检验1X 与2X 是否独立,特别对不独立的说明只需找出一对(),i j x y ,使ij i j p p p ≠即可.例3.2.4 将两封信投入3个编号为1,2,3的信箱,用,X Y 分别表示投入第1,2号信箱的信的数目,求(),X Y 的边缘分布律,并判断X 与Y 是否独立.【思路】 首先确定(),X Y 的所有可能取值,并用古典概型求出取相应值的概率,即可得到(),X Y 的联合分布律,剩下的问题也就迎刃而解了.【解】 将2封信投到3个信箱的总投法239,n ==而X 和Y 的可能取值均为0,1,2,于是- 64 -()0,0P X Y P ===(两封信都投入第3号信箱)=1;9()1,0P X Y P ===(两封信中一封投入第1号信箱,另一封投入第3号信箱)11212.99C C == 同理可得:()()220,1;1,1;99P X Y P X Y ====== ()()()1,22,12,20.P X Y P X Y P X Y ========= 这样,可得(),X Y 的联合分布律,又由于()()()()22,,0,1,2,,,0,1,2.i i P X k P X k Y i k P X k P X i Y k k ============∑∑故所求的分布律为X 的边缘分布律在表中的最后一列,Y 的边缘分布律在表中的最后一行. 由于()10,09P X Y ===,而()()44100,999P X P Y ===⨯≠故X 与Y 不独立. 【解毕】 【技巧】 二维离散型随机变量的联合分布律,在实际问题中可用事件的乘机(交)的概率求得,此时概率的乘法公式是十分常用的计算技巧. 例3.2.5 设(),X Y 服从区域(){}2,:01D x y y x =≤≤-上的均匀分布,⑴ 写出(),X Y 的联合密度函数;⑵ 求X 和Y 的边缘密度函数; ⑶ 求概率()2P Y X ≥.【思路】 先画出区域D 的图形,再按上面的解法来求解. 【解】 (1)由于区域D 是由曲线21y x =-和0y =所围成的(如图3.2.1所示),其面积为()12141.3D x dx -=-=⎰ 所以(),X Y 的联合密度为()23,01,40, y xf x y ⎧≤≤-⎪=⎨⎪⎩其他图3.2.1⑵ X 的边缘密度函数为()()()()2120331,11,11,440, 0, x X x x dy x f x f x y dy -+∞-∞⎧⎧⎪--<<⎪-<<===⎨⎨⎪⎪⎩⎩⎰⎰其他其他 而Y 的边缘密度函数为()()3,011,40, 0, Y dx y y f y f x y dy +∞-∞⎧<<⎪<<===⎨⎪⎪⎩⎩⎰其他其他 ⑶ 记(){}2,:G x y y x =≥,则G D ⋂为图3.2.2阴影部分,从而()()()()2221,,33 .442Gx G Dx P Y X P X Y G f x y dxdydxdy dxdy -⋂≥=∈====⎰⎰⎰⎰⎰【寓意】 本题要求熟悉二维均匀分布和计算边缘密度及概率的基本方法,求这些问题的技巧读者应牢牢掌握,最关键的问题是激发呢区间和积分区域的确定. 图 3.2.2例3.2.6 设二维随机变量(),X Y 的概率密度为 (), 0,,0, Ay Ae x y f x y -⎧<<=⎨⎩其他⑴ 确定常数A ;⑵ 求随机变量X 的密度()X f x ;⑶ 求概率()1P X Y +≤. (后二问为1992年考研题) 【解】⑴ 记D 为(),f x y 的零区域,即 (){},:0D x y x y =<< 其图形如图3.2.3所示.由联合密度的性质得(),1f x y dxdy +∞+∞-∞-∞=⎰⎰,从而有()01, .AyAyDxI f x y dxdy Aedxdy dx Ae dy A+∞+∞+∞+∞---∞-∞====⎰⎰⎰⎰⎰⎰ 因此,A=1. ⑵ X 的边缘密度为 ()(), 0, 0,0, 00, 0yx X x e d yx e x f x f x y dy x x +∞-+∞--∞⎧>⎧>⎪===⎨⎨≤⎩⎪≤⎩⎰⎰⑶ 设(){},:1G x y x y =+≤,则D G ⋂如图3.2.4所示.故()()1112121, 12.xyyGD GxP X Y f x y dxdy edxdy dx e dy e e -----⋂+≤====+-⎰⎰⎰⎰⎰⎰- 66 -图 3.2.3 图3.2.4【技巧】 在利用(),1f x y dxdy +∞+∞-∞-∞=⎰⎰确定(),f x y 中的常数时,若(),0f x y ≠的区域为D ,则只需用(),1Df x y dxdy =⎰⎰就可以了.例3.3.1 设(),X Y 的联合分布律为求:⑴ 常数a; ⑵ 联合分布函数在点31,22⎛⎫⎪⎝⎭处的值31,;22F ⎛⎫ ⎪⎝⎭ ⑶ ()1|0.P X y ==【解】⑴ 由联合分布律的性质1ij ijp =∑∑知 1111,446ij ijp a ==+++∑∑ 求得1.3a =⑵(),X Y 的联合分布函数(),F x y 在点31,22⎛⎫⎪⎝⎭处的值 ()()3131111,,1,11,0.2222442F p X Y P X Y P X Y ⎛⎫⎛⎫=≤≤===-+===+= ⎪ ⎪⎝⎭⎝⎭⑶ ()()()11,0341|0.110743P X Y P X Y P X ========+ 【解毕】 【技巧】 求联合分布函数(),F x y 时,只需把取值满足,i j x x y y ≤≤的点(),i j x y 的概率ij p 找出来,然后求和就可以了,值得注意的是不要有遗漏.而求条件分布律时的关键是将其边缘分布求出即可,而边缘分布律的求法在前节已反复强调过多次.例3.3.2 已知随机变量X 和Y 联合概率密度为 ()4, 01,01,,0, xy x y f x y ≤<≤<⎧=⎨⎩其他求⑴ 条件密度()||X Y f x y 及()||;Y X f y x ⑵ X 和Y 的联合分布函数(),F x y .(第二问为1995年考研题) 【思路】 根据条件密度的定义,我们首先要求出X 与Y 的边缘密度,然后再来求条件密度.而联合分布函数的求法是一个较为繁琐的工作,需要分区域讨论,这些区域不能遗漏. 【解】⑴ 由于X 的边缘密度为 ()()104, 012, 01 ,0, 0, X x y d yx x x f x f x y dy +∞-∞⎧≤<≤<⎧⎪===⎨⎨⎩⎪⎩⎰⎰其他.其他同理,有 ()()2, 01,,0, Y y y f y f x y dx +∞-∞≤<⎧==⎨⎩⎰其他故当01y <<时,()Y f y >0,且 ()()()|4, 01,,2|0, X Y Y xyx f x y yf x y f y ⎧≤<⎪==⎨⎪⎩其他从而,在{}Y y =条件下,X 的条件密度为 ()|2, 01,01,|0, X Y x x y f x y ≤<<<⎧=⎨⎩其他同样可得,在{}X x =条件下,Y 的条件密度为 ()|2, 01,01,|0, Y X y y x f y x ≤<<<⎧=⎨⎩其他⑵ 对联合分布函数()(),,F x y P X x Y y =≤≤要分区域讨论.对于0x <或0y <,有 ()(),,0;F x y P X x Y y =≤≤= 对于01,01,x y ≤<≤<有 ()2200,4;yx F x y uvdudv xy ==⎰⎰对于1,1x y ≥≥,有 (),1;F x y = 对于1,01,x y ≥≤<有 ()()2,1,;F x y P XY y y =≤≤= 对于1,01,y x ≥≤<有 ()()2,,1;F x y P X x Y x =≤≤= 从而,X 和Y 的联合分布函数为 ()22220, 00,01,01,,, 01,1,, 1,01,1, 1,1x y x y x y F x y x x y y x y x y<<⎧⎪≤<≤<⎪⎪=≤<≤⎨⎪≤≤<⎪≤≤⎪⎩或【技巧】 由于本题中,X 与Y 的地位完全平等,因此,在求条件密度时,只需求出一个,另一个用对- 68 -称性即可得到,此对称性在(),F x y 中也有很好的体现,对称性的利用也经常是我们解决数学问题的一种技巧,另外,在求(),X Y 的分布函数时,一定要牢牢记住它的定义:()(),,.F x y P X x Y y =≤≤对一切,x y 都要讨论,它是一个分区域函数,不同值的定义范围一定要证明. 例3.4.1 设二维随机变量(),X Y 的概率密度函数为 ()()2,01,0,,0, ky x x y x f x y ⎧-≤≤≤≤=⎨⎩其他试求常数k ,并问X 与Y 是否相互独立?【思路】 常数k 的确定仍是利用联合密度的性质,而独立性质的判断只须验证是否成立()()(),,X Y f x y f x f y =为此,首先要求出X 与Y 的边缘密度()X f x 与()Y f y .【解】 由联合密度的性质知()()()1010151,22,24xx y f x y dxdy ky x dxdy k dx x ydy k +∞+∞-∞-∞≤≤≤≤==-=-=⎰⎰⎰⎰⎰⎰ 所以,24.5k =(),X Y 关于X 的边缘密度为()()()()2024122, 012, 0 1,550, 0, x X x ydy x x x x f x f x y dy +∞-∞⎧⎧-≤≤-≤≤⎪⎪===⎨⎨⎪⎪⎩⎩⎰⎰其他.其他而(),X Y 关于Y 的边缘密度为()()()()122412, 01,34,01,52,50, 0, Y y ydx y y y y y x f y f x y dx +∞-∞⎧⎧≤<-+≤≤⎪⎪-===⎨⎨⎪⎪⎩⎩⎰⎰其他其他 很明显,当01,0,x y x <<<<时,有 ()()(),,X Y f x y f x f y ≠ 所以X 与Y 不互相独立. 【注】本例中,(),X Y 的联合密度(),0f x y ≠的区域是三角形区域(){},:01,0D x y x y x =≤≤≤≤.虽然(),f x y 在D 上可表达成分离变量形状 ()()()12,f x y kg x g y =,这里,()12,g x x =-()2.g y y =但需要注意的是,只有当D 为矩形区域(){},:,D x y a x b c y d =≤≤≤≤(包括全平面、半平面等)时,()()()12,f x y kg x g y =才是使X 与Y 相互独立的充要条件.从而本题中X 与Y 不是相互独立的.如果(),X Y 的联合密度改为()()~~2,01,01,,0, k y x x y f x y ⎧⎪-≤≤≤≤=⎨⎪⎩其他则此时,X 与Y 必相互独立.例3.4.2 设X 和Y 是两个相互独立的随机变量,X 服从区间()0,1上的均匀分布,Y 服从参数12λ=的指数分布,求a 的二次方程220a Xa Y ++=有实根的概率.【思路】 方程220a Xa Y ++=有实根当且仅当2440,X Y ∆=-≥故本题是求概率()2P X Y ≥,而要计算此概率必须知道X 与Y 的联合密度,因此 首先必须根据题中独立性的假定求出(),.f x y【解】 有题设知,X 与Y 的概率密度分别为 ()1 010, X x f x <<⎧=⎨⎩,其他. 和 () 00, y 0Y x f y ⎧>⎪=⎨⎪≤⎩y-21e 2.由于,X Y 相互独立,故X 与Y 的联合密度为 ()()(), 01,0,0, X Y x y f x y f x f y ⎧<<>⎪==⎨⎪⎩y-21e 2其他又因为方程220a Xa Y ++=有实数当且仅当2440,X Y ∆=-≥故所求概率为()()()()2221120000101, 1 1110.x x yx y x y P X Y f x y dxdy dxdy dx dy dx dx ≥≥<<>⎛⎫≥====- ⎪ ⎪⎝⎭=-=Φ-Φ⎤⎦⎰⎰⎰⎰⎰⎰⎰⎰22y y x ---222x -211e e e 22e而()()10,10.8432Φ=Φ=(查正态分布表),故方程220a Xa Y ++=有实根的概率为0.1448. 【技巧】 本题是二维连续型随机变量的综合题,要求读者熟悉均匀分布,指数分布的定义,掌握独立性和概率计算的基本方法,知道怎么利用独立性构造联合分布.同时,要求大家在计算形如2-Ax e的积分时,如何应用正态分布的性质和特征,这种计算技巧,在概率论、微积分中是常用的.例3.4.3 一电子仪器由两个部件构成,以X 和Y 分别表示两部件的寿命(单位:千小时),已知X 和Y 的联合分布函数为 ()()0.50.50.51,0,0,,0, x y x y e e e x y F x y -+--⎧--+≥≥⎪=⎨⎪⎩其他⑴ 问X 和Y 是否独立; ⑵ 求两个部件的寿命都超过100小时的概率.α【解】 (方法1)直接利用分布函数计算. ⑴ X 与Y 的边缘分布函数分别为()()0.51, 0,,0, 0.x X e x F x F x x -⎧-≥=+∞=⎨<⎩ 与 ()()0.51, y 0,,0,y 0.y Y e F y F y -⎧-≥=+∞=⎨<⎩ 故有 ()()(),, ,,X Y F x y F x F y x y =-∞<<+∞ 从而,X 与Y 相互独立. ⑵ 由于X 与Y 相互独立,故- 70 -()()()()()()()0.050.050.10.1,0.10.10.110.110.1 10.110.1 .x y P X Y P X P Y P X P Y F F eeeα---=>>=>>=-≤-≤⎡⎤⎡⎤⎣⎦⎣⎦⎡⎤=--==⎡⎤⎣⎦⎣⎦(方法2)利用概率密度进行计算.⑴ 以(),f x y ,()(),X Y f x f y 分别表示(),,,X Y X Y ,的概率密度,则()()()0.5,0.25, 0,0,,0, x y F x y e x y f x y x y -+⎧∂≥≥⎪==⎨∂∂⎪⎩其他. ()()0.50.5,0,,0, x X e x f x f x y dy +∞--∞⎧≥==⎨⎩⎰其他. ()()0.50.5,0,,0, y Y e y f y f x y dx +∞--∞⎧≥==⎨⎩⎰其他. 由()()(),, (,)X Y f x y f x f y x y =-∞<<+∞知X 与Y 独立. ⑵()()0.50.10.10.10.1,0.10.25.x y P X Y dy edx e α+∞+∞-+-=>>==⎰⎰ 【解毕】【技巧】 用分布函数和概率密度均可以判定随机变量的独立性,具体应用哪种方法要依题而定.一般较为常用的是概率密度的方法,但本题中用前一方法反而简单些.在本题的计算时,读者要注意X 与Y 的对称性,不必重复计算,另外,利用分布函数(),F x y 的性质也可以直接计算出α,即()()()()()0.10.1,0.1,0.1,,0.10.1,0.1.P X Y F F F F e α-=>>=+∞+∞-+∞-+∞+=例3.5.1 设二维随机变量的联合分布律为求:(1)1;Z X Y =+(2)2Z X Y =(3)3;Z Y=(4)()4max ,Z X Y =的分布律 【思路 】 思路与一维离散型随机变量的函数的分布律的计算类似,注意上面介绍的技巧.【解】 我们将(),i j x y 的取值与取这些值的概率以及要计算的所有随机变量的函数()1,2,3,4k Z k =的Y X Y从而得到:(1)1Z X Y =+的分布律为(2)2Z X Y =的分布律为 Y(3)3XZ=的分布律为(4)()4,Z max X Y =分布律为【注】(1)二维离散型随机变量的函数的分布律的计算是有一定的方法可循的,读者在利用上述方法计算时要搞清楚它的背景.在求XY的分布律时,注意要求()00.P Y =≠ (2)如果已知X 与Y 独立,且X 与Y 的分布律给定时,求(),Z g X Y =的分布律的方法是:首先利用独立性构造出X 与Y 的联合分布律表,然后再按本题类似的技巧处理. 例3.5.2 (1987年考研题)设随机变量X 与Y 相互独立,其概率密度函数分别为()1,01,0, X x f x ≤≤⎧=⎨⎩其他.和 (), 0,0, y 0y Y e y f y -⎧>=⎨≤⎩. 求随机变量2Z X Y =+的概率密度函数. 【思路】 这是计算两个独立随机变量和的概率密度的典型题,可有两种解法,一是通过2Z X Y =+的分布函数来求解.另一是利用卷积公式来计算. 【解】 (方法1)分布函数法.因为,X Y 相互独立,所以(),X Y 的联合概率密度函数为()()(), 01,0,,0, y X Y e x y f x y f x f y -⎧≤≤>==⎨⎩其他.故2Z X Y =+的分布函数为 ()()()22,.Z X Y ZF z P X Y Z f x y dxdy +≤=+≤=⎰⎰记(),0f x y ≠的区域为(){},:01,0D x y x y =≤≤>,积分区域为(){},:2,G x y X Y Z =+≤于是().y Z D GF z e dxdy -⋂=⎰⎰为此,考虑区域D G ⋂的情形.① 当0z ≤时,D G ⋂≠∅(见图3.5.1),于是,()0.Z F z = ② 当02z <≤时,D G ⋂为图3.5.2中的阴影部分,于是()()()22220111.2z xyyx z z Z D GF z e dxdy dxe dy e dx z e ππ-----⋂===-=-+⎰⎰⎰⎰⎰图3.5.1 图3.5.2当2z >时,D G ⋂为图3.5.3中的阴影部分,于是()()1220111.2z xyy z Z D GF z e dxdy dxe dy e e ----⋂===--⎰⎰⎰⎰所以,随机变量2Z X Y =+的概率密度为 ()()()()'20, 0,11, 02,211, 2.2z z z zz f z F z e z e e z --⎧⎪≤⎪⎪==-<≤⎨⎪⎪->⎪⎩(方法2)卷积公式法.若记2W X =,为求W 的密度函数,我们先考虑W 的分布函数()()()()2220, 0,, 02,21, 2.W wXw F w P WwP Xw P X w w f x d x w w-∞⎛⎫=≤=≤=≤⎪⎝⎭≤⎧⎪⎪==<≤⎨⎪>⎪⎩⎰故W 的概率密度为()1, 02,20, W w f w ⎧<≤⎪=⎨⎪⎩其他.图3.5.3因为,X Y 相互独立,所以W 与Y 也相互独立,从而2Z X Y W Y =+=+的概率密度可按卷积公式计算,即 ()()()z W Y f z f wf z wd w+∞-∞=-⎰为使被积函数非零,则必须满足条件 02,0,w z w <≤⎧⎨->⎩ 即 02,.w w z <≤⎧⎨<⎩ 从而,分情况讨论:① 若0,z ≤则{}{}02,w w z <≤⋂<=∅于是 ()0;z f z = ② 若02,z <≤则 {}{}{}020,w w z w z <≤⋂<=<<故 ()()()0111;22zz w zz f z e dw e ---==-⎰ ③ 若2z >,则{}{}{}020,w w z w z <≤⋂<=<<故 ()()()220111.22z w z z f z e dw e e ---==-⎰ 综上知 ()()()20, 0,11, 02,211, 2.2z z zz f z e z e e z --⎧⎪≤⎪⎪=-<≤⎨⎪⎪->⎪⎩【技巧】 这类问题的求解,主要工作量是求分段函数的积分和积分上、下限的确定,希望读者仔细体会此题求解的方法,得到举一反三的效果.第一种分布函数的方法是通常的方法,第二种卷积公式法仅适用随机变量和的情形.其实,对两随机变量和的线性组合,我们也有如下推广的卷积公式:设(),X Y 的联合概率密度为(),f x y ,则()0,0Z aX bY a b =+≠≠的概率密度为()11,,.z z ax z by f z fx dx f y dy b b a a +∞+∞-∞-∞--⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭⎰⎰不妨用此公式去验证一下本题的结论. 例3.5.3 设二维随机变量(),X Y 的概率密度函数为 ()(), 0,0,,0, x y ex y f x y -+⎧>>⎪=⎨⎪⎩其他求Z X Y =-的概率密度. 【思路】 用分布函数法.【解】 显然,当0z ≤时,有 ()()()0;z F z P Z z P X Y z =≤=-≤= 当0z >时,有 ()()()()()00,.x y z x y zx y zy F z P Z z P X Y z f x y dxdy e dxdy -+-≤-≤>>=≤=-≤==⎰⎰⎰⎰此积分的积分区域如图3.5.4所示.因此,化此重积分为累次积分,得()()()()03331112221.z x zx zx y x y z zx zz z z z z F z dxedy dxedye e e e e ++∞+-+-+------=+⎛⎫=-++- ⎪⎝⎭=-⎰⎰⎰⎰所以有 ()1, 00, 0.z Z e z F z z -⎧->=⎨≤⎩从而Z X Y =-的概率密度为()(), 0,0, 0.z Z Z e z df z F z dz z -⎧>==⎨≤⎩ 图3.5.4 【寓意】 本题考查的是给定(),X Y 联合概率密度的条件下,求X 和Y 的函数的分布函数,关键是对二重积分确定其积分区域.例3.5.4 设二维随机变量(),X Y 服从取区域(){},:0,0D x y x a y a =<<<<上的均匀分布,试求:(1)XZ Y=的概率密度;(2)()max ,M X Y =的概率密度. 【思路】 利用分布函数法来处理,先分别求出Z 和M 的分布函数,然后再求导.【解】 (1)由于(),X Y 的概率密度为 ()21, 0,0,,0, x a y a f x y a ⎧<<<<⎪=⎨⎪⎩其他故当0z <时,()0.Z X F z P Z Y ⎛⎫=≤=⎪⎝⎭而当01z <<时,有()()201,.2zya Z xz yX z F z P z f x y dxdy dy dx Y a ≤⎛⎫=≤=== ⎪⎝⎭⎰⎰⎰⎰当1z ≥时,有 ()()2011,1.2a aZ xx z yzX F z P z f x y dxdy dx dy Y a z≤⎛⎫=≤===- ⎪⎝⎭⎰⎰⎰⎰从而XZ Y =的概率密度为 ()()20, 0,1, 0<z<1,21, 1.2Z Z z d f z F z dz z z<⎧⎪⎪==⎨⎪⎪≥⎩(2)由于 ()21, 0,0,,0, x a y a f x y a ⎧<<<<⎪=⎨⎪⎩其他故 ()()1, 0,,0, X x a f x f x y dy a+∞-∞⎧<<⎪==⎨⎪⎩⎰其他. ()()1, 0,,0, Y y a f y f x y dx a +∞-∞⎧<<⎪==⎨⎪⎩⎰其他.从而,X 与Y 相互独立,且均服从()0,a 上的均匀分布,故对()max ,M X Y =的分布函数有()()()()()()()()()22max ,,, 0,0, M X Y F z P M z P X Y z P X z Y z P X z P Y z z z a F z F z a =≤=≤=≤≤=≤≤⎧<<⎪==⎨⎪⎩其他,.由此得()max ,M X Y =的概率密度为 ()()22, 0<z<a,0, .M M zd f z F z adz ⎧⎪==⎨⎪⎩其他 【注】 此题时考查对随机变量的商及极值函数的分布的计算,其中的关键仍然时积分区域的确定.当然,商运算等也已有现成的公式,我们在此一并介绍给读者.若(),X Y 的联合密度为(),f x y ,则有()()()()()()(),; ,;11,; ,.X Y X YXY X Y f z f x z x dx f z f x x z dx z f z f x dx f z f zy y dy x x y +∞+∞+--∞-∞+∞+∞-∞-∞=-=-⎛⎫== ⎪⎝⎭⎰⎰⎰⎰综例3.6.1 在10件产品中有2件一等品,7件二等品和1件次品,从10件产品中不放回地抽取3件,用X 表示其中的一等品数,Y 表示其中的二等品数.求:(1)(),X Y 的联合分布律;(2),X Y 的边缘分布律;(3)X 和Y 是否独立; (4)在 0X =的条件下,Y 的条件分布律.【解】 ⑴ 依题设知X 只能取0,1,2,Y 只能取0,1,2,3.显然,当2i j +<或3i j +>时,有 (),0.P X i Y j ===当23i j ≤+≤时,由古典概率知 ()()3271310,0,1,2,0,1,2,3.i j i j C C C P X i Y j i j C --===== 将这些一一计算并列表后,即得(),X Y 的分布律的具体表示. ⑵ ,X Y 的边缘分布律也列于分布律表中,具体形式如下:⑶ 而()()000,120P X P Y ===≠因此,X 与Y 不相互独立. ⑷ 在0X =的条件下,Y 的条件概率为 ()()()0,|0,0,1,2,3.0P X Y j P Y j X j P X =======因此Y 的条件分布律如下:【寓意】本例时二维离散型随机变量的综合题,首先要求读者了解如何用古典概型来求解相关的概率,进而考查联合分布律与边缘分布律的关系及独立性的判别,条件分布律的计算只需知道条件概率的定义便可给出.综例 3.6.2 设12,34,,ξξξξ独立同分布,且 ()()00.6,10.4,1,2,3,4.i i P P i ξξ=====(第一问为1994年考研题)求:(1)行列式1234ξξξξξ=的概率分布;(2)方程组112231420,0x x x x ξξξξ+=⎧⎨+=⎩ 只有零解的概率.【思路】 要求行列式ξ的分布律,先要将ξ的所有可能取值找到,然后利用独立性将取这些值的概率计算出来,而第二问就是求系数行列式0ξ≠的概率. 【解】(1)记114223,,ηξξηξξ==则 142312ξξξξξηη=-=-由于12,34,,ξξξξ相互独立,故12,ηη也相互独立,且12,ηη都只能取0,1两个值,而()()()()()122323111,1110.16,P P P P P ηηξξξξ==========()()120010.160.84.P P ηη====-= 随机变量12ξηη=-有3个可能取值-1,0,1,易见()()()()121210,1010.840.160.1344,P P P P ξηηηη=-=======⨯= ()()()()121211,0100.160.840.1344,P P P P ξηηηη========⨯= ()()()01110.7312.P P P ξξξ==-=--== 于是行列式ξ的概率分布为(2)由于齐次方程 112231420,0.x x x xξξξξ+=⎧⎨+=⎩ 只有零解的充要条件是系数行列式不为0,故此题就简化为求概率 ()()01010.73120.2688.P P ξξ≠=-==-=【技巧】 本题实质上是求多维离散型随机变量的函数分布的问题,通过引入变量12,ηη将其化为二维随机变量函数分布问题,问题的解决最关键的是用到了独立性的性质:若随机变量12,,,n ξξξ相互独立,则()112,,,m g ξξξ与()212,,,m m n g ξξξ++也相互独立.综例3.6.3 设随机变量(),X Y 服从(){}22,:0,1D x y y xy =≥+≤上的均匀分布,定义随机变量,U V如下:0, 0,1, 0,2, .X U X Y X Y <⎧⎪=≤<⎨⎪≥⎩0, 3,1, 3.XV X⎧≥⎪=⎨<⎪⎩ 求(),U V 的联合概率分布,并计算()0.P UV ≠【思路】 写出(),U V 的所有可能取值,并利用均匀分布的特征计算其取值的概率.【解】 由题设知,(),X Y 的联合密度函数为 ()()()2, ,,,0, ,.x y D f x y x y D π⎧∈⎪=⎨⎪∉⎩(),U V 有6个可能取值:()()()()()0,0,0,1,1,0,1,1,2,0和()2,1.由,U V 的定义知()()()()()()()()000,0,1,0,1,10,021, .4AOC BCE x yx yP U V P P U V P P U V P X Y X P X Y S f x y dxdy dxdy S π≤<≤<===∅===∅===≤<<=≤<====⎰⎰⎰⎰扇其中,AOC S 扇和BCE S 分别表示图3.6.1中扇形AOC 与半圆BCE 的面积.同理有()()()()()()()()()10,10,0 ,212,0, ,612,1,.12BCE BCE AOF BCE S P U V P X X P X S S P U V P Y X X P X S S P U V P Y X X P Y X S ===<<=<=====≤≥=≥=====≤≥=≤<==扇COE 扇BOF 扇所以,(),U V 的联合概率分布为图 3.6.1从而 ()()()01,12,1.4123P UV P U V P U V ≠===+===+= 【技巧】 本题是求连续型随机变量的离散值函数的分布问题,解题过程中巧妙地应用了均匀分布的性质从而简化了计算.综例3.6.4 设随机变量(),X Y 的联合概率密度为 (), 0,,0, .y cxe x y f x y -⎧<<<+∞=⎨⎩其他⑴ 求常数c; ⑵ X 与Y 是否独立?为什么? ⑶ 求()()|||,|X Y Y X f x y f y x ; ⑷ 求()()1|2,1|2;P X Y P X Y <<<= ⑸ 求(),X Y 的联合分布函数; ⑹ 求Z X Y =+的密度函数; ⑺ 求()1P X Y +<; ⑻ 求()()min ,1P X Y <.【解】 (1)根据(),1,f x y dxdy +∞+∞-∞-∞=⎰⎰得 ()20013.22y yy ccdy cxe dy y e dy c +∞+∞--===Γ=⎰⎰⎰这里利用了特殊函数()10x x e dx αα+∞--Γ=⎰的性质:()()1,αααΓ+=Γ故 1.c =(2)先分别计算X 和Y 的边缘密度.()(),0, 0,,0, 0.0,0yxX x xe dy x xe x f x f x y dy x x +∞-+∞--∞⎧>⎧>⎪===⎨⎨≤⎩⎪≤⎩⎰⎰()()21, 0, y 0,,20, y 0.0, 0y y yY xxe dx y y e f y f x y dx y -+∞--∞⎧⎧>>⎪⎪===⎨⎨⎪⎪≤⎩≤⎩⎰⎰由于在0x y <<<+∞上,()()(),X Y f x y f x f y ≠,故X 与Y 不独立. (3)由条件分布密度的定义知()()()2|2,0,,|0, .X Y Y xx y f x y yf x y f y ⎧<<<+∞⎪==⎨⎪⎩其他 ()()()|,,0,|0,.x y Y X X f x y e x y f y x f x -⎧<<<+∞==⎨⎩其他 (4)直接由条件概率定义知()()()()()1212120222201,121,221|2.21512yxy Y dx xe dyf x y dxdy e e P X Y P X Y P Y ef y dyy e dy ----∞-∞---∞--<<<<====<-⎰⎰⎰⎰⎰⎰又由条件密度的性质知 ()()1|1|2|2X Y P X Y f x dx -∞<==⎰而 ()|,02,|220, .X Y xx f x ⎧<<⎪=⎨⎪⎩其他 ()111|2.24x P X Y dx <===⎰(5)由于()(),,,F x y P X x Y y =≤≤故有: 当0x <或0y <时,(),0.F x y = 当0y x ≤<<+∞时,有()()2200011,,11.22y yv vv y F x y P X x Y y dv ue du v e dv y y e ---⎛⎫=≤≤===-++ ⎪⎝⎭⎰⎰⎰当0x y ≤<<+∞时,有()()()()2001,,11.2y x xvu y x y u F x y P X x Y y dv ue dv u e e du x e x e -----=≤≤==-=-+-⎰⎰⎰综上知 ()()220, 00,1,11, 0,2111, 02yx y x y F x y y y e y x x e x e x y ---⎧⎪<<⎪⎪⎛⎫=-++≤<<+∞⎨ ⎪⎝⎭⎪⎪-+-≤<<+∞⎪⎩或 (6)根据两个随机变量和的密度公式 ()(),,z f z f x z x dx +∞-∞=-⎰ 由于要被积函数(),f x z x -非零,只要当0x z x <<-,即02zx <<时,从而有: 当0z <时, ()0;z f z =当0z ≥时, ()()22201;2zz x zxzz z f z xedx e xe dx e e ππ-----⎛⎫===+- ⎪⎝⎭⎰⎰因此, ()21, 0,20, 0.zz z z e e z f z z --⎧⎛⎫+-≥⎪ ⎪=⎨⎝⎭⎪<⎩(7)由于已经求出了Z X Y =+的密度,故()()1111220111.2z z z z P X Y f z dz e e dz e e -----∞⎡⎤⎛⎫+<==+-=--⎢⎥ ⎪⎝⎭⎣⎦⎰⎰(8)()()()()()2111min ,11min ,111,115 11 1.22v vvP X Y P X Y P X Y dv ue du v e dv e +∞+∞---<=-≥=-≥≥=-=-=-⎰⎰⎰【技巧】 本题是二维连续型随机变量的综合题,几乎涵盖了其中的主要内容.在常数确定c 时,应用了Γ函数的定义和性质,当然,读者也可以直接用分部积分法计算.概率()1|2P X Y <=的求法,要利用条件密度()||2X Y f x 进行计算,其计算过程同一般的一维密度的计算方法.()1P X Y +<的计算,我们利用了第(6)问的结论,在不需要求X Y +密度的情形下,只要直接计算就可以了,即 ()111212011.xyxP X Y dxxe dy ee ----+<==--⎰⎰综例3.6.5 设[]~0,1,X U 且在{}X x =的条件下,[]~0,,0 1.Y U X x ≤≤求(1)()221|,01;P X Y X x x +≤=≤≤ (2)()221.P X Y +≤【思路】第一问等价于求(),P Y x ≤=故只需利用条件密度()||Y X f y x 来计算,而第二问的计算,首先要知道(),X Y 的联合分布密度(),f x y . 【解】 由题设知,X 的密度函数为 ()1, 01,0, X x f x ≤≤⎧=⎨⎩其他.而在{}X x =条件下,Y 的条件密度为()|1, 01,|0, .Y Xy x f y x x⎧≤≤≤⎪=⎨⎪⎩其他 从而(),X Y 的联合密度函数为: ()()()|1, 01,,|0, X Y X y x f x y f x f y x x⎧≤≤≤⎪==⎨⎪⎩其他① 对01x ≤≤,有()()()22221|1|P X Y X x P Y x X x P Y X x +≤==≤-==≤=()((|11|min min .Y X y y f y x dy dx x x x===- 82 -②()()(22221422001101111,ln 1.cos x y x y y x P X Y f x y dxdy dxdy dr rd x r πθθ+≤+≤≤≤≤+≤===⎰⎰⎰⎰⎰⎰极坐标变换【注】 本题中的()||Y X f y x 和(),f x y 虽然具有相同的表示式,但其含义却截然不同. ()||Y X f y x 是y 的一元函数,而不是二元函数,x 在此视为常量,这相当于微积分中,当二元函数一个自变量固定时,它只是另一个变量的一元函数.当x 变化时,Y 的条件密度函数也变化. 综例3.6.6 设二维随机变量(),X Y 在矩形 (){},:02,01G x y x y =≤≤≤≤上服从均匀分布,试求边长为X 和Y 的矩形面积S 的概率密度().f s【解】 由题设知,二维随机变量(),X Y 的概率密度为 ()()()1,,,,20,,.x y G f x y x y G ⎧∈⎪=⎨⎪∉⎩若若设()(),S X Y F s P S s ==≤为S 的分布函数,则:当0s <时,()()0,F s P XY s =≤= 当2s ≥时,()()1,F s P XY s =≤= 当02s ≤<时,曲线xy s =与矩形G 的上边交于点(),1s (见图3.6.1),于是 ()()(),F s P S s P XY s =≤=≤因而,S XY =的概率密度为 ()()1ln 2ln ,02,20, s s f s ⎧-≤<⎪=⎨⎪⎩其他.【解毕】【寓意】 本题实质上是求两随机变量的乘积的概率密度.第四章 随机变量的数学特征例4.2.1 一台设备由三大部件构成,在设备运转中各部件需要调整的概率相应为0.10,0.20和0.30,假设各部件的状态相互独立,以X 表示同时需要调整的部件数,试求X 的数学期望EX 和方差DX . 【思路】 关键是求出X 的分布律,然后用定义计算EX .【解】 引入事件:{}i=1,2,3.i A i =第个部件需要调整 根据题设,三部件需要调整的概率分别为()()()1230.10,0.20,0.30.P A P A P A ===由题设部件的状态相互独立,于是有()()()()()1231230 0.90.80.70.504.P X P A A A P A P A P A ====⨯⨯=()()12312312310.10.80.70.90.20.70.90.80.3 0.398P X P A A A A A A A A A ==⋃⋃=⨯⨯+⨯⨯+⨯⨯=()()12312312320.10.20.70.10.80.30.90.20.3 0.092;P X P A A A A A A A A A ==⋃⋃=⨯⨯+⨯⨯+⨯⨯=X从而00.50410.39820.09230.0060.6,i i iEX x p ==⨯+⨯+⨯+⨯=∑22222200.50410.39820.09230.0060.820.i i iEX x p ==⨯+⨯+⨯+⨯=∑故 ()2220.8200.60.46.DX EX EX =-=-=【解毕】【技巧】 本题的关键是引入事件i A ,将X 的分布律求出,因此,可以发现求期望和方差的难点转到了求X 的分布.同时,方差的计算一般均通过公式()22DX EX EX =-来进行.例4.2.2 对目标进行射击,直到击中目标为止.如果每次射击的命中率为p ,求射击次数X 的数学期望和方差.【解】 由题意可求得X 的分布律为()1, 1,2,,1.k P X k pq k q p -====-于是 1111.k k k k EX kpqp kq ∞∞--====∑∑为了求级数11k k kq∞-=∑的和,我们利用如下的技巧:由于11, 0<q<1.1k k q q∞==-∑- 84 -对此级数逐项求导,得1001,kk k k k k d dq q kq dq dq ∞∞∞-===⎛⎫== ⎪⎝⎭∑∑∑ 因此()12111,11k k d kq dq q q ∞-=⎛⎫== ⎪--⎝⎭∑ 从而 ()22111.1EX ppp pq ===- 为了求DX ,我们先求2EX .由于 ()()212121111.k k K k EX k k pqpq k k q p p ∞∞--===-+=-+∑∑ 为了求()221k k k k q∞-=-∑得值,注意到()()123112.11k k d d kq dq dq q q ∞-=⎛⎫⎛⎫== ⎪ ⎪ ⎪--⎝⎭⎝⎭∑ 从而()2322121.1q EX p qp p pq =+=+- 因此 ()22221.p qDX EX EX p p-=-== 【寓意】 本题实质上是求几何分布的数学期望和方差.本题的主要技巧是利用了级数的逐项求导公式来求期望. 当然同样可用逐项积分方法来求11k k kq∞-=∑和211k k kq ∞-=∑,这种手段在级数求和或数学期望和方差的计算是十分奏效的.还有一点,我们在此说明一下,在本题中,由于X 的取值都是正数,所以只要正项级数1kk k xp ∞=∑收敛,则一定绝对收敛,即1k k k x p ∞=∑的和就为EX .而实际情况中,可能存在级数1k k k x p ∞=∑是条件收敛的,此时,X 的数学期望就不存在(虽然1kk k xp ∞=∑本身仍是收敛的),因此判断离散型随机变量的期望是否存在,要用关于级数绝对收敛的判断方法.例4.2.3 设X 是一随机变量,其概率密度为()1, 10,1, 01,0, x x f x x x +-≤≤⎧⎪=-<≤⎨⎪⎩其他.求DX .(1995年考研题) 【解】()()()()()()()011011222221110..11211 6EX xf x dx x x dx x x dx EX x f x dx x x dx x x dx x x dx +∞-∞-+∞-∞-==++-===++-=-=⎰⎰⎰⎰⎰⎰⎰于是 ()221.6DX EX EX =-=【解毕】 【技巧】 在计算数学期望和方差时,应首先检验一下()f x 的奇偶性,这样可利用对称区间上奇偶函数的积分公式简化求解,比如本题中,()f x 为偶函数,故()0.EX xf x dx +∞-∞==⎰同样DX 的计算也可直接简化.例4.2.4 已知连续型随机变量X 的密度函数为 ()221, -<x<+.xx f x -+-=∞∞求EX 与DX .(1987年考研题) 【思路】 一种求法是直接利用数学期望与方差的定义来求.另一种方法是利用正态分布的形式及其参数的含义.【解】 (方法1)直接法.由数学期望与方差的定义知()()()()()()222211111 1.x x x x EX xf x dx xedx edx x e dx e dx +∞+∞+∞+∞-------∞-∞+∞--===+-==⎰⎰⎰⎰⎰()()()()()22222212111 .2x t t DX E X EX x f x dx x dxt e e dt +∞+∞---∞-∞+∞+∞---∞=-=-=-==⎰⎰⎰⎰(方法2) 利用正态分布定义.由于期望为μ,方差为2σ()()222.x x μσ---∞<<+∞所以把()f x 变形为- 86 -()()221212x f x π--⨯=易知,()f x 为11,2N ⎛⎫ ⎪⎝⎭的概率密度,因此有 11,.2EX DX ==【解毕】 【技巧】 解决本题的关键是要善于识别常用分布的密度函数,不然的话,直接计算将会带来较大的工作量.反过来,用正态分布的特性也可以来求积分2kx e dx +∞--∞⎰等.(2)若干计算公式的应用主要包括随机变量函数的数学期望公式,数学期望与方差的性质公式的应用.例4.2.5 设X 表示10次独立重复射击中命中目标的次数,每次射中目标的概率为0.4,求2EX . (1995年考研题) 【解】 由题意知()~10,0.4X B 于是100.44,EX =⨯=()100.410.4 2.4.DX =⨯⨯-=由()22DX EX EX =-可推知()2222.4418.4.EX DX EX =+=+=【寓意】 本题考查了两个内容,一是由题意归结出随机变量X 的分布;二是灵活应用方差计算公式,如果直接求解,那么 ()1010221000.410.4kk k K EX k C -==-∑的计算是繁琐的.例4.2.6 设X 服从参数1λ=的指数分布,求()2XE X e -+.(1992年考研题)【解】 由题设知,X 的密度函数为(), 0,0, 0.x e x f x x -⎧>=⎨≤⎩且1EX =,又因为()22201,3Xxx xEeef x dx e e dx +∞+∞-----∞===⎰⎰ 从而 ()22141.33XX E X eEX Ee --+=+=+= 【解毕】 【寓意】 本题的目的是考查常见分布的分布密度(或分布律)以及它们的数字特征,同时也考查了随机变量函数的数学期望的求法.例4.2.7 设二维随机变量(),X Y 在区域(){},:01,G x y x y x =<<<内服从均匀分布,求随机变量21Z X =+的方差.DZ【解】 由方差的性质得知()214DZ D X DX =+=又由于X 的边缘密度为()()1, 01,0, .2, 010, xX xdy x f x f x y dy x x +∞--∞⎧<<⎪==⎨⎪⎩<<⎧=⎨⎩⎰⎰其他其他.于是()112200222212, 2,32121.2318EX x xdx EX x xdx DX EX EX ====⎛⎫=-=-= ⎪⎝⎭⎰⎰因此 , 1244.189DZ DX ==⨯=【解毕】 【技巧】 尽管本题给出的是二维随机变量,但在求X 的期望于方差时,可以从X 的边缘密度函数出发,而不必从X 与Y 的联合密度函数开始.在一般情形下,采用边缘密度函数较为方便.例4.2.8 设随机变量X 和Y 独立,且X 服从均值为1Y 服从标准正态分布,试求随机变量23Z X Y =-+的概率密度函数.(1989年考研题)【思路】 此题看上去好像与数字特征无多大联系,但由于X 和Y 相互独立且都服从正态分布,所以Z- 88 -作为,X Y 的线性组合也服从正态分布.故只需求EZ 和DZ ,则Z 的概率密度函数就唯一确定了. 【解】 由题设知,()()~1,2,~0,1X N Y N .从而由期望和方差的性质得2235,29.EZ EX EY DZ DX DY =-+==+=又因Z 是,X Y 的线性函数,且,X Y 是相互独立的正态随机变量,故Z 也为正态随机变量,又因正态分布完全由其期望和方差确定,故知()~5,9Z N ,于是,Z 的概率密度为 ()()2529, .z Z f z z --⨯=-∞<<+∞ 【解毕】【寓意】 本题主要考查二点内容,一是独立正态分布的线性组合仍为正态分布;其二是正态分布完全由其期望和方差决定.例4.2.9 假设随机变量Y 服从参数为1λ=的指数分布,随机变量 0, ,1, .k Y k X Y k ≤⎧=⎨>⎩若若 ()1,2k =(1) 求1X 和2X 的联合概率分布; (2) 求()12E X X +. 【解】 显然,Y 的分布函数为()1, 0,0, 0.y e y F y y -⎧->=⎨≤⎩10, 11 1.Y X Y ≤⎧=⎨>⎩若,,若 20, 21 2.Y X Y ≤⎧=⎨>⎩若,,若 (1)()12X X +有四个可能取值:()()()()0,0,0,1,1,0,1,1,且()()()()()()()()()()()()()()121121212120,01,21 11,0,11,20,1,01,212 21,1,11,22 P X X P Y Y P Y F e P X X P Y Y P X X P Y Y P Y F F e e P X X P Y Y P Y --===≤≤=≤==-===≤>====>≤=<≤=-=-===>>=>()2 12.F e -=-=于是得到1X 和2X 的联合分布律为(3) 显然,12,X X 的分布律分别为1X 0 1 2X 0 1P 11e -- 1e - P 21e -- 2e -因此 1212,.EX e EX e --==故 ()121212.E X X EX EX e e --+=+=+ 【解毕】【技巧】 本题中若不要求求X 与Y 的联合分布律,也可直接求出()12E X X +,这是因为 ()()()1111011.EX P Y P Y P Y e -=⨯>+⨯≤=>=而 222,EX PY e -=>= 因此 ()121212.E X X EX EX e e --+=+=+不仅如此,我们还能求12,X X 其他函数的期望.例如求()12E X X ,此时,由于121, 2,0 .Y X X >⎧=⎨⎩若,其他故 ()()()()21212022.E X X P Y P Y P Y e -=⨯>+⨯≤=>=例4.2.10 设随机变量(),X Y 服从二维正态分布,其密度函数为()()22121,2x y f x y e π-+= 求随机变量Z .【思路】 利用随机变量函数的期望的求法进行计算.。
总习题七1.设元件寿命X 服从正态分布),(2σμN ,其中参数μ、2σ都是未知的,现随机抽取6个元件,测得其使用寿命(单位:小时)分别为:1498 1502 1578 1366 1454 1650 试求总体均值μ和方差2σ 的矩估计值.解:,ˆX =μ故1508ˆ=μ,()()222E X E X σ=-, 故,22218046.67.A A σ∧=-=2.电阻的使用寿命X 服从参数为β的指数分布,参数β未知。
今抽查了6只电阻测得到以下数据(单位:年):4.24.31.38.47.29.1,求参数β的矩估计值.解:()1,E X β=1ˆ,X β=1ˆ0.32793.05β== 3.设一射手向某目标射击,直到击种目标为止,假定其命中率为p ,用X 表示射手射击的次数,写出X 的分布律.如果n X X X ,,,21 是取自X 的样本,求p 的矩估计和极大似然估计.解:(1)X 的分布率为{}()11,1,2,,k P X k p p k -==-=()()()111111k k k k E X k p p p k p ∞∞--===-=-∑∑,令1,q p =-()11,k k kqf q ∞-==∑则()111,1qqk k k k qf t dt ktdt q q∞∞-=====-∑∑⎰⎰ 故,()()21,11q f q q q '⎛⎫== ⎪--⎝⎭()()21,1p E X p q ==-1ˆ.p X = (2){}()11,k x k P X x p p -==-()()()11111,nk k k nx x nn k L p p p p p =--=∑=-=-∏ ()()1ln ln ln 1,n k k L p n p x n p =⎛⎫=⋅+-⋅-⎡⎤ ⎪⎣⎦⎝⎭∑ 令()1ln 01nk k x n d L p n dpp p =-⎡⎤⎡⎤⎣⎦⎣⎦=-=-∑,故1ˆ.pX= 4.设总体X 的概率密度为⎪⎩⎪⎨⎧>=--其他,0,1),;()(μθθμθμx e x f x其中)0>θθμ(,为待估参数。
第一章数据的描述和整理一、学习目的和要求1. 掌握数据的类型及特性;2.掌握定性和定量数据的整理步骤、显示方法;3.掌握描述数据分布的集中趋势、离散程度和分布形状的常用统计量;4.能理解并熟练掌握样本均值、样本方差的计算;5.了解统计图形和统计表的表示及意义;6. 了解用Excel软件进行统计作图、频数分布表与直方图生成、统计量的计算。
二、内容提要(一)数据的分类(二)常用统计量1、描述集中趋势的统计量2、描述离散程度的统计量3、描述分布形状的统计量* 在分组数据公式中,m i , f i 分别为各组的组中值和观察值出现的频数。
三、综合例题解析例1.证明:各数据观察值与其均值之差的平方和(称为离差平方和)最小,即对任意常数C ,有2211()()n ni ii i x x x C ==-≤-∑∑ 证一:设 21()()ni i f C x C ==-∑由函数极值的求法,对上式求导数,得11()2()22, ()2 n ni i i i f C x C x nC f C n =='''=--=-+=∑∑令 f '(C )=0,得唯一驻点11= ni i C x x n ==∑由于()20f x n ''=>,故当C x =时f (C )y 有最小值,其最小值为21()()ni i f x x x ==-∑。
证二:因为对任意常数C 有22222211111222212()()(2)2(2)()0nn n n nii iii i i i i i ni i xx x C x nx x C x nC nx C x nC n x Cx C n x C ======---=---+=-+-=--+=--≤∑∑∑∑∑∑故有2211()()nni ii i x x x C ==-≤-∑∑。
四、习题一解答1.在某药合成过程中,测得的转化率(%)如下:94.3 92.8 92.7 92.6 93.3 92.9 91.8 92.4 93.4 92.6 92.2 93.0 92.9 92.2 92.4 92.2 92.8 92.4 93.9 92.0 93.5 93.6 93.0 93.0 93.4 94.2 92.8 93.2 92.2 91.8 92.5 93.6 93.9 92.4 91.8 93.8 93.6 92.1 92.0 90.8 (1)取组距为0.5,最低组下限为90.5,试作出频数分布表; (2)作频数直方图和频率折线图;(3)根据频数分布表的分组数据,计算样本均值和样本标准差。
4.11 设锰的熔化点(单位:︒C )服从正态分布。
进行5次试验,测得锰的熔化点如下:1269 ,1271 ,1256 ,1265 ,1254 。
是否可以认为锰的熔化点显著高于1250︒C ?(显著水平05.0=α)解 设锰的熔化点ξ~),(2σμN ,问题相当于要检验0H :1250≤μ(1H :1250>μ )。
5=n ,1263=X ,64853.7*=S ,8006.3564853.712501263*=-=-=n S X T μ。
对05.0=α,查 t 分布表,可得 1318.2)4()1(95.01==--t n t α 。
因为 1318.28006.3>=T ,所以拒绝 0H :1250≤μ ,接受 1H :1250>μ 。
可认为锰的熔化点显著高于1250︒C 。
4.12 某种导线的电阻(单位:Ω)服从正态分布,按照规定,电阻的标准差不得超过0.005 。
今在一批导线中任取9根,测得修正样本标准差 =*S 0.007 ,这批导线的电阻的标准差,比起规定的电阻的标准差来,是否显著地偏大?(显著水平05.0=α)解 设导线电阻ξ~),(2σμN ,问题相当于要检验0H :005.0≤σ(1H :005.0>σ )。
222*)1(σχS n -=68.15005.0007.0)19(22=⨯-=。
对05.0=α,查 2χ 分布表,可得507.15)8()1(295.021==--χχαn 。
因为507.1568.152>=χ,所以拒绝 0H :005.0≤σ ,接受1H :005.0>σ 。
这批导线的电阻的标准差,比起规定的电阻的标准差来,显著地偏大。
4.13 某厂从用旧工艺和新工艺生产的灯泡中,各取10只进行寿命试验,测得旧工艺生产的灯泡寿命的样本均值为2460小时,修正样本标准差为56小时;新工艺生产的灯泡寿命的样本均值为2550小时,修正样本标准差为48小时。
概率论与数理统计例题和知识点总结概率论与数理统计是一门研究随机现象统计规律的学科,它在自然科学、工程技术、经济管理、社会科学等众多领域都有着广泛的应用。
下面将通过一些例题来帮助大家理解和掌握这门学科的重要知识点。
一、随机事件与概率随机事件是指在一定条件下,可能出现也可能不出现的事件。
概率则是衡量随机事件发生可能性大小的数值。
例 1:抛掷一枚均匀的硬币,求正面朝上的概率。
解:因为硬币只有正反两面,且质地均匀,所以正面朝上的概率为1/2。
知识点:古典概型中,事件 A 的概率 P(A) = A 包含的基本事件数/基本事件总数。
例 2:一个袋子里有 5 个红球和 3 个白球,从中随机取出一个球,求取出红球的概率。
解:袋子里一共有 8 个球,其中 5 个是红球,所以取出红球的概率为 5/8。
知识点:概率的性质:0 ≤ P(A) ≤ 1;P(Ω) = 1,P(∅)= 0。
二、条件概率与乘法公式条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
例 3:已知在某疾病的检测中,阳性结果中真正患病的概率为 09,而总体人群中患病的概率为 001。
如果一个人的检测结果为阳性,求他真正患病的概率。
解:设 A 表示患病,B 表示检测结果为阳性。
则 P(A) = 001,P(B|A) = 09,P(B|A')= 1 P(B|A) = 01。
根据全概率公式:P(B) =P(A)×P(B|A) + P(A')×P(B|A')= 001×09 +099×01 ≈ 0108。
再根据贝叶斯公式:P(A|B) = P(A)×P(B|A) / P(B) = 001×09 /0108 ≈ 0083。
知识点:条件概率公式:P(B|A) = P(AB) / P(A);乘法公式:P(AB) = P(A)×P(B|A)。
三、独立性如果两个事件的发生与否互不影响,那么称它们是相互独立的事件。
典型例题分析例1.分别从方差为20和35的正态总抽取容量为8和10的两个样本,求第一个样本方差是第二个样本方差两倍的概率的范围。
解 以21S 和22S 分别表示两个(修正)样本方差。
由222212σσy x S S F =知统计量2221222175.13520S S S S F ==服从F 分布,自由度为(7,9)。
1) 事件{}22212S S =的概率 {}{}05.320352352022222122212221===⎭⎬⎫⎩⎨⎧⨯==⎭⎬⎫⎩⎨⎧===F P S S P S S P S S P因为F 是连续型随机变量,而任何连续型随机变量取任一给定值的概率都等于0。
2) 现在我们求事件{}二样本方差两倍第一样本方差不小于第=A 的概率:{}{}5.322221≥=≥=F P S S P p 。
由附表可见,自由度9,721==f f 的F 分布水平α上侧分位数),(21f f F α有如下数值:)9,7(20.45.329.3)9,7(025.005.0F F =<<=。
由此可见,事件A 的概率p 介于0.025与0.05之间;05.0025.0<<p 。
例2.设n X X X ,,, 21是取自正态总体),(2σμN 的一个样本,2s 为样本方差,求满足不等式95.05.122≥⎭⎬⎫⎩⎨⎧≤σS P 的最小n 值。
解 由随机变量2χ分布知,随机变量σ/12S n )(-服从2χ分布,自由度1-=n v ,于是,有{}{}95.0)1(5.1)1(5.1)1(2,05.02222=≤≥-≤=⎭⎬⎫⎩⎨⎧-≤-=v v v P n P n S n P χχχσ 其中2v χ表示自由度1-=n v 的2χ分布随机变量,2,05.0v χ是自由度为1-=n v 的水平05.0=α的2χ分布上侧分位数(见附表)。
我们欲求满足2,05.015.1v n χ≥-)(的最小1+=v n 值,由附表可见226,05.0885.3839)127(5.1χ=>=-, 22505.0652.375.401265.1,)(χ=<=-。
于是,所求27=n 。
例3.假设随机变量X 在区间[]1,+θθ上有均匀分布,其中θ未知:)(1n X X ,, 是来自X 的简单随机样本,X 是样本的均值,{}n X X X ,,min 1)1( =是最小观察值。
证明21ˆ1-=X θ 和 11ˆ12+-=n X )(θ 都是θ的无偏估计量。
解 由X 在[]1,+θθ上均匀分布,知2/)12(+==θEX EX i 。
1) 由θθθθ=-+=-+=-=∑∑==2121212221211ˆ111n i n i i n EX n E , 可见1ˆθ是θ的无偏估计量。
2) 为证明2ˆθ是θ的无偏估计。
我们先求统计量)1(X 的概率分布。
{}⎪⎩⎪⎨⎧>+≤≤-<=≤=。
若,;若;若)(111,,0θθθθθx x x x X P x F其密度为⎩⎨⎧+≤≤=。
其他,若,01,1)(θθx x f由于n X X ,,1独立且与X 同分布,知)1(X 的分布函数为 {}{}{}x X x X P x X P x X P x F n >>-=>-=≤=,,111)1()1(1 )()( {}{}x X P x X P n >>-= 11 []nx F )(11--=;[])1()1()()(1)()(11)1()1(+≤≤-+=-='=--θθθx x n x f x F n x F x f n n于是,有⎰⎰+-+-+==111)1()1()1()(θθθθθdx x x n dx x xf EX n⎰⎰+-+-+++-+-+=111)1)(1()1()1(θθθθθθθθdx x n x d x n n nθθ++=⎪⎭⎫ ⎝⎛+++-=11111n n n n 。
θθ=+-=11ˆ)1(2n EX E , 从而2ˆθ是θ的无偏估计。
在证2ˆθ的无偏估计时,先求估计量分布再求其数学期望。
此外,下面将看到,1ˆθ是矩估计量,)1(X 是最大似然估计量。
3) 有效性的验证,即验证两个无偏估计量哪一个更有效(方差较小),只需 计算它们的方差并加以比较,验证估计量的最小方差超出了本课程的要求。
读者只需了解一些常用的最小方差估计量。
例如,对于正态分布总体),(2σμN ,样本均值X 和修正样本方差2S 相应为μ和2σ的最小方差无偏估计量;事件频率n pˆ是它的概率p 的最小方差无偏估计量。
如果要求有效率,则用公式)ˆ()(0θθD D 计算,其中()2),(ln 1)()ˆ(⎥⎦⎤⎢⎣⎡∂∂=≥θθθθx f nE D D ——称为罗.克拉美不等式。
例4.设总X 服从正态分布),(20σμN ,其中方差20σ为已知常数;关于未知数学期望μ有两个二者必居其一的假设: 1100μμμμ==:,:H H ,其中0μ和1μ都有已知常数,并且10μμ<。
根据来自总体X 的简单随机样本n X X X ,,, 21,确定假设0H 的α水平否定域(即拒绝域),并计算第二类错误概率。
解 取统计量 nX U 0σμ-=做检验的统计量。
在假设00μμ=:H 成立的条件下,),(10~N U 。
由于{}{}{}{}ααααα=≤=-≤=≥=≥-122u U p u U P u U P u U P 。
所以以下四种都是假设0H 的水平α的否定域: {}{}αα221u U V u U V ≥=≥=;; {}{}αα-≤=-≤=1423u U V u U V ;, 其中αu 是标准正态分布α水平双侧分位数(见附表)。
在假设11:μμ=H 成立的条件下,统计量)1,(~∆N U ,其中001/)(σμμ-=∆n 。
因此,以)4,3,2,1(=i V i 为假设否定域的检验的第二类错误概率为:{}{}⎰∆--====iV x i i dx e V P H V P 2)(11221πμμβ。
特别(设)(x Φ是标准正态分布函数)1)()(212122)(122-∆-Φ+∆+Φ===⎰⎰∆-∆---∆--ααμππβαμααu du e dx eu u u u u x ;)(2122)(222∆-Φ==⎰∞-∆--ααπβu dx eu x ; )(2122)(322∆+Φ==⎰∞+-∆--ααπβu dx eu x ;)()(22121112)(2)(41212∆-Φ-∆+Φ-=+=--∞+∆--∞-∆--⎰⎰--ααμππβααu dx edx eu x u x 。
为了便于比较,设91101.0010=====n ;,,,σμμα,则13.0,28.1,65.1,39.02.01.0====∆u u u 。
查附表并经计算,容易得到9988.09999.00427.00855.04321====ββββ,,,。
计算结果表明,尽管四个检验的一类错误的概率都等于1.0=α,但它们的第二类错误的概率却不相同。
以2V 为否定域的检验的第二类错误的概率最小,为我们所选用。
例5.对二项分布),(p n B 作统计假设 3.0:,6.0:10==p H p H 。
假设0H 的否定域取为{}{}21c c V n n ≥≤=μμ ,其中n μ表示n 次试验中成功的次数。
对(1);3,9,1,1021====n c c n μ (2)6,17,7,2021====n c c n μ,求显著性水平α和第二类错误的概率β。
解 (1)显著性水平α是第一类错误的概率,于是 {}{}6.00=∈=∈=p V P H V P n μμα0479.04.06.04.06.0109101011010≈+=∑∑=-=-i i i ii iii C C 。
{}{}111H V P H V P n n ∈-=∈=μμβ {}3.01=∈-=p V P n μ 8506.07.03.07.03.011091010101010≈--=∑∑=-=-i i i ii iiiC C 。
(2){}{}6.00=∈=∈=p V P H V P n n μμα 0370.04.06.04.06.0201720702020≈+=∑∑==-i i i ii iiiC C 。
{}{}3.011=∈-=∈=p V P H V P n n μμβ 2277.07.03.07.03.0120172020702010≈--=∑∑=-=-i i i ii iiiC C 。
例6.谋装置的平均工作温度据制造厂家称不高于190℃。
今从一个由16台装置构成的随机样本册的工作温度的平均值和标准差分别为195℃和8℃。
根据这些数据能否说明平均工作温度比制造厂所说的要高?设05.0=α,并假定工作温度服从正态分布。
解 设工作温度为X ,根据题设),(~2σμN X 。
考虑假设 190,190:10>≤H H μ 由于总体方差2σ未知,故用t 检验。
这里,151,16=-==n v n 对给定的05.0=α,查表得75.15.1,1.0,20==t t v 。
于是由表情形知假设0H 的否定域为{}75.1≥=t V 。
由条件和0H 知8,195,1900===S X μ,因此5.216/8190195=-=t 。
由于75.15.2>=t ,所以否定域假设0H ,说明平均工作温度比制造厂说的要高。
例7 某电话交换台在一小时(60分钟)内每分钟接到电话用户的呼唤次数有如下纪录:问统计资料是否可以说明,每分钟电话呼唤次数服从泊松分布?()05.0=α 解 设X 表示每分钟电话呼唤次数,需要检验的假设 X H :0服从泊松分布。
泊松分布中未知参数λ的最大似然估计为∑===62601ˆk k kv λ。
我们用)6,,1,0(!2ˆ ==-k e k pk k k估计概率{})6,,1,0( ===k k X P p k ;用)4,3,2,1,0(ˆ==k pn E k k 估计{}k X =的期望频数。
为避免期望频数太小,将呼唤次数为5和6的情况,合并为5≥X 的情况,为第6组:其实际频数为2+1=3,期望频数为 16.3)(655=+=p p n E 。
计算结果列入下表:所以统计量1762.0)(5022=-=∑=k kk k E E v χ。
统计量2χ的自由度16--=m v ,其中1=m 是用到参数估计值的个数,故4=v 。
对于, 05.0=α,查表得488.924,05.0=χ;假设0H 的否定域为{}488.92≥=χV 。
由于2χ=0.1762<9.488,所以不否定假设0H ,即可以认为电话呼唤次数服从泊松分布。